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Abstract—The purpose of this extended paper is to provide
a review of the chirp function and the chirplet transform and
to investigate the application of chirplet modulation for digi-
tal communications, in particular, the transmission of binary
strings. The significance of the chirp function in the solution
to a range of fundamental problems in physics is revisited to
provide a background to the case and to present the context
in which the chirp function plays a central role, the material
presented being designed to show a variety of problems with
solutions and applications that are characterized by a chirp
function in a fundamental way.

A study is then provided whose aim is to investigate the
uniqueness of the chirp function in regard to its use for
convolutional coding and decoding, the latter case (i.e. decoding)
being related to the autocorrelation of the chirp function
which provides a unique solution to the deconvolution problem.
Complementary material in regard to the uniqueness of a
chirp is addressed through an investigation into the self-
characterization of the chirp function upon Fourier transforma-
tion. This includes a short study on the eigenfunctions of the
Fourier transform, leading to a uniqueness conjecture which
is based on an application of the Bluestein decomposition of a
Fourier transform. The conjecture states that the chirp function
is the only phase-only function to have a self-characteristic
Fourier transform, and, for a specific scaling constant, a
conjugate eigenfunction. In the context of this conjecture, we
consider the transmission of information through a channel
characterized by additive noise and the detection of signals with
very low Signal-to-Noise Ratios. It is shown that application of
chirplet modulation can provide a simple and optimal solution
to the problem of transmitting binary strings through noisy
communication channels, a result which suggests that all digital
communication systems should ideally by predicated on the
application of chirplet modulation.

In the latter part of the paper, a method is proposed for
securing the communication of information (in the form of a
binary string) through chirplet modulation that is based on
prime number factorization of the chirplet (angular) band-
width. Coupled with a quantum computer for factorizing
very large prime numbers using Shor’s algorithm, the method
has the potential for designing a communications protocol
specifically for users with access to quantum computing when
the factorization of very large prime numbers is required. In
this respect, and, in the final part of the paper, we investigate the
application of chirplet modulation for communicating through
the ‘Water-Hole’. This includes the introduction of a method
for distinguishing between genuine ‘intelligible’ binary strings
through the Kullback-Leibler divergence which is shown to
be statistically significant for a number of natural languages.

Manuscript received 20, September, 2019; final revised version submitted
on 25, March, 2020.

Jonathan Blackledge is the Science Foundation Ireland’s Stokes Pro-
fessor. He is an Honorary Professor in the School of Electrical and
Electronic Engineering at the Technological University Dublin, Ire-
land, Distinguished Professor in the Center for Advanced Studies, War-
saw University of Technology, Poland, Visiting Professor, University
of Wales, UK, Professor Extraordinaire in the Department of Com-
puter Science, University of Western Cape and Honorary Professor in
the School of Mathematics, Statistics and Computer Science, University
of KwaZulu-Natal, South Africa. email: jonathan.blackledge@tudublin.ie,
web: https://www.linkedin.com/in/jonathan-blackledge-7643a5150/. This
paper is dedicated to the memory of Giordano Bruno (1548-1600).

Finally, a conjecture is developed in regard to focusing on the
emission of intelligent signals from multiple star systems in
the search for extraterrestrial intelligence. Prototype MATLAB
code is given in the Appendix so that interested readers
can reproduce some of the results given and modify and/or
develop further the algorithms provided. The paper concludes
with a number of open questions and some ideas for further
investigation.

Index Terms—Chirp Function, Fourier Transform, Bluestein
Decomposition, Fourier Eigenfunctions, Phase-only Functions,
Chirplet Transform, Chirplet Modulation, Convolutional Cod-
ing, Encryption/Decryption, Bandwidth Factorization Key Ex-
change, Intelligibility of Binary Strings, Extraterrestrial Com-
munications.

I. INTRODUCTION

THE chirp function and the chirplet transformation are
well known, having been studied and implemented in a

wide range of information and communication engineering
applications. These applications have their origins in work
dating back to the 1950’s and 1960’s, in particular, the in-
vention and patenting of chirp pulse based communications,
e.g. [1], [2].

For a unit amplitude, the linear frequency modulated chirp
is defined by a function of time t given by exp(iαt2) where
α is a real constant known as the ‘chirp rate’ (with units
of Time−2) or ‘chirp parameter’ in the multi-dimensional
case. A chirp of this type can of course be equally well
be expressed in terms of its conjugate, exp(−iαt2). The
function exp(±iαt2) is characterized by a quadratic phase
function θ(t) = αt2 giving a linear frequency modulation
of 2αt. This is obtained by taking the derivative of the
phase function which yields the ‘instantaneous frequency’,
i.e. θ′(t) ≡ dθ(t)/dt = 2αt. This is an example of a simple
linear chirp function and there are a number of variations
that can be considered such as the ‘Quadratic Chirp’ when
θ′(t) = αt2 and the ‘Exponential Chirp’ when θ′(t) = αt.

The linear frequency modulated chirp represents a re-
occurring theme in many areas of physics and in communica-
tions engineering. It is used in telecommunication and radio
communication as a spread-spectrum technique where the
bandwidth of a transmitted signal is spread in the frequency
domain (resulting in a signal with a wider bandwidth)
and forms part of the wireless telecommunications IEEE
standards [3]. In practice, chirp functions are of compact
support. For the two-sided case, t ∈ [−T/2, T/2] where T
is the ‘length’ or ‘period’ of the pulse (its compact support
in time), and, for the single-sided case, t ∈ [0, T ]. Such
functions are referred to as ‘Chirplets’. In general, a chirplet
is any part of a chirp function that has been windowed in
time, windows that may be discontinuous or otherwise. Such
functions have applications in signal and image processing
through implementation of the chirplet transform [4].
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The reason for the wide ranging applications of the chirp
function and the chirplet transform relate to some of their
unique characteristics and properties which are re-visited
in this paper. However, it should be appreciated that the
chirp function and chirplet transform are not just useful
‘inventions’ with unique properties. They are re-occurring
themes in physics where they provide some of the most
fundamental characteristics of general solutions to specific
physical models defined in terms of various partial differ-
ential equations. This is an aspect of the chirp function
that is explored in the early part of the paper. In this
context, we re-consider the characteristics of a chirp showing
that it has a unique conjugate Fourier eigenfunction and
that no phase-only function other than the chirp appears to
have a self-characteristic Fourier transform. Coupled with
the autocorrelation characteristics of a chirp function, this
property underlies the uniqueness of the chirp function.

After studying the properties of the chirp function, the
paper reconsiders the principles of transmitting information
in the form of a binary string or bit-stream through a
channel characterized by additive noise when the Signal-to-
Noise Ratio (SNR) is very low using a chirplet modulation
algorithm. The accuracy of the associated demodulation
algorithm is then quantified by examining the Bit Error Rate.
We then explore a new communications protocol where,
provided the sender and recipient of a chirplet modulated
signal have accurate prior knowledge of the operational
bandwidth, modulation and demodulation can be undertaken
by factorizing the value of a semi-prime (derived from the
bandwidth) into two prime numbers. Providing the semi-
prime is large enough, we briefly explore how this protocol
yields the potential to exercise a uniquely robust form of
communications security, particularly in regard to the appli-
cation of quantum computing to factorize two prime numbers
using Shor’s algorithm. In this context, we examine how this
approach might be used in the detection and interpretation of
signals transmitted through the ‘waterhole’. This is coupled
with the implementation of a binary entropy-based test to
differentiate between a random and non-random ‘intelligible’
strings from which a machine learning strategy can be
formulated. Finally a conjecture is considered relating to
the most likely sources from which such ‘intelligible’ strings
might be detected.

A. Structure of Paper

This extended paper is structured as follows: Section
II provides the mathematical preliminaries which are used
throughout the paper including issues on the notation that is
fundamental to comprehension of the material presented. For
generality, the paper considers the multi-dimensional case
where the chirp function is given by exp(±iαr2), r ∈ Rn;
where r ≡| r | and n = 1, 2 or 3.

Section III provides an overview of the chirp function
as a central kernel in the solution to a range of physical
problems, all of which are considered in some detail. The
purpose of this is to emphasize to the reader (especially
those readers who are not familiar with the chirp function)
that the chirp function is not just another ‘basis function’
that can be used as a kernel for an integral transform (the
chirplet transform) but a fundamental manifestation of the

physical world. This is complemented in Section IV which
provides some examples of the how the chirp function is
used in information engineering, including its role in real and
synthetic aperture radar and optical fiber communications, for
example.

Section V provides a short study on the eigenfunctions
and self-characteristic functions of the Fourier transform.
This is a digression from the principal theme of the work
but is provided to ‘set the scene’ for what is arguably the
most important exposition to be considered in the paper.
This argument is given in Section VI and compounded
in the ‘uniqueness conjecture’ which states that the chirp
function is the only phase-only function to have a conjugate
eigenfunction.

Section VII examines the background as to why the chirp
function yields solutions to the propagation of information
through channels with additive noise that are optimal. Up to
this point in the paper, the analysis presented is concerned
with chirp functions that are continuous and of infinite extent
and in Section VIII, attention focuses on some of the equiv-
alent properties of a continuous chirp that is of finite extent
(of compact support), i.e. a Chirplet. This material provides
the essential background to the application of chirplets for
the modulation of a binary string which is the subject of
Section IX and considers both continuous and discrete time
modulation. In the latter case, we explore the conditions for
generating a Nyquist sampled chirplet.

On the basis of this material, Section X explores example
chirplet modulation and demodulation algorithms which cou-
ple to the prototype MATLAB exemplar functions provided
in Appendix A. Example results are presented to introduce
the reader to some of the principal characteristics of chirplet
modulation and the conditions associated with its applica-
tions. This includes a short study of the Bit Error Rate asso-
ciated with changes in the Signal-to-Noise Ratio of a chirplet
modulated binary string. In this study, the chirplet is assumed
to be a Nyquist sampled pulse with a period T , demodulation
requiring this value to be known and thereby representing
a fundamental key in the chirplet modulation/demodulation
process. A method of exchanging this key is considered in
Section XI based on the prime number factorization of a
semi-prime formed from knowledge of the bandwidth of
the communications channel to be used. This allows Alice
to communicate to Bob using chirp modulation; all that is
required to do so (apart from knowledge of the algorithm and
its parameters), is for Alice and Bob know the bandwidth of
the channel.

The demodulation scheme considered in Section X ensures
that a binary string is output. This leaves the problem of
testing to see whether the binary string is an intelligible
string (associated with a natural language, for example) or
a string of random bits obtained by demodulating noise
without having a priori information on the binary input
before chirp modulation is applied. A solution to this problem
is investigated in Section XII based on a test that is predicated
on the binary entropy. In this paper, the Kullback-Leibler
Divergence test is applied which is a measure of how one
probability distribution is different from another reference
probability distribution.

Section XIII provides an investigation into how the ideas
developed in this paper might apply to the interpretation of
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signals recorded in the ‘waterhole’, a bandwidth of 0.25 GHz,
which is the quietest channel in the interstellar radio noise
background. The waterhole has been theorized to be the op-
timal frequency band for communicating with extraterrestrial
intelligence and has consequently been used by SETI (Search
for Extraterrestrial Intelligence) for many years without any
success to date. This section also includes a proposition as
to why sources of intelligent signals might be more common
from binary and multiple star system. Finally Section XIV
provides a some conclusions to the work including a review
of the results obtained, directions for future work and some
open questions.

B. Original Contributions

To the best of the authors knowledge, the components of
this paper that provide original contributions to the field are
as follows:
• Theorem VI.1, which shows that the chirp function

has a self-characteristic Fourier transform based on
an application of the Bluestein decomposition for the
Fourier transform and leads to Conjectures VI.1, VI.2
and VI.3.

• The prime number factorization of the bandwidth for
exchanging the chirplet period introduced in Section XI.

• Implementation of the relative entropy test to distin-
guish between intelligible and random binary strings as
discussed in Section XII.

• The conjecture associated with increasing the likelihood
of detecting intelligible signals using chirplet demodu-
lation from sources that are assumed to be habitable
planets in a stable orbit around two of more stars.

II. MATHEMATICAL PRELIMINARIES

The principal mathematical analysis presented in this
paper relies on the properties of the Fourier transform
coupled with the convolution and correlation integrals in n-
dimensions. In this section, these properties are briefly stated
together with the associated notation used through this work.

For a square integrable function f(r) ∈ L2(Rn) : C→ C,
we define the (n-dimensional) Fourier and inverse Fourier
transforms in ‘non-unitary’ form as

F (k) = Fn[f(r)] ≡
∞∫
−∞

f(r) exp(−ik · r)dnr

and

f(r) = F−1n [F (k)] ≡ 1

(2π)n

∞∫
−∞

F (k) exp(ik · r)dnk

respectively. Here, r is the n-dimensional spatial vector
where r ≡| r |= (r21 + r22 + ... + r2n)

1
2 . Similarly, k is

the spatial frequency vector where k ≡| k |= 2π/λ for
wavelength λ and k·r = k1r1+k2r2+...+knrn. Note that λ
is also used to denote an eigenvalue which may be complex.
These integral transforms define a Fourier transform pair
which, in this paper, is implied using the notation

F (k)↔ f(r) or f(r)↔ F (k)

We define the convolution integral of two functions f(r)
and g(r) as

s(r) = g(r)⊗ f(r) ≡
∞∫
−∞

g(r− s)f(s)dns

and the correlation integral as

s(r) = g∗(r)� f(r) ≡
∞∫
−∞

g∗(r + s)f(s)dns

for a complex function g(r) with the conjugate g∗(r),
where [s(r), g(r), f(r)] ∈ L2(Rn) : C → C. for which the
following fundamental theorems apply:

• The Convolution Theorem

g(r)⊗ f(r)↔ G(k)F (k)

where G(k)↔ g(r) and F (k)↔ f(r)

• The Correlation Theorem

g∗(r)� f(r)↔ G∗(k)F (k)

• The Product Theorem

g(r)f(r)↔ 1

(2π)n
G(k)⊗ F (k)

The dimensions associated with the integral operators ⊗
and � are inferred from the dimension of the functions used.
However, from time to time, multiple operators are used to
emphasize the dimensionality of the convolution operation
by including a subscript, i.e. for a function f(r), r ∈ Rn, ⊗
denotes⊗r1⊗r2 ...⊗rn . Thus, for three-dimensional Cartesian
coordinates, when r ∈ R3 and where, using conventional
notation, r1 ≡ x, r2 ≡ y and r3 ≡ z, ⊗ ≡ ⊗x ⊗y ⊗z .

In order to utilize scale invariance, from time to time,
the ‘unitary form’ of the Fourier transform pair is used
(specifically in Section V) when the forward and inverse
transforms are defined as

F (ν) = Fn[f(r)] ≡
∞∫
−∞

f(r) exp(−2πiν · r)dnr

and

f(r) = F−1n [F (ν)] ≡
∞∫
−∞

F (ν) exp(2πiν · r)dnν

respectively. These definitions restore the symmetry between
the forward and inverse unitary transforms on L2(Rn). In
this case, both the convolution and product theorems are
symmetric, i.e. g(r) ⊗ f(r) ↔ G(ν)F (ν) and g(r)f(r) ↔
G(ν)⊗ F (ν).

One particular Fourier transform pair that is important
in the context of this paper is the n-dimensional Fourier
transform of a chirp function which is given by (for r ∈ Rn)

exp(±iαr2)↔ exp

(
± inπ

4

)(π
α

)n
2

exp

(
∓ ik

2

4α

)
(1)

This result is easily derived, given that the well known
Fourier transform pair (for r ∈ R1), e.g. [5]

exp(−αx2)↔
√
π

α
exp

(
− k

2

4α

)
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can be generalized for when r ∈ Rn to

exp(−αr2)↔
(π
α

)n
2

exp

(
− k

2

4α

)
and with α := ±iα, Relationship (1) is obtained.

For a (n-dimensional) Dirac delta function δn(r) with the
sampling property

∞∫
−∞

δn(r)f(r)dnr = f(0)

it is clear that
∞∫
−∞

δn(r) exp(−ik · r)dnr = 1, ∀k

We can therefore define the Dirac delta function in terms of
the inverse Fourier transform as

δn(r) = F−1n [1] ≡ 1

(2π)n

∞∫
−∞

exp(ik · r)dnk (2)

giving the Fourier transform pair

1↔ δn(r)

We note the following scaling and symmetry properties of
the delta function, i.e. for a non-zero constant α

δn(αr) =
1

| α |
δn(r)

and
δn(r) = δn(−r)

respectively.
We also note the sampling property of the delta function

which, using the unitary form of the Fourier transform, for
a real constant X (the sampling period), is given by [6]

∞∑
m=−∞

δ(x− nX)↔ 1

X

∞∑
k=−∞

δ

(
ν − k

X

)
from which it follows that (for X = 1)

∞∑
m=−∞

δ(x− n) =

∞∫
−∞

dν exp(2πiνx)
∞∑

k=−∞

δ(ν − k)

=
∞∑

k=−∞

∞∫
−∞

dν exp(2πiνx)δ(ν − k) =
∞∑

k=−∞

exp(2πikx)

(3)
Finally, we define the p-norm as

‖f(r)‖p ≡

∫
Rn

| f(r) |p dnr

 1
p

, 1 ≤ p ≤ ∞

with the uniform norm being given by

‖f(r)‖∞ = sup{| f(r) |, r ∈ Rn}

III. ON THE PHYSICAL SIGNIFICANCE OF THE CHIRP

The importance and (apparent) uniqueness of the quadratic
phase-only function exp(iαr2), as discussed in this section,
is a re-occurring theme in the physical world. The emergence
of this function in Fresnel optics is well known and comes
from analyzing the propagation and scattering (typically
under the weak-scattering approximation) of a wave-field
in the intermediate or Fresnel zone when the geometry of
the wave-fronts of an expanding wave-field are taken to be
parabolic rather than spherical (in the near-field) or planar
(in the far-field).

The use of chirps for r ∈ R1 in communications engi-
neering has already been briefly discussed in the introduc-
tion. Another related application includes pulse compression
which is designed to maximize the sensitivity and resolution
of radar systems by modifying (i.e. chirping) emitted pulses
to improve their autocorrelation properties [7]. Chirped mir-
rors incorporate ‘chirped spaces’ in a dielectric designed to
reflect wavelengths of light and compensate for the disper-
sion of wavelengths that can be created by some optical
elements [8]. In the propagation of light pulses through
optical fibers, spectral broadening and pulse compression can
be extended to significantly higher pulse energies by using
large-mode-area photonic crystal fibers in combination with
chirping input pulses [9].

In quantum mechanics, fundamental transient phenomena
such as those that occur in the ‘quantum shutter problem’
[13] are characterized by a Fresnel integral, i.e. an integral
whose kernel is determined by a quadratic phase function.
The chirp function even plays a role in cosmology given
that chirps are a principal signature for the detection of
gravitational waves generated by compact binary systems
[10] which yield a ‘Chirp Mass’ given by

M = C

[
1

ν
8
3

(ln ν)′
] 3

5

where ν is the frequency of the gravitational wave and
C = 0.0272c3/G is a constant composed from the speed
of light c and Newton’s gravitational constant G. The chirp
mass determines the principal order orbital evolution of a
coalescing binary system as a result of energy loss from
the gravitational waves emitted whose frequency evolution
is characterized by ν. As the orbital period of an in-
spiral system reduces, the energy of the gravitational waves
emitted increases as does their frequency, thereby yielding a
gravitational wave chirp [11].

In this section, we revisit some of the concepts discussed
above in order to give the reader a back-ground to the
importance that the (multi-dimensional or otherwise) chirp
function plays in certain physical systems. The reason for
doing this, is to illustrate that the chirp function is much more
than a good invention for applications in communications
engineering alone, but rather, a fundamental property of the
physical world. In this way, we aim to emphasize the re-
occurring role that the chirp function plays before investi-
gating its unique properties for communicating information
through noisy environments which is considered in Section
VII. In this context, we revisit three fundamental examples
in physics:
• the propagation and scattering of a wave-field in the

Fresnel zone;
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• the propagation of a wave-field under the beam approx-
imation;

• a solution to the quantum shutter problem.

A. Fresnel Zone Solutions

Consider the inhomogeneous Helmholtz equation for the
three-dimensional scalar wave function u(r, k), r ∈ R3 with
wave-number k and a source function f(r) which is taken
to be of compact support and given by

(∇2 + k2)u(r, k) = −f(r), f(r)∃∀r ∈ R3

For homogenous boundary conditions, when u(r) = 0 and
∇u(r) = 0 on the surface of f(r), it is well known that the
outgoing Green’s function solution to this equation is given
by [12]

u(r, k) = g(r, k)⊗ f(r) ≡
∫

s∈R3

g(r | s, k)f(s)d3s

where

g(r, k) =
exp(ikr)

4πr

and ⊗ denotes the (three-dimensional) convolution integral
as defined in Section II.

Noting that

r | s ≡| r− s |= [(r− s) · (r− s)]
1
2 = (r2 − 2r · s + s2)

1
2

= r

(
1− 2s · r

r2
+
s2

r2

) 1
2

where s ≡| s |, binomial expansion to second order yields
the result

| r− s |' r − s · r
r

+
s2

2r
= r − n̂ · s +

s2

2r
, n̂ =

r

r

under the condition s2/r2 << 1. Thus, if s/r << 1, | r −
s |' r − n̂ · s and

u(r, k) =
exp(ikr)

4πr
F (k)

where k = kn̂ and

F (k) = F3[f(s)] ≡
∫

s∈R3

f(s) exp(−ik · s)d3s (4)

It is then clear that u(r, k) is determined by the Fourier
transform of the function f(r) under the condition s/r << 1
- the so-called far-field solution in the ‘Fraunhofer zone’.

A different ‘Fresnel solution’ is obtained when we impose
the condition s2/r2 << 1 because in this case

u(r, k) =
exp(ikr)

4πr
F (r, k)

where

F (r, k) =

∫
s∈R3

f(s) exp(−ikn̂ · s) exp(iks2/2r)d3s

In order to write this result more succinctly (i.e. in terms of
a convolution integral), we note that

1

2r
| s− r |2=

s2

2r
− s · r

r
+
r

2
=
s2

2r
− n̂ · s +

r

2

TABLE I
CONDITIONS ASSOCIATED WITH SOLUTIONS TO THE INHOMOGENEOUS
HELMHOLTZ EQUATION FOR A SOURCE FUNCTION f(r) IN THE NEAR,

INTERMEDIATE AND FAR FIELDS

Field Condition Solution for u(r, k)

Near Field r
R
∼ 1 g(r, k)⊗ f(r), f(r)∃∀r ∈ R3

Intermediate Field
(
r
R

)2
<< 1

exp(ikR/2)
4πR

exp(iαr2)⊗ f(r)
(Fresnel Zone)

Far Field r
R
<< 1

exp(ikR)
4πR

F3[f(r)]
(Fourier Plane)

and obtain
u(r, k) =

exp(ikr/2)

4πr
F (r)

where

F (r) =

∫
s∈R3

f(s) exp(ik | r− s |2 /2r)d3s

or, using the convolution operator,

F (r) = exp(iαr2)⊗ f(r) (5)

where α = k/2R, R /∈ R3 which has dimensions of
length−2. Note, that the statement R /∈ R3 is a necessary
condition because in order to write the solution in the form
of Equation (5) where α is a constant, R must exist outside
of the domain of integration, the convolution integral being
of finite extent given that f(r)∃∀r ∈ R3. Equation (5) shows
that the solution for u(r, k) is determined by the convolution
of the source function f(r) with the chirp function exp(iαr2)
under the condition r2/R2 << 1. Such a result is often
referred to a solution in the Fresnel or intermediate zone.
Thus, we obtain the results compounded in Table 1. These are
standard (conditional) solutions to the Helmholtz equation
upon transformation to an integral equation using the Green’s
function. They illustrate the natural ‘evolution’ of solutions
that are characterized by the Fourier transform and the chirp
transformation (i.e. the convolution of the source function
with the chirp function) depending on the condition that is
taken to be valid physically - the distance from the source
of the wave-field u(r, k). However, as will be shown later
in this paper, the Fourier transform can be written in terms
of the chirp transform without loss of generality through the
Bluestein decomposition. In this context, the chirp function
is common to both (conditional) solutions and is thereby
arguably a more fundamental characteristic of the physics of
waves and vibrations than the Fourier transformation!

1) Inverse Solutions: From Equation (4), it is clear that
in the Fourier plane, the ideal inverse solution is given by
the inverse Fourier transform, i.e.

f(r) = F−13 [F (k)]

However, in the Fresnel zone, given Equation (5), the (ideal)
inverse solution is

f(r) =
(α
π

)3
exp(−iαr2)� F (r) (6)
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This result is obtained from the noting that

exp(−iαr2)� exp(iαr2)

≡
∞∫
−∞

exp(−iαs2) exp(iα | s + r |2)d3s

= exp(iαr2)

∞∫
−∞

exp(2iαs · r)d3s

= exp(iαr2)(2π)3δ3(2αr)

= exp(iαr2)
(2π)3

(2α)3
δ3(r) =

(π
α

)3
δ3(r)

and thus, if
F (r) = exp(iαr2)⊗ f(r)

then

exp(−iαr2)� F (r) = exp(−iαr2)� exp(iαr2)⊗ f(r)

=
(π
α

)3
δ3(r)⊗ f(r) =

(π
α

)3
f(r)

Further, we note that if

F (r) = exp(iαr2)⊗ f(r), r ∈ Rn

then
f(r) =

(α
π

)n
exp(−iαr2)� F (r) (7)

2) Born Scattering Solutions: The same basic solutions
can be constructed under the Born approximation to evaluate
the (first order) scattered field generated by a scattering
function γ(r) of compact support or non-relativistic quantum
scattering potential V (r). In this case, for an incident wave-
field ui(r, k), f(r) = k2γ(r)ui(r, k) where γ(r)∃∀r ∈ R3

and f(r) = −V (r)ui(r, k), respectively [12]. Thus, for an
incident plane wave (with unit amplitude) when ui(r, k) =
exp(ikm̂ · r) where m̂ is the unit vector pointing in the
direction of propagation, in the Fresnel zone, we obtain the
solution

u(r, k) =
exp(ikR/2)

4πR
S(r, k)

where S(r, k) is the intermediate field scattering amplitude
given by

S(r, k) = k2 exp(iαr2)⊗ γ(r) exp(ikm̂ · r) (8)

Further, as a special case, if ui(r, k) = g(r, k), then we can
construct a Green’s function solution for the back-scattered
near field given by [12]

u(r, k) = k2g2(r, k)⊗ γ(r)

so that in the Fresnel zone the scattering amplitude is

S(r, k) = k2 exp(2iαr2)⊗ γ(r) (9)

with inverse solution

γ(r) =

(
2α

πk
2
3

)3

exp(−2iαr2)� S(r, k))

These are examples of the solutions that are fundamental
to the field of Fresnel optics, for example. Here, u(r, k)
is the scalar electric field associated with the propagation
of an electromagnetic field in a non-conductive material
characterized by scattering function [12]

γ(r) = εr(r)− 1

Fig. 1. The (real) chirp function chirp(x, y) = cos[α(x2 + y2)] for
x ∈ [−1, 1], y = [−1, 1] and α = 102. The image is an 8-bit map of the
function [1 + chirp(x, y)]/2.

where εr(r) is the relative permittivity of a material with
a constant magnetic permeability and where polarization
effects are neglected.

Figure 1 shows the real component of a chirp function
for r ∈ R2 which is characteristic of the interference
patterns associated with optical diffraction in the Fresnel
zone, for example. This occurs when the diffraction pattern
is observed at a distance z from an (infinitely thin) dielectric
diffractor placed at z = 0. In this case, we can consider
a model where the optical scattering function is given by
γ(r) = γ(x, y)δ(z) and the incident Electric is given
by ui(r, k) = E(x, y, 0) exp(ikz) where E(x, y, 0) is the
electric field amplitude at z = 0. The three-dimensional
convolution model for the scattering amplitude in the Fresnel
zone as compounded in Equation (8), becomes

S(x, y, z, k) = k2 exp[α(x2+y2)]⊗x⊗yE(x, y, 0), α =
k

2z

The pattern given in Figure 1 is a typical and iconic example
associated with the study of Fresnel optics where the under-
lying characteristics are determined by a two-dimensional
chirp.

For a conductive material, the scattering function is fre-
quency dependent and given by [12]

γ(r) = εr(r)− 1− iz0
k
σ(r) (10)

where σ(r) is the (variable) conductivity in Siemens per
meter (Sm−1) and z0 ∼ 377 Ohms is the impedance of free
space.

3) Quantum Scattering: Unlike electromagnetism, in
quantum scattering, it is only usually practically possible to
measure the scattered field in the far-field. In this case, the
far-field condition is particularly relevant and accurate, the
scattering amplitude (under the Born approximation) being
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given by

S[k(n̂− m̂)] = −F3[V (r) exp(ikm̂ · r)]

= −
∞∫
−∞

V (r) exp[−ik(n̂− m̂) · r]

with (ideal) inverse solution

V (r) = − 1

(2π)3

∞∫
−∞

S(K) exp(iK · r)d3K

where
K = k(n̂− m̂)

Thus, ignoring scaling constants, we observe the following
results:
• In the far-field, the (Born) scattering amplitude is given

by the Fourier transform of the scattering function and
has an idealized inverse solution given by the inverse
Fourier transform.

• In the Fresnel zone, the (Born) scattering amplitude is
given by the convolution of the scattering function with
the chirp function with an idealized inverse solution be-
ing given by the correlation of the scattering amplitude
with the (complex conjugate) of the chirp function.

B. The Beam approximation and the Paraxial Wave Equation

Consider the homogenous Helmholtz equation for r ∈ R3,

(∇2 + k2)u(r, k) = 0 (11)

A unidirectional beam, taken to be propagating in the z-
direction through a homogeneous medium, can be repre-
sented by the wave function

u(r, k) = ψ(r, k) exp(ikz) (12)

where it is assumed that:
• ψ(r, k) varies slowly in comparison with exp(ikz);
• ψ(r) is concentrated mainly around the axis (x, y) =

(0, 0).
With these assumptions, an approximate partial differential
equation for ψ(r, k) can be obtained called the Paraxial Wave
Equation (PWE) whose solution is characterized by a chirp
function as shall now be shown.

By substituting Equation (12) into Equation (11) and
differentiating, we assume that ψ(r, k) varies very slowly
with z. This assumption allows us to employ the condition∣∣∣∣∂2ψ∂z2

∣∣∣∣ << 2k

∣∣∣∣∂ψ∂z
∣∣∣∣

and is equivalent to saying that the angle between the wave
vector k and the z-axis is small. Either way, this condition is
the key to transforming the Helmholtz equation to the PWE
which is given by

∇2ψ(r, z, k) + 2ik
∂

∂z
ψ(r, z, k) = 0, r ∈ R2 (13)

The PWE has a number of applications in optics, for exam-
ple, where it provides solutions that model the propagation
of electromagnetic waves in the form of ‘Gaussian beams’.
Most lasers, for example, emit beams of this type which are
modeled by the PWE. A Gaussian beam remains Gaussian at

every point along its path of propagation through an optical
system. Consequently, laser optics can be thought of in terms
of a Gaussian beam of coherent light with a plane wave front.

Taking the two-dimensional Fourier transform of Equa-
tion (13) we obtain

−u2Ψ(u, z, k) + 2ik
∂

∂z
Ψ(u, z, k) = 0

or, after rearranging,

∂

∂z
ln Ψ(u, z, k) = −iu

2

2k
(14)

where

Ψ(u, z, k) = F2[ψ(r, z, k)]

≡
∞∫
−∞

ψ(r, z, k) exp(−iu · r)d2r

Equation (14) has the solution

Ψ(u, z, k) = Ψ(u, 0, k) exp

(
−iu

2z

2k

)
so that with application of the convolution theorem and
Equation (1), we obtained a solution for ψ(r, z, k) given by

ψ(r, z, k) = ψ(r, 0, k)⊗ exp(iαr2), r ∈ R2

where α = k/2z,

ψ(r, 0, k) :=
α

π
exp(−iπ/2)ψ(r, 0, k)

and
ψ(r, z, k)↔ Ψ(u, z, k)

Thus, we again obtain a solution that is characterized by a
chirp function (specifically, convolution with a chirp func-
tion).

C. The Quantum Shutter Problem

Another example in physics which involves the chirp
function is the ‘quantum shutter’ problem which leads to
the principle of ‘diffraction in time’, a fundamental tran-
sient phenomenon in quantum mechanics, first studied in
the early 1950’s by Macros Moshinsky [13]. In this case,
we consider a pencil-line beam of non-relativistic particles
described by wave-function ψ(x, t) which satisfies the time-
dependent one-dimensional (r ∈ R1) Schrödinger’s equation
(for natural units m = ~ = 1 where m is the mass of the
particle and ~ is the Dirac constant)(

i
∂

∂t
+

1

2

∂2

∂x2

)
ψ(x, t) = 0 (15)

with initial condition ψ0(x) = ψ(x, t = 0).
The beam is taken to be described by a right-traveling

unit amplitude plane wave exp(ikx) which is incident upon
a closed shutter placed at x = 0. The shutter is taken to be a
perfect absorber so that in the positive half-space, ψ(x, t) =
0, x > 0. The shutter is then opened instantaneously at t = 0
after which the particle beam is free to travel into the positive
half-space. The problem is to find the transient behavior of
the particle beam once it has been made ‘free’ to travel in the
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positive half-space after the shutter has been opened subject
to the initial condition

ψ0(x) =

{
exp(ikx), x ≤ 0;

0, x > 0.

If we consider this problem in regard to the propagation of
photons, then the wave function u(x, t), is governed by the
classical wave equation (with the wave-speed set to unity)(

∂2

∂t2
− ∂2

∂x2

)
u(x, t) = 0 (16)

subject to the initial conditions

u0(x) =

{
exp(ikx), x ≤ 0;

0, x > 0
and

d

dx
u0(x) = 0.

Intuitively, one would consider the photons to propagate into
the positive half-space after the shutter is opened so that
for t > 0 this half-space is characterized by a linear wave
traveling from left to right. This is verified by the Green’s
function solution to Equation (16) given by [12]

u(x, t) =
1

2
H(t− | x |)⊗ u0(x) (17)

where H(t− | x |) is the Heaviside step function,

H(t− | x |) =

{
0, t− | x |< 0;

1, t− | x |≥ 0.

However, in the case of Equation (15), the Green’s func-
tion solution is [12]

ψ(x, t) = G(| x |, t)⊗ ψ0(x) (18)

where G(| x |, t) is the Green’s function given by [12]

G(| x |, t) =
exp(iπ/4)√

2πt
exp

(
ix2

2t

)
H(t)

illustrating that ψ(x, t)→ 0 as t→∞.
Compared to a beam of photons, the transient behavior

associated with a beam of electrons, for example (subject to
the instantaneous opening of a shutter), is determined by a
chirp function. This is a direct result of Equation (15) being
characterized by the (imaginary) time derivative operator
i∂/∂t compared to Equation (16) which is characterized by
a second order (real) time derivative operator ∂2/∂t2. This is
also the case for the multi-dimensional Schrödinger equation(

i
∂

∂t
+

1

2
∇2

)
ψ(r, t) = 0, r ∈ Rn, n = 1, 2, 3

given that the Green’s function for this case is [12]

G(r, t) =
i

2

(
1

2πit

)n
2

exp

(
ir2

2t

)
H(t)

Moshinsky [13] studies the solution given by Equa-
tion (18) analytically using a change of variables to obtain
an expression for the probability density given by

| ψ(x, t) |2=
1

2

(∣∣∣∣C(ξ) +
1

2

∣∣∣∣2 +

∣∣∣∣S(ξ) +
1

2

∣∣∣∣2
)

where
ξ =

(kt− x)√
πt

Fig. 2. From the top to bottom, respectively: (i) The initial condition
showing the real component of the unit plane wave in the negative half-space
and taken to represent a beam of non-relativistic particles that are incident
on a closed shutter located at x = 0, ∀t < 0; (ii) the real component of
the Green’s function at an instant in time t used to compute ψ(x, t), ∀ x ∈
[−1, 1] via Equation (18); (iii) example of the probability density function
| ψ(x, t) |2, x > 0 at an instant in time; (iv) example of the wave function
ψ(x, t), t > 0 for a fixed point in space.

and C(ξ) and S(ξ) are the Fresnel integrals

C(ξ) =

ξ∫
0

cos

(
πu2

2

)
du and S(ξ) =

ξ∫
0

sin

(
πu2

2

)
du

However, Equation (18) can be easily computed numer-
ically via application of a convolution sum. Using this
approach, Figure 2 shows some examples of the transient
behavior for x ∈ [−1, 1] associated with the (non-relativistic)
quantum shutter problem. This example illustrates the oscil-
latory behavior and decay of the density function compared
to the optical case (i.e. a beam of photons being characterized
by the classical wave equation) when, in comparison, the
intensity function in the positive half-space would be a
constant. The similarity of the expression for ψ(x, t) given
in Equation (18) to the Fresnel zone solution given by Equa-
tion (5) has led the transient phenomenon associated with the
quantum shutter problem to be dubbed ‘diffraction in time’,
[14], [15]. The phenomenon compounded in Equation (18)
is now recognized as ubiquitous in quantum dynamics [16],
[17], experimental confirmation of this effect having been
achieved in 1996, [18]. Figure 3 shows an example of the
diffraction in time effect as a space-time map of | ψ(x, t) |2.

An equivalent theoretical study for the relativistic case,
when the wave function is given by the solution to the Klein-
Gordon equation (for 0-spin particles) and the Dirac equation
(for 1/2-spin particles) is given in [19]. A study of the three-
dimensional quantum shutter problem and diffraction in time
is considered in [20]. A further study is required on time
diffraction for the semi-relativistic case using the Fractional
Schrödinger-Klein-Gordon Equation for modeling intermedi-
ate relativism [21] which will be published elsewhere [22].

IV. EXAMPLE APPLICATIONS OF THE CHIRP

The previous section has aimed to shed light on the
fact that the chirp function is a fundamental characteristic

IAENG International Journal of Applied Mathematics, 50:2, IJAM_50_2_10

Volume 50, Issue 2: June 2020

 
______________________________________________________________________________________ 



Fig. 3. ‘Diffraction in Time’. An example of the transient phenomenon
associated with Equation (18) showing a space-time (vertical-horizontal,
respectively) gray-level map of | ψ(x, t) |2 where (x = 0, t = 0) is taken
to be at the top left-hand corner of the image. In this case, the image has
been histogram equalized to enhance the contrast of the gray-levels [12].

of physics. As an approximation to the Green’s function
the chirp transform is as fundamental to intermediate field
analysis as the Fourier transform is to far field analysis.
In this section, and, in the context of the study given in
Section III, we explore some example applications of the
chirp function.

A. Pulse-Echo Compression

Consider Equation (9) which we write in the form

S(x, y, z, k) = k2 exp(ikx2/R) exp(iky2/R) exp(ikz2/R)

⊗x ⊗y ⊗zγ(x, y, z)

noting that for y/x << 1 and z/x << 1

R = (x2 + y2 + z2)
1
2 = x

(
1 +

y2

x2
+
z2

x2

) 1
2

' x

If we consider a model in which γ(x, y, z) := γ(x)δ(y)δ(z)
then it is immediately clear that

S(x, k) = k2 exp(ikx2/R)⊗x γ(x)

This model conditions the problem to one associated with a
‘pencil line beam’ where propagation is in the x-direction
alone. In this case R = x and Equation (9) is reduced to

S(x, k) = k2 exp(ikx)⊗x γ(x)

and thus

S(k) ≡ S(0, k) = k2F1[γ(x)] = k2Γ(k)

The value of S(x, k) at x = 0 represents the back-scattered
field measured at a fixed value, i.e. the origin x = 0.

For constant k = k0, say, only a single spectral component
is available on the spectrum of γ(x) which can not be re-
constructed because the inverse Fourier transform can not be
evaluated from a single complex number S(k0). To recover
γ(x), we require a spectrum S(k). This is achieved if a pulse
is emitted and the echo (the back-scattered field) measured,
a measurement that is compounded in the spectrum

S(k) = k2P (k)Γ(k)

where P (k) is the spectrum of the pulse p(x) ↔ P (k). If
P (k) is a base-band spectrum, then using the convolution
theorem,

s(x) = −p(x)⊗ d2

dx2
γ(x)

If P (k) := P (k + k0) is a narrow side-band spectrum,
with a carrier frequency k0 such that | k |<< k0, then

S(k − k0) = k20P (k)Γ(k − k0)

Demodulating to a base-band spectrum,

S(k) = S(k−k0)⊗δ(k+k0) = k20P (k)Γ(k−k0)⊗δ(k+k0)

= k20P (k + k0)Γ(k)

Thus, upon application of the convolution theorem, we obtain
(ignoring scaling by k20)

s(x) = exp(ik0x)p(x)⊗ γ(x)

The question then arises as to what form p(x) should have
in order to provide an optimal estimate of γ(x) given s(x).

For an arbitrary function p(x), deconvolution algorithms
are required which incorporate regularization methods to
overcome the ill-conditioned nature of the problem. However,
if a chirp is used so that

s(x) = exp(iαx2)⊗ γ(x)

then
γ(x) =

α

π
exp(−iαx2)� f(x)

This form of deconvolution is predicated on the use of chirps
of infinite extent. In practice, a chirp of compact support
x ∈ [−X/2, X/2] is required, where X is the length of the
(two-sided) chirplet. The effect of this on the deconvolution
of γ(x) from s(x) is explored in Section VIII where it is
shown that a band-limited version of γ(x) is recoverable
from s(x) with a bandwidth determined by the product αX ,
a process that is commonly known a pulse compression.

B. Synthetic Aperture Imaging

Consider Equation (9) for the case when γ(x, y, z) :=
γ(x, y)δ(z) when we can write

S(x, y, k) = k2 exp(ikx2/R) exp(iky2/R)⊗x ⊗yγ(x, y)

This model conditions the problem to one associated with a
‘pencil planar beam’ propagating in the (x, y)-plane.

As in the previous application, with R ∼ x we obtain

S(k, y) ≡ S(0, y, k) = k2 exp(iky2/R)⊗y F1[γ(x, y)]

= k2 exp(iky2/R)⊗y Γ(k, y)

and introducing a narrow side-band pulse (with carrier fre-
quency k0 >>| k |)

S(k, y) = k20P (k + k0) exp(ik0y
2/R)⊗y Γ(k, y)

where R is taken to be a fixed value which defines the range
at which the back-scattering interactions occur. Demodula-
tion and application of the convolution theorem then yields

s(x, y) = k20p(x) exp(ik0x) exp(ik0y
2/R)⊗x ⊗yγ(x, y)

If we consider p(x) to be the unit amplitude modulated
chirp p(x) = exp(iαx2) exp(−ik0x) (for an arbitrary value
of the chirp rate α), then we can write

s(x, y) = k20 exp(iαx2) exp(ik0y
2/R)⊗x ⊗yγ(x, y) (19)
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Hence, from Equation (7), we can construct an idealized
inverse solution for r ∈ R2 given by

γ(x, y) =
α

k0Rπ2
exp(−iαx2) exp(−ik0y2/R)�x�ys(x, y)

Again, this result is predicated on the use of chirps of infinite
extent in both x and y, and, in practice, chirps of compact
support x ∈ [−X/2, X/2] and y = [−Y/2, Y/2] are used,
where X is the length of the (two-sided) chirplet (equal to
the order of the range) and Y is the width of the beam at
the range R.

While there are a number of technical issues associated
with its development and implementation, the analysis above
is the theoretical basis for Synthetic Aperture Radar (SAR)
imaging of the earths surface (e.g. [23], [24] and [25]).
The model is highly idealized in regard to the scattering
function γ(x, y, z) and the interaction of an electric field
with a conductive dielectric in which polarization effects are
neglected. The ‘image’ is typically a display the function
| γ(x, y) |.

As the pulse generating platform (which may be air-
borne or space-borne) moves along the y coordinate, like
pulses p(x) = exp(ik0x) exp(iαx2) are periodically emit-
ted, propagating toward the ground at a specific incidence
angle and the back-scattered signal recorded. Each signal is
quadrature demodulated to produce a base-band (complex)
signal. Providing the scattering interactions take place at a
range R that is in the Fresnel zone, Equation (19) provides
a space-continuous model for the recorded data. Changes
in the incidence angle, carrier frequency, bandwidth and
polarization as well as other operational parameters effect the
characteristics of a SAR image. Typical carrier frequencies
for X-band SARs, for example (with wavelengths of ∼ 3
cm), are ∼ 10 GHz. The bandwidth of the range chirp is
typically ∼ 100 MHz but again varies from one system to
another, details of which lie beyond the scope or focus of
this work.

Figure 4 shows an example of a SAR image. In this case,
the bright features are due to back-scattering from ships
and the dark region from the lack of back-scattering from
a relatively calm sea surface. Taking the sea surface to be a
dielectric (εr ∼ 80) with very low conductivity (∼ 5 Sm−1),
and, given that from Equation (10),

γ(x, y) = εr − 1− i z0
k0
σ(x, y)

the conductivity of the area imaged is dominated by the
material from which the ships are composed, the conductivity
of iron being∼ 107 Sm−1. Figure 4 is an example of the high
Radar Cross Section (which is a measure of image intensity)
generated by the back-scattering of microwaves from highly
conductive objects. There are many other complex features
that occur in such SAR images due to the multi-faceted na-
ture of the interaction of microwaves with rough conductive
dielectric surfaces some of which need to be modeled using
statistical methods. However, the basic method of processing
the data received in ‘range’ x and ‘azimuth’ y to obtain
such images remains the same, and, as discussed above,
is fundamentally dependent on the properties of the chirp
function.

SAR is an example of a two-dimensional imaging system
and the planer based model discussed in this section is

Fig. 4. A SAR image of an area of the sea near a busy port showing a
number of ships, seen as bright spots in the image. In this example, the sea
is relatively calm and hence, the ships can be easily detected against the
dark background [26].

predicated on a model for the scattering function given
by γ(x, y)δ(z), a model that is intrinsically limited given
that, in practice, back-scattering occurs in three-dimensions.
For three-dimensional synthetic aperture imaging, we can
construct the three-dimension function

s(x, y, z) =

exp(iαx2) exp

[
i
k0
R

(y2 + z2)

]
⊗x ⊗y ⊗z γ(x, y, z)

The (idealized) inverse solution is then obtained by a triple
correlation with the complex conjugates of the chirp func-
tions.

C. Optical Fiber Communications

In optical fibers, chirping can occur that limits the per-
formance of light pulse-based communications. For a given
pulse spectrum, the minimum pulse duration is obtained
when there is no chirping, a condition that is equivalent
to a constant instantaneous frequency. Chirped pulses may
broaden or compress, but pulse broadening is the most
performance reducing effect. This is because a broadened
pulse spills energy into the next bit position, and, if the
broadening is significant, this can cause a bit error to occur
when a binary 0 is replaced with a binary 1.

Chirps can occur for two principal reasons: (i) pulse
generation; (ii) pulse propagation. The first reason is due
to the use of semiconductor laser diodes to generate (Gaus-
sian) light pulses. The refractive index of the semiconductor
material depends on the current density so that as the laser
is modulated and the current density changes so does the
refractive index. The change in refractive index changes
Optical Path Length (OPL) given by

OPL =

∫
P

n(x)dx

where n(x) is the refractive index over the path P . This
effect shifts the central frequency of the laser diode and the
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spectrum of an optical pulse becomes broadened as a result,
due to temporally varying phase changes. The phenomenon
can be compensated for by using light pulse generators with
a continuous mode operation.

The second reason for the generation of chirps during
light pulse propagation is due to the effects of chromatic
dispersion and non-linearities generating self-phase modu-
lation arising from the Kerr effect. Pulses subject to self-
phase modulation and spectral broadening increases with
propagation distance as does the rate of change of the
instantaneous frequency. This leads to the generation and
propagation of chirps with an increasing amount of chromatic
dispersion applied to an initially un-chirped pulse which
increases the amount of chromatic dispersion. Chromatic
dispersion in the fiber yields a frequency-dependent time
delay, and, in conjunction with the chirp, leads to signal
degradation. Therefore, larger transmission distances require
a low degree of chirping. The chirp of a pulse can be removed
or reversed by propagating it through optical components
with suitable chromatic dispersion characteristics. Because
the deterioration of pulse propagation is so important in
optical fiber communications technology, developing mathe-
matical models for this non-linear effect is important.

A common phenomenological model for a Gaussian
chirped pulse is given by

E(t) = exp(iω0t) exp

[
− (1 + iα)

2

t2

T 2

]
where E(t) is the time-varying Electric field, ω0 is the
carrier (angular) frequency for constants α (chirp rate) and
T (pulse length). This pulse has a linear variation with the
instantaneous frequency of ω0 + 2αt. For α > 0 an up-
chirp (positive chirp) is obtained when the instantaneous
frequency increases linearly and for α < 0, a down-chirp
(negative chirp) is obtained when the instantaneous frequency
decreases linearly. The chirp is either positive or negative
depending on whether α is positive or negative, [27].

In order to more accurately model the propagation of
such pulses in an optical fibre it is necessary to resort to
differential equations that are consistent with the physical
mechanisms that influence the propagation. One commonly
used model is the non-linear Schrödinger equation [28], [29][

i
∂

∂x
− β ∂

2

∂t2
+ γ | E(x, t) |2

]
E(x, t) = 0

where x is the propagation distance, β is the group velocity
(second-order) dispersion factor and γ determines the self-
phase modulation. For a standard telecommunication optical
fibre operating at a (carrier) wavelength of 1550 nm, typical
values for these coefficients are β = −20 ps2km−1, γ '
2 W−1km−1 and T ∼ 100ps, [27]. In the linear regime [30]

E(x, t) =
1

2π

∞∫
−∞

exp(iβω2x) exp(iωt)Ẽ(0, ω)dω

where Ẽ(0, ω) is the Fourier transform of the input pulse.
Hence, once again, we see that the chirp is a fundamental
characteristic of a physical phenomena; in this case, the
dispersion of light pulses in an optical fibre, [32].

Fig. 5. Chirplets used to encode the bit-pairs 00, 11, 01 and 10, [39].

D. Cryptography and Information Hiding

In cryptology, the chirplet has been used for key exchange
[33], for the self-authentication of digital signals [34] and
in high resilience watermarking, e.g. [35] and [39]. With
regard to bit stream encoding for embedding information
in digital signals, for example, ‘Chirp Coding’ (e.g. [36],
[37] and [38]) is one of the most robust techniques with
regard to distortion through additive noise. The technique has
been successfully applied to audio signal authentication and
self-authentication problems for Digital Rights Management
in the audio post-production industry as has its application
in image watermarking and image authentication, [39]. In
the latter case, the four two-dimensional chirplets shown in
Figure 5 are used to encode the bit-pairs 00, 11, 01 and 10,
for example. The result is then embedded in an image and the
code(s) recovered via correlation with the relevant chirplet.

This approach provides a highly robust system for water-
marking images using a block partitioning approach subject
to a self-alignment strategy and bit error correction. The
applications include the copyright protection of images and
Digital Rights Management for image libraries. Moreover,
the method is highly effective with print-scan and/or e-
display-scan image authentication devices for use with e-
documents where QR codes can be covertly embedded in
images of the document holder, for example. This requires
that an embedding procedure is developed that is highly
robust to blur, noise, geometric distortions such as rotation,
shift and barrel and the partial removal of image segments,
all of which are resilient to the method and its practical
realization in a real operating environment.

E. Evolution

There are many examples of the use of chirps by animals
for communication, navigation and hunting. This includes
marine mammals such a Whales and Dolphin and land based
animals, one of the most common examples that we are
most familiar with being the wide range of chirps used by
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birds. For example, of the 900 known species of bat, nearly
half use active ultrasonic (from 20-200 kHz) echolocation
to ‘see’ with sound [31]. Their SOund Navigation And
Ranging (SONAR) system uses special morphological and
physiological adaptations to emit both single-frequency and
frequency-modulated pulses (a series of clicks which are
extremely short ∼50–100 µs) are produced hundreds of
times a second. The frequency modulated components can
be both narrow-band or broad-band and a combination of
these components are used. A constant-frequency component
allows the ultrasonic pulse to travel farther and last longer
than frequency-modulated components, which are used to
determine the location and the texture of a target.

Such pulse components are generated by contracting the
larynx although a few species of bat click with their tongues.
These ultrasonic pulses are generally emitted through the
mouth with some species using their nostrils. The use of
ultrasound means that less energy is required to emit a pulse
(the intensity of the sound being ∼ 50 - 120 dB) and the
scattering of each pulse from an object provides a ‘cleaner’
localization of the object without interference from refraction
or diffraction. Moreover ultrasound attenuates and disperses
quickly, so the a bat can differentiate between one pulse and
another given that a previous pulse has the potential to echo
in the local area. The large ears and brain cells in bats are
especially tuned to the frequencies of the sounds they emit
and the echoes that result. A concentration of receptor cells
in their inner ear makes bats extremely sensitive to frequency
changes. In regard to detecting in flight objects such as
insects, all bats tend to increase the number of clicks per
second and frequency modulate their pulse to form a chirplet.
This provides a marked increase in the local resolution of the
‘sound-scape’ generated by a bat.

As with all other physical and behavioral characteristics
in animals, the use of chirplets by bats has evolved through
the process of natural selection. In this context, there is an
important aspect of a chirp compared to other phase-only
functions that could be constructed. This is that from an
evolutionary point of view, a chirp is arguably the simplest
way to broaden the spectrum of an audio pulse given the
physical ability for many animals to generate sounds at a
constant pitch which can then be chirped through muscular
contraction. A ‘wolf whistle’, for example, is often used by
the Third Chimpanzee [40] (subject to cultural conventions)
to express sexual attraction or admiration through a rising and
falling pitch, thereby representing a form of communication
associated with the pro-creation of the species (a comment
that is not meant to be taken too literally by the reader!).

F. Discussion
The examples given in Sections III have been presented

to emphasize the importance that the chirp function plays
in the physical world. The example applications presented
in this section have been chosen to demonstrate how this
function plays a critical role in the recovery of information
from scattering interactions and the propagation light through
optical fibers, for example. However, these are just a few of
the applications in which the characteristics of chirp are of
fundamental importance.

In this context, and, in regard to the principal remit of
this paper, one of the most important aspects of the review

considered relates to Equation (5) and Equation (6), the latter
equation providing a unique and exact inverse solution to
Equation (5). We note that this is only possible because the
correlation of a chirp function with its conjugate self yields a
delta function, a property that is applicable in any dimension,
i.e.

exp(−iαr2)� exp(iαr2) =
(π
α

)n
δn(r), r ∈ Rn

If we consider an arbitrary function p(r) say, which maps
to a function s(r) via the convolution operation

s(r) = p(r)⊗ f(r) (20)

then, from the convolution theorem,

S(k) = P (k)F (k)

where S(k) ↔ s(r) and P (k) ↔ p(r). It is then clear that
to obtain a unique and exact inverse solution we require that

p∗(r)� p(r) = δn(r) ⇒ | P (k) |2= 1

But this is only possible if and only if P (k) = exp[iΘ(k)];
in other words P (k) must be a phase-only spectrum. We
are therefore required to study the class of functions p(r)
that have a phase-only spectrum - a ‘phase-only function’.
It is clear that one such function is the chirp function that,
from Equation (1), is an example of a function with a self-
characteristic Fourier transform. In the following section we
make a study of such functions and hypothesize (through the
presentation of a single conjecture) that, in the context of the
above discussion, the chirp function is unique.

If we extend the expression for s(r) given in Equation (20)
to the form

s(r) = p(r)⊗ f(r) + n(r) (21)

where n(r) is a stochastic ‘noise’ function with some Proba-
bility Density Function Pr[n(r)], then it is clear that we can
construct the inverse solution

f(r) = p∗(r)� s(r)− p∗(r)� n(r)

given that
p∗(r)� p(r) = δn(r)

A sufficient and necessary condition for the two functions
p∗(r) and n(r) to be ‘uncorrelated’ is that p∗(r)�n(r) = 0,
i.e. their cross-correlation function is zero. Cross-correlation
is a measure of the similarity between two functions, and,
given that n(r) is a stochastic function and p∗(r) is a
deterministic function, there can, in principle, be no matching
features between the two functions. Hence, with the condi-
tion that p∗(r)� n(r) = 0,

f(r) = p∗(r)� s(r)

This result assumes that the noise function n(r) is some
zero mean random variable and is Ergodic (i.e. has the same
‘stochastic signature’ averaged over r ∈ Rn).

The general problem of generating an inverse solution to
Equation (21) for arbitrary functions p(r) is the basis for
the development of many algorithms in signal and image
processing [5], [12]. In this case, the function p(r) is a char-
acteristic of some linear, time or space invariant system that,
in general, we do not necessarily have control over and can
only estimate and/or model from knowledge of the physics
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of the system. Regularization methods are then required to
solve the corresponding deconvolution problem. However, in
regard to the communication of information subject to the
communications model compounded in Equation (21) we
can, in principle, choose a function p(r) which optimizes
the simplicity of recovering f(r) from knowledge of s(r).

In addition to using a phase only function, we could also
consider a power spectrum normalized function when

p(r)↔ Q(k)

| Q(k) |2
, | Q(k) |2> 0

with the condition that

q∗(r)� n(r) = 0

In this case, the exact solution for f(r) is given by

f(r) = q∗(r)� s(r)

However, compared to the use of a phase-only function, this
approach requires the power spectrum to be positive definite
and in this context, application of a phase-only function
is unrestricted given that the power spectrum of a (unit
amplitude) phase-only function is always 1.

Power spectrum normalization and phase-only functions
can be used to encrypt and hide encrypted data using a
stochastic data generating function (a cipher) to compute
Q(k) and the phase-spectrum P (k), [41] and [42], re-
spectively. In the former case, a no-keys protocol can be
implemented using a three-way pass [43]. However, the chirp
function is a phase-only function which is self-characteristic
in the sense, that, ignoring scaling, the a chirp in real
space yields a chirp in Fourier space. In this respect, for
p(r) = exp(iαr2), we can state the following fundamental
result: If

s(r) = exp(iαr2)⊗ f(r) + n(r) (22)

then
f(r) =

(α
π

)n
exp(−iαr2)� s(r) (23)

Coupled with the study given in the following section, this
result demonstrates a unique property of the chirp function. It
is this uniqueness that is a central theme of this work and the
ideas and results thereof, especially in regard to Section IX
studied in light of Conjectures VI.1, VI.2 and VI.3 presented
in the Section VI.

V. SELF-CHARACTERISTIC FUNCTIONS OF THE FOURIER
TRANSFORM

The purpose of this section is to revisit the self-
characteristic functions of the Fourier transform in order to
present a short background before presenting a fundamental
conjecture associated with the chirp function, namely, that
the chirp function is the only phase-only function to have a
conjugate eigenfunction upon Fourier transformation.

It is well known that many Fourier transforms of different
functions in n-dimensions exist, and, that in some cases, the
Fourier transform F (k) is characteristic of the function f(r)
in some way. Such functions are said to be self-characteristic.
Further, for a (real or complex) constant λ, some functions
f(r) yield a Fourier transform such that

F (k) = Fn[f(r)] = λf(k) (24)

Such a function is said to be an ‘Eigenfunction’ of the Fourier
transform operator with eigenvalue λ ∈ C and falls into two
classes:
• non-period eigenfunctions classified by Equation (24);
• periodic functions classified by Equation (24) subject to

the p-periodic equation

f(r + p) = f(r)

A. Examples of Non-period Eigenfunctions

The most ‘celebrated’ example of a non-period eigenfunc-
tion of the Fourier transform is the Gaussian function where,
for r ∈ R1

F1[exp(−x2/2)] =
√

2π exp(−k2/2)

Writing this result in the form

F1[f(x)] = λf(k) (25)

where λ =
√

2π we can define f(x) = exp(−x2/2) is an
eigenfunction of the operator F1 with eigenvalue λ. However,
it is well known that this result can be extended to the case
when (for n = 1, 2, 3, ...)

fn(x) = exp(−x2/2)Hn(x)

where Hn(x) is the nth-order Hermite polynomial given by

Hn(x) = (−1)n exp(x2)
dn

dxn
exp(−x2)

which are solutions to the eigenvalue problem defined by the
differential equation(

d2

dx2
− 2x

d

dx

)
Hn(x) = −2λnHn(x)

In this case, there are n-eigenfunction satisfying the eigen-
equation

F1[fn(x)] = λnfn(k), λn = (−i)n
√

2π

There are a number of other such function that satisfy the
Equation (25) such as the following (expressed in terms of
Fourier transform pairs) [6]:

1√
| x |

↔

√
2π

| k |

and

sech

(√
π

2
x

)
↔
√

2πsech

(√
π

2
k

)
Further, noting that if we express the Fourier transform pair
in terms of the unitary definition (as discussed in Section II
for x ∈ R1), i.e.

F (ν) =

∞∫
−∞

exp(−2πiνx)f(x)dx

and

f(x) =

∞∫
−∞

exp(2πiνx)F (ν)dν

when the convolution and product theorems are

g(x)⊗ f(x)↔ G(ν)F (ν) and g(x)f(x)↔ G(ν)⊗ F (ν)
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respectively, then, for a function f(x) with Fourier transform
F (ν)

h(x) = f(x) + F (x)

is an eigenfunction of the Fourier transform since

H(ν) = F (ν) + f(ν)

where H(ν)↔ h(x). Similarly,

h(x) = f2(x) + F (x)⊗ F (x)

is an eigenfunction of the Fourier transform since, using the
convolution and product theorems,

H(ν) = F (ν)⊗ F (ν) + f2(ν)

This result can be extended by induction for the n-
dimensional case and for p products and p convolutions, i.e.
given that f = fm∀m and F = Fm∀m, then if

h(r) =

p∏
m=1

fm(r) +

p∏
m=1

⊗ Fm(r),

H(ν) =

p∏
m=1

⊗ Fm(ν) +

p∏
m

fm(ν)

where

F (ν) =

∞∫
−∞

f(r) exp(−i2πν · r)dnr

and
p∏

m=1

⊗ Fm(r) ≡ F1(r)⊗ F2(r)⊗ ...⊗ Fp(r)

assuming that f(r) and F (k) can be convolved p-times. A
further generalization of the result is as follows: If

h(r) =

p∑
n=1

n∏
m=1

fm(r) +

p∑
n=1

n∏
m=1

⊗ Fm(r)

then

H(ν) =

p∑
n=1

n∏
m=1

⊗ Fm(ν) +

p∑
n=1

n∏
m=1

fm(ν)

B. Examples of Periodic Eigenfunctions

In the same way that the Gaussian function is an iconic
example of a non-periodic eigenfunction of the Fourier
transform, one of the best known examples of a periodic
eigenfunction is the Dirac comb function given by (for
r ∈ R1)

X(x) =
∞∑

m=−∞
δ(x−m)

whose (unitary) Fourier transform is

F1[X(x)] =
∞∑

m=−∞
δ(ν −m)

This result is fundamental to the proof of the Sampling
Theorem, and, is an example of the Poisson sum formula
where for certain functions f(x)

∞∑
m=−∞

f(m) =
∞∑

ν=−∞
F (ν)

which relates the periodic summation of a function to values
of the function’s (continuous) Fourier transform. Here, the
periodic summation of a function is completely defined by
discrete samples of the original function’s Fourier transform.
This can be shown through a distributional formulation using
Equation (3) as follows:

∞∑
ν=−∞

F (ν) =
∞∑

ν=−∞

 ∞∫
−∞

f(x) exp(−2πiνx)dx


=

∞∫
−∞

dxf(x)
∞∑

ν=−∞
exp(−2πiνx)

=

∞∫
−∞

dxf(x)
∞∑

m=−∞
δ(x−m)

=
∞∑

m=−∞

∞∫
−∞

f(x)δ(x−m)dx

=
∞∑

m=−∞
f(m)

C. Examples of Self-characteristic Functions

Self-characteristic (and self-similar) functions of the
Fourier transform are a much larger class of functions than
those that can be formally classified as eigenfunctions of
the transform. Some of these functions are generalisations
of the eigenfunctions which include a scaling factor a say,
for which the scaling theorem applies, i.e.

Fn[f(ar)] =
1

| a |
F

(
k

a

)
(26)

Examples of such functions for r ∈ R1 include the following
(non-unitary) Fourier transform pairs [6]

exp(−ax2)↔ π

a
exp

(
−k

2

4a

)
cos(ax2)↔

√
π

a
cos

(
k2

4a
− π

4

)
sin(ax2)↔ −

√
π

a
sin

(
k2

4a
− π

4

)
exp

(
−a

2x2

2

)
Hn(ax)↔ (−i)n

√
2π

a
exp

(
− k2

2a2

)
Hn

(
k

a

)

sech(ax)↔ π

a
sech

(
πk

2a

)

XX(x) =
∞∑

m=−∞
δ(x−mX)↔ 2π

X

∞∑
m=−∞

δ

(
x− 2πm

X

)
Further, there are a number of functions that have similar
scaling characteristics such as the following [6]:

1

| x |α
↔ −

2 sin
(
πα
2

)
Γ(1− α)

| k |1−α

and
1

(∓ix)α
↔ 2π

Γ(α)

H(±k)

(±k)1−α
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where 0 < α < 1 and H(k) is the Heaviside step function

H(k) =

{
1, k ≥ 0;

0, k < 0.
⇒ d

dx
H(k) = δ(x)

and, for r ∈ Rn,

1

| r |a
, 0 < Re[a] < n ↔ λn,a

| k |n−a
(27)

where

λn,a =
(2π)nΓ

(
n−a
2

)
2aπ

n
2 Γ
(
a
2

)
Relationship (27) is important in applications associated with
self-affine fields and the solution to fractional differential
equations such as the fractional Poisson equation

∇aφ(r) = ρ(r) (28)

with a solution of the form

φ(r) =
λ−1n,n−a
| r |n−a

⊗ ρ(r)

obtained through application of the Fourier transform and the
Reisz definition of a fractional Laplacian, namely,

∇aφ(r)↔| k |a Φ(k), Φ(k) = Fn[φ(r)]

The relationship between a, the Topological Dimension n
and the Fractal Dimension DF is given by the equation [44]

DF = 1− a+
3n

2

Thus, for example, in the case when ρ is a stochastic field
with a uniformly distributed power spectral density function,
for r ∈ R2, Equation (28) defines a Mandelbrot surface
where a = 4−DF , 2 < DF < 3, 1 < a < 2.

VI. SELF-CHARACTERISTIC PHASE-ONLY FUNCTIONS
OF THE FOURIER TRANSFORM

From the scaling theorem compounded in Equation (26),
it is clear that if a = 1,

Fn[f(r)] = F (k)

and if f(r) is an eigenfunction then, by definition, for
eigenvalue λ (which may, in general, be real or complex),
Fn[f(r)] = λf(k). However, if a = i, then from Equa-
tion (26),

Fn[f(ir)] = F (−ik)

Hence, for an eigenfunction f(r) (obtained for the case when
a = 1) it is not possible to define an eigenfunction for
the case when a = i, but rather a conjugate eigen-equation
defined by the equation

Fn[f(ir)] = λf∗(ik)

This result illustrates that there can be no phase-only eigen-
functions of the type f(r) = exp[±iθ(r)] for a phase
function θ(r); only conjugate phase-only eigenfunctions. In
this context, we now consider the uniqueness of the case
when θ(r) = ±ar2 which is compounded in the following
theorem.

Theorem VI.1. For a real constant a, there exists a Fourier
pair of self-characteristic quadratic phase-only functions
compounded in the result

exp(±iar2)↔ λ± exp(∓ik2/4a), λ± = (1± i)n
( π

2a

)n
2

Proof. A proof of this result can be obtained by expressing
the Fourier transform pairs in terms of convolution integrals
through application of the Bluestein decomposition [45].
Thus, noting that

k · r = −| k− ar |
2

2a
+
k2

2a
+
ar2

2

where r ≡| r | and k ≡| k |, we can write, without loss of
generality, the Fourier transform of f(r) in the form

F (k) = exp
(
−ik2/2a

)
×
∞∫
−∞

exp
(
i | k− ar |2 /2a

)
exp

(
−iar2/2

)
f(r)dnr

and the inverse Fourier transform of F (k) as

f(r) = exp
(
iar2/2

) 1

(2π)n

×
∞∫
−∞

exp
(
−i | k− ar |2 /2a

)
exp

(
ik2/2a

)
F (k)dnk

We can therefore write the Fourier transform pair in the
convolutional form

∞∫
−∞

exp
(
i | k− ar |2 /2a

)
exp

(
−iar2/2

)
f(r)dnr

= exp
(
ik2/2a

)
F (k) (29)

and

1

(2π)n

∞∫
−∞

exp
(
−i | k− ar |2 /2a

)
exp

(
ik2/2a

)
F (k)dnk

= exp
(
−iar2/2

)
f(r) (30)

Consider which phase-only functions of the form f(r) =
exp[±iφ(r)] will generate a self-characteristic transformation
of the type F (k) = λ exp[∓iφ(r)] for (complex) constant λ.
This is equivalent to asking what is the form of the possible
phase functions φm(r), m = 1, 2, ... such that

Fn[exp[±iφm(r)] = λm exp[∓iφm(k)] (31)

Consider the case when

f(r) = exp(iar2/2) (32)

It is then clear that exp
(
−iar2/2

)
f(r) = 1 and Equa-

tion (29) is reduced to

F (k) = λ exp
(
−ik2/2a

)
(33)
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where

λ =

∞∫
−∞

exp(i | k− ar |2 /2a)dnr

=

∞∫
−∞

exp[i(k1 − ar1)2/2a]dr1 × ...

=

√
2

a

∞∫
−∞

exp(iξ2)dξ × ..., ξ =
k1 − ar1√

2a

=

√
2

a

√
π

2
(1 + i) × ...

= (1 + i)n
(π
a

)n
2 ≡ exp

(
i
πn

4

)(π
a

)n
2

Thus we obtain the result

exp(±iar2/2)↔ λ± exp(∓ik2/2a), λ± = (1± i)n
(π
a

)n
2

Corollary VI.1. If

φ±(r) =
∞∑
m=1

exp(±imar2/2), r ∈ Rn

then
Fn[φ±(r)] = λ±ψ∓(k)

where

ψ∓(k) =
∞∑
m=1

1

mn/2
exp(∓ik2/2ma)

Corollary VI.2. Let f(r) be of compact support so that
within some finite domain Rn, f(r) ∃ ∀r ∈ Rn. Since

| k− ar |2= k2
(

1− 2a
k · r
k2

+ a2
r2

k2

)
,

then if ar/k << 1,
∞∫
−∞

exp
(
i | k− ar |2 /2a

)
exp

(
−iar2/2

)
f(r)dnr

∼ exp(ik2/2a)

∞∫
−∞

exp(−ik · r) exp(−iar2/2)f(r)dnr

and hence from Equation (29), we can write

F (k) ∼ Fn[f(r) exp(−iar2/2)]

This result shows that the high frequency spectrum associated
with a function of compact support f(r) is similar to the high
frequency spectrum of the function f(r) exp(−iar2/2) when
ar/k << 1.

Corollary VI.3. If we define the n-dimensional chirp trans-
form (Fresnel transform for r ∈ R2) in the form

C[f(r)] =

∞∫
−∞

exp(−i | k− ar |2 /2a)f(r)dnr

it is clear that we can write
Cn[f(r)]

= exp(−ik2/2a)

∞∫
−∞

exp(−ik · r) exp(−iar2/2)f(r)dnr

= exp(−ik2/2a)Fn[f(r) exp(−iar2/2)]

and hence from Corollary VI.2

Cn[f(r)](k) ∼ F (k) exp(−ik2/2a), ar/k << 1

which shows that (for a function of compact support) the
n-dimensional chirp transform in the high frequency range
is the same as the Fourier transform filtered with the phase
spectrum exp(−ik2/2a) at the same high frequency range.

Corollary VI.4. With a := ±ia, we obtain the well known
result for a Gaussian function, namely.

exp(−ar2/2)↔ λ exp(−k2/2a), λ =

(
2π

a

)n
2

For the case when a = 1

exp(±ir2/2)↔ λ± exp(∓ik2/2), λ± = (1± i)n (π)
n
2

and Form Equations (29) and (30) we can write the Fourier
transform pair in the form

exp
(
ir2/2

)
⊗ exp

(
−ir2/2

)
f(r) = exp

(
ir2/2

)
F (r)

and
1

(2π)n
exp

(
−ir2/2

)
⊗ exp

(
ir2/2

)
F (r)

= exp
(
−ir2/2

)
f(r)

where the independent vectors r and k are taken to be
interchangeable.

Remark VI.1. There appears to be no other exact convolu-
tional decomposition of | k − ar |m, m = 2, 3, ... available
in order express k ·r in terms of an expansion of | k−ar |m
other than for the case when n = 2. For the case when n = 1,
the binomial expansion

| k−ar |= [k2 +a2r2−2ak ·r]1/2 = k+
a2r2

2k
− a
k
k ·r+ ...

provides a decomposition for k·r that again can not facilitate
a convolutional decomposition. It is therefore apparent that
an exact convolutional representation of a Fourier transform
is only available for the case when m = 2 and only
m = 2. Thus, the Bluestein decomposition of a Fourier
transform appears to be unique, and, by inference, the results
obtained through application of this decomposition appear to
be unique.

Remark VI.2. The result (for a = 1)

Fn[exp(±ir2/2)] = λ± exp(∓ik2/2), λ± = (1± i)n (π)
n
2

is well known and can be derived directly from the Fourier
transform itself. The approach taken here, which is based on
re-writing the Fourier transform in terms of a convolution
integral, has been taken in order to provide evidence for the
uniqueness of this result in regard to asking the question:
How many Fourier transform (conjugate) eigenfunctions are
of a phase-only type? However, we have not proved that
exp(±ir2/2) is a universally unique phase-only conjugate
eigenfunction and that it is not possible for any other such
functions to exist.

Remark VI.3. As discussed in Section V, there are many
examples of amplitude-only functions that are eigenfunctions
of the Fourier transform, both periodic and non-periodic.
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However, in the context of the functions f(r) and F (k)
considered in Equations (32) and (33), it is apparent that,
from the Bluestein decomposition of the Fourier transform
compounded in Equations (29) and (30), there can be no
other phase-only conjugate eigenfunctions of the Fourier
transform as defined by Equation (31), i.e. there appears to
be no other phase-only function that has the same property
(albeit of a conjugate type). This leads to the following
conjectures.

Conjecture VI.1. The phase-only function exp[iθ(r)] has a
conjugate eigenfunction of its Fourier transform if θ(r) =
±r2/2, and, more generally, if θ(r) = ±(c + r2/2) for a
real constant c.

Conjecture VI.2. There are no phase-only eigenfunctions of
the Fourier transform, i.e. if f(r) is a phase-only function,
then for any complex or otherwise eigenvalue λ

Fn[f(r)] 6= λf(k)

Conjecture VI.3. There is one and only one phase-only
conjugate eigenfunction of the Fourier transform, namely
f(r) = exp(−ir2/2) for which the following conjugate
eigen-equations are applicable:

Fn[f(r)] = λf∗(k) and Fn[f∗(r)] = λ∗f(k)

where
λ = (1 + i)n (π)

n
2

Remark VI.4. These conjectures are representative of at
least one, but nevertheless, a fundamental property associated
with the chirp function which is unique. However, the proof
given above only applies to the case when θ(r) = ±(c +
r2/2) and it has not been proven that there can be no
other phase function except for ±(c+ r2/2) which has this
property. In order to convert this uniqueness conjecture into
a uniqueness theorem it must be proved that exp[iθ(r)] has a
conjugate eigenfunction of its Fourier transform if and only
if θ(r) = ±(c+ r2/2).

Coupled with the result compounded in Equations (22)
and (23), Conjecture VI.3 is the foundation upon which
we consider the chirplet modulation scheme discussed in
Sections VII and VIII. As discussed in Section I, although the
chirplet transform and chirplet modulation are well known,
with a widely published range of applications, in light of the
Conjecture VI.3, their use in communications engineering
may not only provide an optimal but a universally unique
solution to the exchange of information in any and all cases.
In order to verify this statement, Conjecture VI.3 needs to
be converted into a provable universal uniqueness theorem,
a problem that lies beyond the scope of this paper and is left
for future consideration by the author or otherwise.

VII. THE CHIRP FUNCTION AND THE COMMUNICATION
OF INFORMATION

We return to the n-dimensional linear systems model
compounded in the convolution equation

s(r) = p(r)⊗ f(r) + n(r), r ∈ Rn

where p(r) is characterized by a phase-only spectrum and
where the noise function n(r) has a spectrum with both

magnitude and phase. If we consider the function f(r)
to be some ‘information function’ then s(r) is the output
information signal.

In order to put the problem in to the more general context
of information exchange, consider the case when Alice
wishes to communicate with Bob by sending an information
function f(r) in the knowledge that the information will
be significantly perturbed by the noise associated with the
communications environment, i.e. in the knowledge that
upon reception by Bob, the Signal-to-Noise Ratio (SNR) is
very low. In other words, Bob has no a priori knowledge
of the information content - the function f(r) - but, like
Alice, understands that upon reception of the ‘signal’ s(r),
‖p(r) ⊗ f(r)‖p << ‖n(r)‖p. In this context, let us assume
that both Alice and Bob understand that if the model for
the ‘signal’ s(r) is assumed to be of the form s(r) =
f(r) + n(r), then for very low SNR’s (now taken to be
given by ‖f(r)‖p << ‖n(r)‖p), the information function
is not recoverable, irrespective of Alice and Bob having
knowledge of Pr[n(r)] obtained by taking measurements of
the background noise.

Consider the case when both Alice and Bob realize that in
order to give the other the opportunity to recover the function
f(r), some transformation on f(r), compounded in an (n-
dimensional) operator Tn, is required so that the model for
the signal becomes

s(r) = Tn[f(r)] + n(r)

In terms of receiving information, the ideal transformation is
one that supports the property

T −1n [s(r)] = f(r)

This requires that

T −1n [Tn[f(r)]] = f(r) and T −1n [n(r)] = 0

or at least
T −1n [n(r)] = δn(r)

when the information function is recovered uniquely except
at f(r = 0) which remains undefined.

As discussed in Section IV.F, if the operator Tn is of the
form p(r)⊗ where p(r) is characterized by a phase-only
spectrum then

p∗(r)� p(r) = δn(r)

and
f(r) = p∗(r)� s(r)− p∗(r)� n(r)

Thus f(r) is recovered subject to a ‘perturbation’ by the
correlation function p∗(r) � n(r), a perturbation whose
influence is determined by: (i) the value of the SNR asso-
ciated with the signal s(r); (ii) the extent to which p∗(r)
remains uncorrelated with n(r), ∀r, the idealized case being
p∗(r)� n(r) = 0.

Given Conjectures VI.1, VI.2 and VI.3, the only function
p(r) which has a self-characteristic phase-only spectrum is
the chirp function exp(±iαr2). Moreover, in the following
theorem, we show that if p∗(r) has a phase-only spectrum,
then the perturbation of p∗(r) � s(r) by p∗(r) � n(r) is
‘smaller’ than for the case when p∗(r) has a spectrum
characterized by both amplitude and and phase.
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Theorem VII.1. Let q(r) be an integrable function and
n(r) be an integrable stochastic function, both of which are
of compact support with band-limited spectra composed of
amplitude and phase functions. If p(r) has the same phase
spectrum as q(r) but a unit amplitude spectrum, then

‖p∗(r)� n(r)‖p < ‖q∗(r)� n(r)‖p
Proof. The inequality given in the above theorem transforms
into Fourier space as

‖P ∗(k)N(k)‖p < ‖Q∗(k)N(k)‖p
where each spectrum is assumed to be band-limited so that,
for any complex spectrum F (k), say, with amplitude and
phase spectra denoted by AF (k) and ΘF (k), respectively,
we can write
‖AF (k) exp[iΘF (k)]AN exp[iΘN (k)]‖p
≤ ‖AF (k) exp[iΘF (k)]‖p‖AN (k) exp[iΘN (k)]‖p
≤ ‖AF (k)‖p‖AN (k)‖p

Thus
‖Q∗(k)N(k)‖p ≤ ‖AQ(k)‖p‖AN (k)‖p

and if P (k) = exp[iΘP (k)] then

‖P ∗(k)N(k)‖p ≤ ‖1‖p‖AN (k)‖p < ‖AQ(k)‖p‖AN (k)‖p
This result yields the following conjecture:

Conjecture VII.1. The optimal solution to the problem of
communicating information through additive noisy transmis-
sion environments is to apply a phase-only convolutional
transform to the information function and correlate the
received signal with an identical conjugate phase-function.
Further, because of Conjectures VI.1, VI.2 and VI.3, a chirp
provides a unique phase-only transform because a chirp has
a self-characteristic Fourier transform.

If the propagation of this information through a noisy
environment occurs over a long period of time where noise
from different sources contributes additively on a continuous
basis, then, upon reception of the signal, the noise function
may be assumed to be a zero mean averaged Ergodic random
field which, through the Central Limit Theorem will be
normally distributed.

VIII. THE CHIRPLET TRANSFORM FOR FUNCTIONS OF
COMPACT SUPPORT

So far in this paper, we have considered results that are
consistent with the use of the (two-sided) chirp function in
the infinite domain, studying forward and inverse solutions
that are idealized. In this section we revisit the principal
results associated with a chirplet, namely, a chirp function
of compact support. Thus, consider the n-dimensional finite
chirplet transform of a function f(r) that is of compact
support, i.e. f(r) ∃ ∀r ∈ Rn, defined as

Cn[f(r)] =

∫
Rn

exp(iα | r−s |2)f(s)dns ≡ exp(iαr2)⊗f(r)

where α is a real constant and the convolution integral is
finite.

Theorem VIII.1. The autocorrelation function c(r) of

p(r) = exp(iαr2), r ∈ Rn

for rn ∈ [−Rn/2, Rn/2] is given by

c(r) = exp(−iαr2)⊗ exp(iαr2)

= exp(−iαr2)
n∏

m=1

Rmsinc(αRmrm)
(34)

where sinc(x) ≡ sin(x)/x.

Proof. The correlation function is given by

c(r) =

∫
Rn

exp(−iα | r + s |2) exp(iαs2)dns

= exp(−iαr2)

∫
Rn

exp(−2iαr · s)dns

= exp(−iαr2)

R1/2∫
−R1/2

exp(−2iαr1s1)ds1 × ...

= exp(−iαr2)
n∏

m=1

Rmsinc(αRmrm)

Corollary VIII.1. Noting that

R1sinc(αR1r1)↔ π

α
rect(k1)

where

rect(k1) =

{
1, | k1 |≤ αR1;

0, | k1 |> αR1.

and

exp(−iαr2)↔ exp(−inπ/2)
( π

2α

)n
2

exp(ik2/4α)

then from the convolution theorem

c(r)↔
[
π exp(−iπ)

2α

]n
2

exp

(
i
k2

4α

)
⊗

n∏
m=1

(π
α

)m
rect(km)

Corollary VIII.2. For αRm >> 1,

c(r) ∼
n∏

m=1

Rmsinc(αRmrm)

and hence

Fn[c(r)] ∼
n∏

m=1

(π
α

)m
rect(km), αRm >> 1

Thus, when αRm >> 1∀m, the bandwidth of the autocor-
relation function is determined by αRm. Further,

c(r) =
n∏

m=1

Rmsinc(αRmrm) = δm(r), Rm →∞

illustrating that as the spatial extent of the chirp function
increases, the autocorrelation function approaches a delta
function and its spectrum C(k) → 1∀k as Rm → ∞∀m.
Also, for a chirp function of finite support, increasing the
value of the chirp parameter α linearly increases the band-
width of the autocorrelation function.

Corollary VIII.3. If for αRm >> 1,

c(r) = p∗(r)� p(r)↔
n∏

m=1

(π
α

)m
rect(km)

then since
p∗(r)� p(r)↔| P (k) |2
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the spectrum P (k) of p(r) is also a band-limited spectrum
and we may infer that

P (k) =
n∏

m=1

(π
α

)m/2
rect(km)

IX. CHIRPLET MODULATION OF A BINARY STRING

Consider the case when r ∈ R1 and r1 = t so that we can
work in the time domain when

f(t)↔ F (ω)

where ω is the ‘angular frequency’ and

F (ω) =

∞∫
−∞

f(t) exp(−iωt)dt

If we chirplet transform an information function of time
f(t)∃∀t ∈ [−T/2, T/2] and transmit the result through an
environment characterized by an additive (zero-mean) noise
function n(t), then the measured signal can be taken to be
given by

s(t) = p(t)⊗ f(t) + n(t) (35)

where
p(t) = exp(iαt2), t = [−T/2, T/2]

By correlating s(t) with p∗(t) we obtain an estimate f̂(t)
say for f(t) given by

f̂(t) = T sinc(αTt)⊗ f(t)

= p∗(t)� s(t)− p∗(t)� n(t), αT >> 1
(36)

We note that

T sinc(αTt)⊗ f(t)↔ π

α
rect(ω)F (ω)

where

rect(ω) =

{
1, | ω |≤ αT ;

0, | ω |> αT.

The information function is therefore recovered with a
bandwidth αT subject to a distortion compounded in the
correlation function p∗(t) � n(t). In other words f̂(t) is a
band- and noise-limited version of f(t). Further, as discussed
in Section IV.F, since we can expect the cross-correlation of
p∗(t) with n(t) to generate a relatively small perturbation,
we can write

f̂(t) ∼ p∗(t)� s(t), t ∈ [−T, T ]

given that

f(t) = p∗(t)� s(t), t ∈ (−∞,∞)

For digital communications, the basic idea is to replace a
single bit with a chirplet where the difference between a 0
and a 1 in a binary string is differentiated by the polarity of
the chirp that is applied. Alternatively, a 0 and 1 could be
differentiated by replacing them with a up-chirplet (increas-
ing frequency) and down-chirplet (decreasing frequency),
respectively (or visa verse). In this work, we consider the
former case alone. Either way, the result produces a string
of chirplets or a chirplet stream, which, after being frequency
modulated using a carrier frequency ω0, say, is taken to
be transmitted using a bandwidth ω0 ± αT . In this case,
after frequency demodulation, the noise function n(t) in

Equation (35) is taken to be determined by the noise in the
transmission frequency band ω0 ± αT .

Chirplet modulation of each bit as opposed to chirplet
transforming a binary string provides the potential for gener-
ating greater ‘re-constructive power’. This approach comes
at the ‘computational cost’ of extending the length N , say,
of the binary string to a chirp-stream of length N × T .

There are two approaches that can be considered: two-
sided chirplet modulation when a binary string is modulated
using the chirplet p(t) = exp(iαt2), t = [−T/2, T/2]
and single-sided chirplet modulation when the string is
modulated using the chirplet p(t) = exp(iαt2), t = [0, T ].

A. Continuous Time Chirplet Modulation

Consider an information function f(t) to be composed of
a time limited sequence of M delta function which may have
positive or negative polarity, i.e.

f(t) = X±(t) =

M/2−1∑
m=−M/2

δ±(t−mT )

where δ+(t) = δ(t) and δ−(t) = −δ(t). Two-sided chirplet
modulation involves computing a chirplet stream function
which is obtained by convolving X±(t) with the two-sided
chirplet p(t) = exp(iαt2), | t |< T/2, generating the signal

s(t) = exp(iαt2)⊗X±(t) =

M/2−1∑
m=−M/2

p±(t−mT )

where p+(t) = exp(iαt2) and p−(t) = − exp(iαt2). After
frequency modulation, transmission and demodulation back
to base-band, we assume that the received signal (now
distorted by transmission noise) is given by

s(t) = exp(iαt2)⊗ f(t) =

M/2−1∑
m=−M/2

p±(t−mT ) + n(t)

The estimate f̂(t) of f(t), obtained through chirplet de-
modulation, is then given by correlating s(t) with p+(t) or
p+(t) to give the band- and noise-limited reconstruction

f̂(t) = exp(iαt2)� s(t) ∼ T sinc(αTt)⊗ f(t)

The information function considered is a continuous time
function representation of a binary string, each bit in the
string being distinguished by δ+(t) or δ−(t) for | t |< T/2
with a shift of mT . In practice (i.e. for digital signal
processing), a discrete time approach is required which is
considered in the following section.

B. Discrete Time Chirplet Modulation

Let f(tn) ≡ {0, 1}N denote a binary string composed
of N bits. The function f(tn), n = 1, 2, ..., N is a binary
representation of information where each 1 in the string is a
Kronecker delta function

δ(tn − tm) =

{
1, m = n;

0, m 6= n.

Two-sided chirplet modulating, we replace the binary string
with a chirplet stream consisting of a concatenation of the
functions p±(tn) = ± exp[iα(tn−T/2)2], tn ∈ [0, T ] where
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p+ ‘encodes’ 1 and p− encodes 0 (or vice versa). Thus we
consider a bit-to-chirplet stream transformation which can be
written in the form

{0, 1}N ≡ {1, 0, 1, ...} → {cat[p±(tn)]}N×T

where

cat[p±(tn)] =



p+(tn), tn ∈ [0, T ];

p−(tn), tn ∈ [T, 2T ];

p+(tn), tn ∈ [2T, 3T ];
...
p±(tn), tn ∈ [(N − 1)T,NT ].

and cat denotes the concatenation of functions p±(tn). The
jth bit, f(tj), j = 1, 2, ..., N , in the binary string {0, 1}N
therefore transforms to the jth chirplet in the chirplet stream
cat[p±(tj)], j = 1, 2, ..., NT , the output being taken to be
the real component of cat[p±(tn)].

‘Chirp coding’ a bit stream in this way allows each bit
to be recovered by correlating the stream with the complex
conjugate of an identical chirp function p±(tn). Thus we can
write the demodulated function as

d(tn) = p∗±(tn)� Re{cat[p±(tn)]} ∼ cat[δ±(tn − tm)]

where

δ±(tn − tm) =

{
±1, m = n;

0, m 6= n.

A further process is then required to convert the Kronecker
δ-stream back to the original binary string, i.e.

{cat[δ±(tn − tm)]}N×T → {0, 1}N

Since each reconstructed Kronecker delta will be positive or
negative at positions nT/2, this can be accomplished through
the following process: ∀j ∈ [1, N ] :{

if Re{d[tn = (2j − 1)T/2]} ≥ 0, f(tj) = 1;

if Re{d[tn = (2j − 1)T/2]} < 0, f(tj) = 0.

from which the binary string {0, 1}N is recovered.

C. Nyquist Sampled Chirplets

The algorithms considered in the following section are
designed to test discrete-time modulation and investigate the
Bit-Error-Rate (BER) for the reconstruction of binary strings
with different values of the SNR. The reconstruction depends
critically on knowledge of α and T . In this sense, these
parameters represent the keys required to recover the binary
string, subject to the bit errors generated by low SNR’s.

In practice, the value of T is the array length or period
used to compute the chirplet. Given T , for discrete-time
modulation, a value of α must be chosen that avoids aliasing.
To obtain a non-aliasing criterion for the maximum value of
α given T , we note that, from Equation (36), the autocor-
relation of p(tn) = exp[iα(tn − T/2)2], tn ∈ [−T/2, T/2]
has a bandwidth ∼ αT which is therefore the bandwidth of
p(tn) (from Corollary VIII.3). If tn = n∆ where ∆ is the
time sampling interval, then, from the Sampling Theorem [5]

∆ ≤ 1

2αT

A Nyquist sampled chirplet is therefore characterized by a
chirp rate of

α =
1

2∆T

with an over-sampled chirplet obtained when

α <
1

2∆T

Thus, computation of a Nyquist sampled chirplet with ∆ =
1, requires a value of α given by

α =
1

2T

This relationship for computing α given T is used in the
algorithms presented in the following section.

X. CHIRP MODULATION AND DEMODULATION
ALGORITHMS

To study the numerical performance associated with dis-
crete time chirplet modulation, we consider the transmission
of data distorted by additive noise and record the real
component given by the signal

s(tn) = SNR× Re{cat[p±(tn)]}+ r(tn) (37)

where
‖r(t)‖∞ = 1

for different values of the SNR and the chirplet period T ,
where r(tn) is a simulated random number stream. In this
context, we present the principal steps associated with two
algorithms for chirplet modulation and demodulation using
a two-sided Nyquist sampled chirplet. It is assumed that the
noise is zero mean Gaussian noise.

A. Modulation Algorithm

Data inputs: Binary string fn, T - chirplet period (type:
even integer), SNR - Signal-to-Noise Ratio (type: real
double).

Data processing function(s): None.

Step 1: Read binary string fn, n = 1, 2, ..., N computing
the string length N .

Step 2: Convert the binary string to a bi-polar Kronecker
delta array Kn, n = 1, 2, ..., N where each ‘0’ in the input
string is assigned value −1 and each ‘1’ in the string is
assigned value +1.

Step 3: Compute the chirplet array:
pm = exp[iα(m−T/2)2], m = 1, 2, ..., T where α = 1/2T

Step 4: Multiply each value of Kn by pm and concatenate
the results to generate a ‘chirplet stream’ array ck of length
N × T , returning the real component and normalizing the
result.

Step 5: Compute a zero mean distributed array of
random numbers rk of size N ×T and normalize the result.

Step 6: Compute the array sk = SNR × ck + rk
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based on Equation (37).

Data Output: Write the array sk to file (type: real
double).

B. Demodulation Algorithm

Data inputs: Chirp stream array sk (type: real double), T -
chirplet period (type: even integer)

Data processing function(s): Correlation.

Step 1: Read signal array sk, k = 1, 2, ..., N × T
and compute the array length NT .

Step 2: Compute the chirplet array:
pm = exp[iα(m−T/2)2], m = 1, 2, ..., T where α = 1/2T

Step 3: Demodulate chirp stream by correlating array sk with
chirplet array pm to compute array dk, k = 1, 2, ..., N × T

Step 4: Recover bit-stream fn by evaluating the polarity of
the array dk at [(2k − 1)T/2] − 1 such that if dk ≥ 0 then
fn = 1 and if dk < 0 then fn = 0.

Data output: Write bit array fn to file (type: Decimal
Integer).

The step-by-step processes presented above are implemented
in the MATLAB functions CM (Chirplet Modulation) and
DM (Chirp Demodulation) given in Appendix A.A and
Appendix A.B, respectively. These functions have been
commented to provide a narrative on their composition
which reflects the processes given using functions that
are intrinsic to MATLAB. For generality, and, in order to
provide a comparative study, both functions provide an
option for the implementation of single-sided or two-sided
modulation. Neither function undertakes checks for the
validity of the input data or data processing errors and no
graphical outputs are included. Function CM assumes the
existence of a binary string file ‘bstring.txt’ and outputs
a file consisting of a chirplet-modulated stream ‘cm.txt’.
Function DM inputs ‘cm.txt’ and outputs the de-modulated
bit stream data to the file ‘cd.txt’.

C. Examples Results

Figure 6 shows the real component of the two-sided chirp
pn used for modulation, the chirplet stream ck, the noise
distorted signal sk for SNR=1 and the demodulated signal
dk for the simple input binary string fn ≡ {010}. This result
is the output from executing the MATLAB functions given in
Appendix A for T=100, SNR=1 and opt=2, i.e. CM(100,1,2)
and DM(100,2).

The Bit-Error-Rate (BER) in this case is zero and based
on the equation

BER =
1

N

N∑
n=1

| fn − f̂n |

where fn denotes the input binary string to function CM
and and f̂n denotes the output string obtained after demod-
ulation using function DM. This is because of the relatively

Fig. 6. Example of a two-sided chirplet (top-left), the chirplet modulation of
{010} (top-right), the chirplet modulated signal with additive noise (bottom-
left) and the signal after demodulation (bottom-right) for CM(100,1,2) and
DM(100,2).

Fig. 7. Examples of a single-sided chirplet function (top-left), the chiplet
modulation of {010} (top-right), the chirplet modulated signal with additive
noise (bottom-left) and the signal after demodulation (bottom-right) for
CM(100,1,1) and DM(100,1).

high value of the SNR used (i.e. SNR=1), which, using
the conventional decibel scale SNRdB where SNRdB =
10 log10(SNR) is zero. For comparison, Figure 7 shows
the equivalent result for single-sided modulation using the
same input parameters, the BER also being zero, but the
reconstruction having lower resolution. This is because the
spectrum of a single-sided chirplet is, in effect, a single-sided
spectrum with a band-width that is half that of the spectrum
of a two-sided chirplet as illustrated in Figure 8.

To illustrate the effect of changing the input data and
parameters, Figure 9 shows the demodulation of the longer
binary string {0100001101001101} (ASCII binary for ‘CM’)
using single-and two-sided chirplets for a larger chirplet
period T = 1000 and for a lower SNR when SNR = 0.1
(SNRdB = −10 dB). In both cases the BER is zero.

Figure 10 shows the BER associated with the demodula-
tion of a chirp stream generated by single- and two-sided
chirplet modulation for T=1000 over a range of SNRdB.
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Fig. 8. Power spectra of the two-sided chirplet given in Figure 6 (solid
line) and the single-sided chirplet given in Figure 7 (dashed line).

Fig. 9. Example of chirplet modulating {0100001101001101}: Single-
sided chirplet (top-left), two-sided chirplet (top-right) and demodulated
signals (lower-left and lower-right, respectively) for CM(1000,0.1,1),
DM(1000,1) and CM(1000,0.1,2), DM(1000,2), respectively.

The binary string used in this case is the ASCII binary
representation of the sentence ‘BER test for chirplet mod-
ulation method.’ and illustrates that as the SNR decreases
(from the order of -15 dB to -30 dB), the BER increases but
that from -15 dB to 0 dB, the BER is zero. Figure 10 also
illustrates the greater accuracy (in terms of BER for a given
SNR) associated with the application of single-sided chirplet
modulation over the range of -15 dB to -30 dB. Note that
the BER .v. SNRdB profile given in Figure 10 is specific to
the value of T that is used. The general characteristics of
this profile for different values of T lie beyond the scope of
this work but can be investigated by interested readers using
the functions provided in Appendix A.

XI. CHIRPLET MODULATION USING BANDWIDTH
FACTORIZATION

In order for Alice and Bob to communicate information
in the form of a binary string using algorithms CM and
CD, for example, the value of T must be known to both.

Fig. 10. Variations in the BER (vertical axis) with SNRdB (horizontal axis)
for single-sided (solid line) and two-sided (dashed line) chirplet modulation.

In a cryptographic context, this can be undertaken using
a key exchange algorithm where T is the key. Two such
well-known and commonly used algorithms are the Diffie-
Hellman algorithm [46] and the RSA algorithm [47]. The
difference between these two approaches in terms of their
‘security’, is that the Diffie-Hellman method relies on the
computational difficulties associated with evaluating discrete
logarithms to high accuracy whereas the RSA algorithm
relies on the factorization of two large prime numbers. Both
the Diffie-Hellman and the RSA algorithms can be used
to exchange keys which can then be used for symmetric
encryption for which there are numerous legacy techniques
and relative new methods [35]. This includes elliptic curve
cryptography [48] which is a logarithm-family form of
cryptography based on a different finite field with modular
arithmetic.

Many other key exchange methods are available including
those that are based the three-pass or no-keys protocol which
includes the Adi Shamir three-pass protocol [49] and the
Massey-Omura method [50]. This protocol requires that:
(i) The encryption algorithm is commutative and strong
enough so that the ciphertext cannot be broken using a
known algorithm attack based on an intercept of any pass,
particularly the single encrypted first and third passes; (ii)
the keys used must be of a sufficient length to make an
exhaustive attack impracticable on any pass; (iii) if the
encrypted information is intercepted for each of the three
passes, it is not possible to determine the plaintext from the
three intercepts (assumed to be partial or complete intercepts
in each case). It is Condition (iii) that yields the greatest
vulnerability and any encryption system that exploits this
protocol must be based on algorithms that exhibit some
‘computational difficulty’ in this respect. For example, in
the case of the Massey-Omura algorithm, the security relies
on the difficulty of computing discrete logarithms in a finite
field [51]. Since the publication of this protocol in 1980,
many key-exchange algorithms have been developed whose
security relies on some form of computational difficulty such
as the the exponentiation in a Galois field and the difficulty
associated with computing inverse matrices. Variations have
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also been designed to make the protocol quantum safe [52].
This includes the application of phase-only based encryption
using a three-pass protocol, [43] where the computational
difficulties of breaking the ciphertext are compounded in:
(i) the inability to solve the one-dimensional phase retrieval
problem due to the Fundamental Theorem of Algebra; (ii)
the inability to uniquely solve an under-determined cubic
polynomial using a three-intercept cryptanalysis.

In this section, we consider a novel approach in which
Alice and Bob can compute T based on knowledge of the
bandwidth αT of the communications system alone.

A. Key Exchange based on Knowledge of the Bandwidth

Suppose an analogue signal is received which, after de-
modulation to base-band, is known to be the result of chirplet
modulation but where the value of the chirp rate α and chirp
length T is unknown. What values of α and T should be used
in order to construct the chirplet exp(iαt2), t ∈ [−T/2, T/2]
given that the angular bandwidth αT and hence the band-
width B = αT/2π Hz is known?

This problem requires a solution other than undertaking
an exhaustive search, i.e. searching through different values
of α and T and checking to see if the demodulation provides
an output binary string that is ‘intelligible’ according to
some test for intelligibility .v. randomness as discussed in
Section XII. Given that we are required to compute two
numbers from their product αT , we consider a solution to
this problem based on prime number factorization where the
prime numbers p and q, say, are required to be evaluated
from the semi-prime pq, a problem that is fundamental to
breaking the RSA algorithm, for example [47].

Assuming that it is possible to undertake prime number
factorization efficiently, consider a scenario where Alice
wishes to communicate with Bob using chirplet modulation
of a binary string. Instead of considering a separate key
exchange protocol where Alice exchanges the keys α and
T to Bob prior to initiating the communication, she con-
siders a maximum prime number factorization method (to
be discussed). It must then be assumed that this method is
known to Bob together with the bandwidth to be used (a
pre-requisite in any communications system).

Given the algorithms considered in Section X, we are
required to implement discrete time chirp modulation. As
discussed in Section IX.C, we consider the case when the
chirplet is Nyquist sampled and α = 1/2T , noting that this
restriction can be relaxed for the case when both α and T are
used independently. In this case, we consider the evaluation
of T alone, determined form prime numbers whose product
is as close to the maximum length of the string used to
define the decimal precision of the bandwidth. This method
is predicated on the assumption that both Alice and Bob
know the angular bandwidth and have access to numerical
processors with the same floating point accuracy.

B. Prime Number Factorization of the Angular Bandwidth

Let B be the side-band bandwidth in Hz of a communica-
tions channel available for Alice to communicate with Bob
and let us write this number in the form

B = B1.B2B3...Bn = B1B2B3...Bn × 10−(n−1)

where B denotes the base 10 digits (0, 1, 2, ..., 9) and
B1B2B3...Bn+1 is the significand consisting of n+1 digits,
the value of n being taken to be determined by the decimal
accuracy available. We then find the largest pair, and only
the pair, of prime numbers p and q such that the semi-prime
pq is given by

pq = B1B2B3...Bm, m ≤ n

where (m− n) is a minimum.
In principle, this can be achieved by systematically reduc-

ing the number of digits B1B2B3...Bn (from right to left)
one digit at time and decomposing the integer obtained into
a product of prime numbers (given that any positive integer
can be decomposed into a product of prime numbers) until
the first two prime number factorization is achieved. We then
compute the decimal number

d =
p

q
, p > q or d =

q

p
, q > p

so that
d = d1.d2d3..., where d1 ≥ 1

Finally, applying an upper bound to the value of T given by
T ≤ 10L, say, where L is a positive integer, we set

T = d1d2d3...dL

which gives the period used to compute the chirplet.
The larger the value of L the greater the computational

time required to modulate and demodulate. A binary string
of size N yields a chirp-stream of size NT ≤ NL. For
demodulation, the direct correlation process used in function
CD requires ∼ NL2 floatig point multiplications (and addi-
tions). While this can be reduced to ∼ NL log2 L by using a
Fast Fourier Transform, it is clear that the value of L needs
to be kept to a minimum in order to reduce the computational
overheads. This issue depends upon the computational speed
coupled with floating point accuracy available to Alice and
Bob.

C. Numerical Example

To illustrate the scheme considered in the previous section,
suppose that Alice and Bob wish to communicate through a
component of the electromagnetic spectrum that is composed
of wavelengths between 18 - 21 cm inclusively (in the
microwave range), which is equivalent to a frequency range
of 1.42 - 1.67 GHz giving an available bandwidth of 0.25
GHz. Let us assume that Alice and Bob can process data
with a maximum floating point precision of 16 digits, for
example. In this case

αT = 2π × 0.25 = 1.570796326794897

and application of prime number factorization for the integers
1570796326794897 and 157079632679489 then yields the
following results:

1570796326794897 = 2× 3× 751× 348601049;

157079632679489 = 13× 12083048667653,

where it is noted that

1.3× 1.2083048667653 = 1.570796326794890
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The first two-prime number factorization of the largest
integer less than 1570796326794897 is thus obtained,
after which the process is terminated, the integer
157079632679489 being the first semi-prime to be computed
in this example.

Since 13 < 12083048667653 we compute

d = 12083048667653/13 = 9.294652821271538× 1011

Finally, with L = 3 say, T = 929 and α = 1/2T =
5.3821 × 10−4. Note that with L = 4, T = 9294 and α =
5.3798× 10−5 which may impose significant computational
overheads upon the process especially if the size of the binary
string is large. In this case, subject to L having been set by
both parties (which depends on the floating point accuracy
available to both), Bob only needs to know the operational
bandwidth of the communications channel (which needs to
be known by default) to implement chirp demodulation and,
of course, the prime number factorization rule that Alice has
applied (as discussed in Section XI.B).

A key issue in regard to this approach is that the angular
bandwidth can be defined with arbitrarily high decimal point
precisions. This is because, provided B is taken to be a
rational number, then the angular bandwidth Ω = 2πB is
an irrational number because π is an irrational number - a
decimal number that does not terminate. Thus the angular
bandwidth can be specified to any decimal place accuracy
and is limited only by the floating point accuracy available
to Alice and Bob. If we increase the size of at least one of the
two primes (whose product is a semi-prime) then upon re-
floatation, the (angular) bandwidth is recovered to a decimal
place accuracy that is equal to or less than that considered
by Alice. This approach provides the potential for using
Shor’s algorithm [53] to generate the prime numbers when
the angular band-width is specified as a decimal number with
enough decimal digits to make the semi-prime representation
unable to be factored using conventional digital computing.
For example, no prime number factors have, to date, been
found for the RSA algorithms RSA-240 (which has 240
decimal digits - 795 bits) through to RSA-2048 (which has
617 decimal digits - 2048 bits).

Prime number factorization is of particular significance in
regard to quantum computing and the application of Shor’s
algorithm and developments thereof [54]. It is therefore
conceivable that, at some future date, Alice and Bob could
use chirplet modulation using semi-prime representations of
Ω = 2πB with 1000++ digits, say, if and only if they
both have access to quantum computers to implement Shor’s
algorithm to compute α and T . The security of such a
communications protocol is self-evident especially when the
computational facilities are available to significantly increase
the value of L that can be applied and limited to a select few.

XII. INTELLIGIBILITY OF DEMODULATED BINARY
STRINGS

The approach considered in the previous section assumes
that Alice and Bob have a prior knowledge on the following:

(i) the bandwidth of the communications channel;
(ii) the two prime-number factorization protocol of the

bandwidth used to compute the chirp rate α and chirp
length T ;

(iii) the value of the upper bound L used to compute the
chirplet period that is to be applied;

(iv) the binary string chirp modulation/demodulation algo-
rithms presented in Section X, albeit simple examples.

In regard to the last point, it is assumed the input binary string
is not encrypted. If encryption is applied, then both Alice and
Bob need to know a priori the encryption algorithm(s) and
key(s) that are required. In order to perform a decrypt, the
demodulation must be known to generate an output that is
subject to a minimal, and, ideally, a zero BER. This requires
the noise generated in the communication of the chirp stream
to be as low as possible, i.e. the bandwidth chosen should
have minimal noise characteristics.

The chirp demodulation algorithm given in Appendix A.B,
has been designed to always outputs a binary string. This is
because the bits are recovered by checking the polarity of the
demodulated array at the positions in the array corresponding
to the centers of the chirplets which occur at points [(2k +
1)T/2] − 1, k = 0, 1, 2, 3, ... making the value of T (an
even number) critically important and thereby, the primary
key to the demodulation process. The binary string generated
by this function is therefore subject to BERs generated by
the following:

• errors in the computation of T ;
• an accurate computation of T but low values of the SNR

leading to high BER;
• both of the above.

Errors in the computation of T may be related to an incorrect
choice if the bandwidth subject to application of the prime
number factorization of the angular bandwidth. In this con-
text, we now consider how the binary string can be evaluated
in terms of its ‘intelligibility’ when the input is unknown and
hence a BER analysis can not be performed.

The term ‘intelligibility’ usually applies to the clarity of
speech and/or writing and whether they are clear enough to
be understood. Here, the term refers to whether or not a
binary stream generated by chirp demodulation is entirely
random or otherwise or a mixture of both where, in the
former case, it is assumed that there is no source of chirplet
modulated information embedded in the noise and that con-
sequently the binary string obtained through demodulation is
noise driven. One of the keys to doing this is to analyze the
output binary strings in terms of their information entropy.
This is discussed in the following section.

A. Information and Entropy

The first and arguably the most important relationship
between information and entropy was first established by Leo
Szilard as a result of his solution to the ‘Maxwell demon’
thought experiment, named after James Clerk Maxwell.
Maxwell first proposed this thought experiment as a result
of his work on the properties of ideal gases in the 1860’s.
He considered a model where gas particles are free to
move inside a stationary container whose interactions occur
through elastic collisions in which they exchange energy and
momentum with each other or with their thermal environ-
ment. This model is compounded in the Maxwell-Boltzmann
Probability Density Function P (v) for the velocities v of
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identical gas particles with a mass m given by

p(v) =

(
m

2πkBT

) 3
2

exp

(
− mv2

2kBT

)
where T is the thermodynamic equilibrium temperature of
the gas in oK and kB ' 1.4×10−23JK−1 (Joules per Kelvin)
is the Boltzmann constant which relates the average kinetic
energy of particles in an ideal gas with the temperature of that
gas. The mode of this distribution gives the most probable
speed of a particle, i.e. vp =

√
2kBT/m.

The thought experiment considers a ‘demon’ operating a
frictionless shutter placed in the center of a container that is
opened to allow particles with a velocity v < vp to enter into
one section of the container and particles with velocity v ≥
vp to enter into the other section where both the containing
and shutter are perfectly thermally isolated. In this way, high
and low velocity gas particles are separated into the two
sections of the container while preserving their velocities,
the equilibrium temperatures of the two sections being lower
and higher than that of the original container.

For a classical thermodynamic process, work W can only
take place when there is a temperature gradient, and, for
an irreversible process, the Entropy S always increases, the
change in entropy ∆S being given by ∆S = ∆W/T . This is
the basis for the second law of thermodynamics, a law that
appears to be broken according to the thought experiment
considered above because the entropy of the two sections
is now different, and, given that there is an increase in
temperature in one section, the entropy has been lowered
without expending energy.

In Leo Szilard’s 1922 doctoral dissertation and companion
landmark paper [55], he showed how the paradox can be
solved by taking into account the fact that in order for the de-
mon to open and close the shutter to let particles of different
velocities through, a decision must be made, a decision that is
based on gathering information on the velocity of the particle
before it is let through the shutter a priori. The information
measured is taken to provide a ‘balance’ to the decrease in
the physical entropy and is compounded in the ‘Information
Entropy’. In this context, Szilard’s principal contribution was
to consider that the demon must be an ‘intelligent being’ that
can make a decision based on a priori information on the
velocity of a particle, a critical issue, that Maxwell had failed
to conceive of an include in his original thought experiment.

Szilard’s original concept on information entropy has
become the basis of information theory, showing that there is
an increase of kB log2 2 units of entropy in any measurement.
This concept was independently ‘discovered’ by Claude
Shannon in 1949 [56] (to whom credit is usually given)
and Andre Kolmogorov and Yakov Sinai, who developed
a modified form in 1959 [57]. In developing a solution to
a paradox in thermodynamics, Leo Szilard introduced an
idea that is arguably the single most important icon of the
information revolution of today. This is because information
entropy provides the key for estimating the (average) mini-
mum number of bits needed to encode a string of symbols,
based on the frequency of those symbols.

In statistical mechanics, entropy is a measure of the
number of ways in which a system may be arranged, often
taken to be a measure of ‘disorder’ where the higher the
entropy, the higher the disorder. Another way of interpreting

this metric is in terms of it being a measure of the lack of
information available on the exact state of a system. Shannon
entropy is a measure of the information required to determine
precisely a systems state from all possible states, and is
expressed in binary digits, or ‘bits’.

More generally, information is a measure of order, a
universal measure applicable to any structure or any system.
It quantifies the instructions that are needed to produce a
certain organization. There are several ways in which one
can quantify information but a specially convenient one is
in terms of binary choices. In general, we compute the
information inherent in any given arrangement from the
number of choices we must make to arrive at that particular
arrangement among all possible arrangements. Intuitively, the
more arrangements that are possible, the more information
that is required to achieve a particular arrangement.

1) Shannon Entropy: Consider a digital signal sm, m =
1, 2, ...,M composed of M values. Let the probability that a
specific value sm occurs in the signal within a bin n be
pn, n = 1, 2, ..., N . The information associated with an
outcome sm within a bin n is − log pn which is a measure
of the information required to specify sm in terms of it being
a member of a subset or ‘bin’ where pn is the distribution
of bins. Thus, pn is the histogram of sm. The mean value
µ say, of sm is equal to the sum over every possible value
weighted by the discrete probability distribution pn of that
value, i.e.

µ =

N∑
n=1

npn

Similarly, the Shannon Information Entropy (usually denoted
by S), is a measure of the mean (in this context, the ‘expected
value’) of the information measure − log pn and is given by
the dimensionless quantity

S = −
N∑
n=1

pn log pn

The higher the entropy of a signal becomes the greater is
ambiguity, and, in this context, the information entropy S
is a measure of the unpredictability or randomness of any
message contained in the signal. This is typically determined
by the noise that distorts the information contained in a
signal. In general, the information entropy associated with
the transmission of information in a signal tends to increase
with time. This is due to the increase in noise that distorts the
signal as it propagates, the sources of this noise being multi-
faceted and tending to Gaussian noise as a consequence of
the Central Limit Theorem.

2) Boltzmann Entropy: The partner entity to the informa-
tion entropy in physics has a dimension called ‘Entropy’ first
introduced by Ludwig Boltzmann and J. Willard Gibbs as a
measure of the dispersal of energy; in a sense, a measure
of disorder, just as information is a measure of order. In
fact, Boltzmann’s entropy concept has the same mathematical
roots as Shannon’s information concept in terms of comput-
ing the probabilities of sorting objects into bins. In statistical
mechanics, the Boltzmann Entropy is defined as

E = −kB
N∑
n=1

pn ln pn
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Shannon’s and Boltzmann’s definitions of entropy are similar
given that S and E differ only by their scaling factors.

In the definition of the Boltzmann entropy, the probabil-
ities pn refer to the energy levels of a ‘classical system’
(e.g. a collection of classical Newtonian particles). With the
information entropy, pn is not assigned a priori such specific
roles and the expression can be applied to any physical
system to provide a measure of order. Thus, information
becomes a concept equivalent to physical entropy and any
system can be described in terms of one or the other.
An increase in information entropy implies a decrease of
information.

3) Renyi Entropy: As with many other fundamental def-
initions in mathematics and physics, so the information
entropy has a number of ‘variations on a theme’. A gen-
eralization of the Shannon entropy is the Renyi Entropy Hα

(of order a) given by

Hα =
1

1− α
log

N∑
n=1

pαn

where α ≥ 0, α 6= 1 and

lim
α→1

Hα =
N∑
n=1

pn log pn

which recovers the Shannon entropy. From this general-
ization, a number of complementary information entropy
measures are obtained when α = 0 (‘maximum entropy’),
α = 2 (‘collision entropy’) and H∞ = − log[maxpn]
(‘minimum entropy’), for example.

B. Binary Information Entropy

In the case of a binary string f` composed of L bits (i.e.
the bit-stream {0, 1}L) the elements of the string can take
on only two values, 0 and 1, which are mutually exclusive.
In this case, the Binary Information Entropy (BIE) function
denoted by H becomes

H(p) = −
2∑

n=1

pn log2 pn

= −p log2 p− (1− p) log2(1− p) bits

where, if we let p denote the probability of 1 occurring in
the binary string, then the probability of obtaining a 0 in the
same string is 1 − p. Similarly, if p is taken to denote the
probability of 0 occurring in the string, then the probability
of obtaining 1 is (1 − p). In either case, 0 log2 0 ≡ 0 and
H(p) = H(1− p).

C. On the Intelligibility of a Binary String using BIE

Given a binary string, our problem is to evaluate whether
the string is a binary representation of noise or whether it
contains intelligible information in terms of it having some
degree of determinism. This could include any natural lan-
guage that has evolved through use, application and repetition
without conscious planning but binary coded in a planned
a premeditated way, e.g. the ASCII or any other coding
systems for that matter. The purpose is therefore to establish
a method by which a finite binary string of arbitrary length
L can be compared against another of equal length L in

terms of the relative order and/or disorder of all of its bits.
Applying a basic binary entropy test is not sufficient, and, for
this reason a BiEntropy function has been developed which
is based upon a weighted average of the Shannon entropy
for all but the last binary derivative of the string [59]. This
is one a many studies that have been undertaken to develop
suitable tests and measures of order, disorder, randomness,
irregularity and entropy based on the computation of a single
metric. While desirable computationally, focusing on the use
of a single metric for this purpose is restrictive and can be
statistically insignificant because of its self-selecting data
predication. For this reason, in the following section, we
consider complementary approach to the problem which is
based on the application of the Kullback-Leibler Divergence
of Relative Entropy for a stream of data that yields a
statistically significant result as apposed to a single metric.
This provides the foundations for an application of a machine
learning approach as discussed later on.

D. Application of Kullback-Leibler Divergence

Since intelligibility is a relative concept, a relative metric
should be considered which provides a measure of how a
binary string compares in some way with a string that is
known to be the product of a genuinely random process. Fur-
ther, this comparison needs to be undertaken on a statistical
basis, measuring how one probability distribution associated
with the binary string compares to a reference probability
distribution in terms of its information content.

We consider a solution to this problem using the Kullback-
Leibler Divergence or Relative (Binary) Entropy function
given by

R = −
2∑

n=1

pn log2

(
qn
pn

)
where pn is the binary histogram of binary string f` ≡
{0, 1}L and qn is the binary histogram of some reference
binary string g` ≡ {0, 1}L, both strings being of finite length
L. Suppose string f` is ‘intelligible string’ (e.g. a binary
string representation of some text from a natural language)
and g` is a random string. We require the metric R to be
significantly different in terms of its numerical value to the
case when both f` and g` are random binary strings. Ideally,
what is required is to establish a threshold for the value of
R, below which f` can be classified as intelligible say, and
above which, f` can be classified as random. However, this
assumes that a binary decision making process can be applied
which may not be statistically significant for all cases and is
not accurate enough to consider any transition from f` being
random to intelligible.

Instead, we consider an analysis of the relative entropy
based on an interpretation of the statistical difference be-
tween the case when f` is intelligible and g` is random and
when both f` and g` are random strings. Thus we compute
the Relative Entropy Signal

Rm = −
2∑

n=1

pnm log2

(
qnm
pnm

)
, m = 1, 2, ...,M (38)

where qnm denotes the mth binary histogram of the mth

random bit-stream. We then consider the following cases
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(which are referred to as such in regard to presenting the
results that follow):

(i) pnm is the mth binary histogram of a non-random
binary string;

(ii) pnm is the mth binary histogram of a genuinely
random string.

In the results that follow, the non-random string is obtained
by generating the binary representation of the text associated
with the abstract of this paper, achieved using the ASCII
text to binary converter available at [60] (with the delimiter
string set to none). A sequence of random binary arrays
are generated using the MATLAB uniform distributed ran-
dom number generator function rand (which returns floating
point numbers in the interval [0,1]) and applying a round
transformation (to output an array consisting of 0’s and 1’s),
each array having the same length L and each array being
independent of the other in terms of their pattern of elements.
For each array of random bits, Equation (38) is computed
where pnm = pn, ∀m.

Figure 11 shows example signals of the relative entropy
given by Equation (38) for cases (i) and (ii) above with
M = 3000 and the corresponding 100-bin histograms. It
is immediately clear that:
• For Case (i), when the string is non-random, Rm has a

Gaussian-type distribution.
• For Case (ii), when the string is random, Rm also has

a Gaussian type distribution but with a mean value ∼ 1
that is significantly greater than the mean for Case (i).
However, in both cases, application of the Jargue-Bera
(JB) test for normality shows that the JB statistic is
significantly larger than χ2 and the null hypothesis must
therefore rejected, i.e. the series Rm does not actually
conform a normal distribution.

From Figure 11, a principal observation is that the sta-
tistical characteristics of Rm for cases (i) and (ii) above
is significantly different. For example, the difference in the
mean of the relative entropy signal for the two cases is at
least two orders of magnitude and can therefore be used
to differentiate between an intelligible and a random binary
string. We thus consider additional statistical measures to
the mean value alone. Figure 12, shows log-linear scatter
plots for the mean, standard deviation (std), the median and
the mode for cases (i) and (ii) using four natural languages.
This result shows that an intelligible binary string can be
clearly differentiated from a random string by computing the
relative entropy signal given by Equation (38). The results
given in Figure 12 illustrate that the statistical characteristics
change significantly for at least four different languages using
translations from the English obtain with [61]).

In each case, the four metrics considered adhere to the
following conditions:

mean[Rm]i < mean[Rm]r, std[Rm]i < std[Rm]r

median[Rm]i < median[Rm]r, mode[Rm]i < mode[Rm]r

where the subscripts i and r denote the use of an intelligible
and random binary string, respectively. The difference in the
standard deviations between the two cases is less significant
than the other parameters.

The natural languages used for this exercise have been
chosen for their structural and semantic differences, a more
comprehensive study in this regard using a broader spectrum
of natural languages lying beyond the scope of this work.
In this respect, the MATLAB code given in Appendix A.C -
function RET (Relative Entropy Test) - used to generate the
four metrics considered is provided for readers to reproduce
the results given and investigate the output for other natural
languages and non-random binary strings in general.

Fig. 11. Plots of the Rm (left) given by Equation (38) and the correspond-
ing 100-bin histograms (right) for Case (i) - above - and Case (ii) - below,
respectively, with M = 3000.

Fig. 12. Log-linear scatter plots of the mean, standard deviation, the median
and the mode (from left to right in each plot, i.e. log values for points 1-4,
respectively) for Case (i) - circular symbols - and Case (ii) - square symbols.
The top-left plot shows the result for English, the top-right plot is the result
for Arabic, the lower-left plot for Chinese (traditional) and the lower-left
plot for Greek.

Figure 13 shows the effect of using this relative entropy
test to characterize chirplet demodulation for increasing val-
ues of the SNR using the function RET provided in Appendix
A.C. In this case, only the mean values of Rm have been used
to characterize the difference between a binary string as it
undergoes a transition from being random to intelligible (for
low to relative high SNR’s, respectively). This is quantified
by the BER associated with the demodulation of a chirplet
stream with an increasing SNR.

Form Figure 13 it is clear that as the BER decreases
(for SNRdB ∈ [−20,−10] dB), the value of mean[Rm]
increase quasi-linearly until a threshold is obtained when,
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Fig. 13. Plots of the BER (solid line) and the mean values (dashed
line) of the relative entropies Rm for M = 1000 and SNRdB ∈
[−20,−2] dB. This result has been obtained using two-sided chirplet
modulation/demodulation with T = 100 and SNR∈ [0.01, 0.5]. Note that
the mean values shown have been re-scaled by normalization. Also note that
the binary string used in this test case is the binary form of the text given
in the abstract of this paper.

for SNRdB ∈ [−10,−2] dB, the BER is zero. This test
provides a way of differentiating between noise-driven (or
otherwise) binary strings output by the chirplet demodulation
process when there is no reference input string to compute
the BER. In the context of the results given in Figure 13, we
define the intelligibility of a binary string to be proportional
to mean[Rm] with maximum intelligibility being achieved
when mean[Rm] is a maximum.

In order to achieve a statistically significant result of this
type, it is necessary to use relatively long binary strings
N >> 1 and values of the length of the relative entropy
signal M >> 1, the results given in Figure 13 being obtained
for N ×M = 13355× 1000 = 1.3355× 107. It is important
to note, that this test on the intelligibility of a binary string is
predicated on the term ‘intelligibility’ being associated with
a natural language only. This is a limited definition of the
term and has been considered in regard to developing the
test studied in this work. In general, the term ‘intelligibility’
should be applied to a binary string that can be considered to
be the result of a process that is other than an entirely random
processes. In a more general sense, the test compounded in
Equation (38) is a measure of the lack of randomness of a
binary string.

E. Machine Learning

Given that the demarcation between an intelligible and
a random binary string can be determined by applying
the relative entropy test as discussed Section XII.D, the
potential exists to compute further statistical metrics and
other parameters based on an analysis of the signatures given
in Figure 11. These may include the statistical moments and
spectral properties of Rm, for example, designed to develop
a feature vector whose purpose is to provide a multi-class
classification used to input into an Artificial Neural Network
(ANN). Four components of such a feature vector could
be the mean, standard deviation, median and mode of the

relative binary entropy signal as considered in Section XII.D.
The value of such an approach relative to the growth in Deep
Learning using deep ANNs operating on the binary strings
themselves remains to be quantified.

XIII. COMMUNICATING THROUGH THE ‘WATERHOLE’
The numerical example given in Section XI.C is based on

using a bandwidth of 0.25 GHz for the communication of
a chirplet modulated binary string. Although any bandwidth
could be used, this bandwidth has not been chosen arbitrarily;
it is the bandwidth associated with the ‘Waterhole’, a term
first coined in 1971 by Bernard Oliver [63]. The waterhole
is a particularly quiet band of the radio wave spectrum; the
quietest channel in the interstellar radio noise background.
For this reason it has been theorized that the waterhole
would be the optimal frequency band for communicating
with extraterrestrial intelligent life.

With its origins dating back to 1959 and its incorporation
as an Institute in 1984, SETI (Search for Extraterrestrial
Intelligence) has, to date, not obtained any re-producible
evidence of intelligent information based on the analysis of
radio signals in the waterhole spectrum. Given the uniqueness
conjecture associated with chirplet modulation for commu-
nicating binary strings through noisy channels, and, that
the waterhole is a minimum noise radio spectrum, chirplet
demodulation of SETI signals may provide a way forward.

There are of course many assumptions (known and un-
known unknown’s) that have to be made in regard to the
processing and analysis of any SETI signal (in addition to
using the waterhole). In this case, we assume that Alice (an
extraterrestrial) is attempting to communicate with Bob (our-
selves) using unencrypted binary strings through application
of chirplet modulation whose demodulation is dependent on
the key T .

For consistency with the material discussed in Section XI,
we also suppose that Alice uses a value of T that has been
determined by prime number factorization of the sub-prime
determined by the waterhole bandwidth (as discussed in
Section XI.B) where, as the size of the sub-prime increases,
the need for application of Shor’s algorithm using a quantum
computer becomes increasingly necessary. However, irre-
spective of the approach taken (consistent with Section XI, or
otherwise), for any value of T used in the chirplet demodula-
tion of a SETI signal, the binary strings that are output must
be tested for intelligibility in order to ascertain whether they
are the product of chirplet demodulating cosmic noise or the
demodulation of chirplet modulated binary strings that are
the product of some intelligible ‘language’. Such a language
can not be assumed to be a natural language as we understand
the term, only something that is differentiable from binary
strings that are genuinely random using the relative entropy
test discussed in Section XII.D.

All the arguments given above, and, any variations upon
their themes, are of course entirely speculative. However,
given that SETI has, to date, and, after some 60 years of
trying, not developed an algorithm confirming the existence
of intelligible signals, it is arguable that future signal analysis
of the type discussed in this paper could and perhaps should
be applied on a complementary basis. The most important ar-
gument for this application is predicated on Conjecture VII.1,
coupled with the interpretation of the outputs from chirplet
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demodulation using some of the ideas and methodologies
discussed in [64], for example. However, there is another
issue to consider which is where to look for such signals (i.e.
which type of planetary systems should we ‘focus’ our radio
telescopes on) and in the rest of this section we consider a
new hypothesis in regard to this question.

A. The Drake Equation

The Drake equation for estimating the number of commu-
nicative civilization N is well known and given by

N = R∗fpnef`fifcL (39)

where R∗ is the average rate of star formation in our galaxy
(∼ 2 per year), fp is the fraction of those stars that have
planets (∼ 1), ne is the average number of planets which
can potentially support life per star that has planets (∼ 0.2),
f` is the fraction of planets which could support life that
actually develop life at some point (∼ 0.1), fi is the fraction
of planets with life that actually go on to develop intelligent
life and civilizations (∼ 1), fc is the fraction of civilizations
which develop a technology that releases detectable signs
of their existence through electromagnetic emissions, for
example (∼ 0.2) and L is the window of time for which
such civilizations release detectable and intelligible signals
into space (∼ 106 years) before their extinction, e.g. [65] and
[66]. The numbers associated with each of these factors (as
given above in the parenthesis) are of course just estimates
and may vary, some of them quite considerably. However,
some of the terms can be estimated with greater confidence
than others. The term R∗ is relatively well known and the
terms fp and ne can be estimated with some precision. The
terms f` and fi depend on biology and evolution and the
terms fc and L can only be speculated upon. Using the
values given above for each term, we obtain a value for
N given by ∼ 8000. This number can change radically,
especially in regard to the values of fi and L that are
assumed. The two principal scenarios are that N << 1
(the rare earth hypothesis) or that N >> 1 which states
that intelligent, technologically advanced civilizations are
(relatively) common and that we should therefore be able to
discover and identify intelligible signals transmitted through
the waterhole.

Since its launch in 2009, and, over the nine years of its
operation, the Kepler Space Telescope (KST) surveyed a
relatively small region of the Milky Way in an attempt to
discover Earth-size exoplanets and to provide an estimate of
how many of the billions of stars in the Milky Way have such
planets. Analysis of the data gathered by the KST to date
reveals that every star appears to have at least one exoplanet,
which is the reason for letting fp ∼ 1 in Equation (39), and,
that the order of 23% of such planets are rocky planets. While
it is still not clear as to how many of these rocky exoplanets
might support life, least of all intelligent life, it is also
clear that some the guesstimates given in association with
Equation (39) could be significantly larger than previously
considered, in particular the factors fp and ne. In this
context, the KST has enhanced the principles of cosmic
pluralism which is the philosophical belief in numerous
planets or natural satellites in addition to the Earth which
harbor extraterrestrial life and in some cases, intelligent life

with advanced technological civilizations, as promoted by
such culturally diverse philosophers as Aneximander (610-
546 BCE), Fakhr al-Din al-Razi (1150-1210 CE), Giordano
Bruno (1548-1600 CE), Benjamin Franklin (1706 - 1790
CE), Carl Sagan (1934 – 1996 CE) as well as Johannes
Kepler (1571-1630 CE) and Frank Drake (1930 - CE).

B. Longevity of Intelligent Life: Single .v. Multiple Star
Systems

There is a wide spectrum of issues that need to be
considered in relation to estimating the values of the latter
terms in Equation (39), specifically fi, fc and L. In regard
to developing an estimate for L (a measure for the longevity
of an intelligent species radiating electromagnetic radiation
containing intelligible information) many known unknowns
need to be considered such as the effect of γ-ray bursts,
geological catastrophes (such a super volcanism), global
pandemics, ecological catastrophes, extreme climate change
(which is of particular current concern) and other mass
extinction events e.g. [67], [68], [69] and [70]. The evolution
of life on Earth has depended on a multitude of such events
which have come at the expense of many life forms on Earth
at the time of an event, often leading to new windows of
evolutionary opportunity. This includes the evolution of one
life form due to the way a now extinct life form has altered
its environment. In this context, and, from the considerable
wealth of studies that have been carried out in this field,
there appears to be one that has not been considered, and, in
relation to Equation (39), concerns the estimate L in terms
of the number of multiple star systems that could support the
evolution of intelligent life.

The large majority of stars (more than ∼ 80%) are actually
binary, triple or even higher star systems, the most common
of these systems consisting of binary stars, i.e. systems
of only two stars orbiting each other. The solar systems
associate with these stars is very diverse in terms of the
number of planets, there period of orbit, eccentricities and
so on, and, to date, there is not enough data to provide a
statistically significant distribution from which the normality
(if any) of such solar systems can be quantified. Our sun is
therefore in a ∼ 20% minority and our civilization might
therefore be considered to be a relatively rare example of
the development of an intelligent species capable of emitting
intelligible signals who have developed on a rocky planet
orbiting one star. The reason for emphasizing this point is
that there may be a correlation between the orbit of the Earth
around a single star and the longevity of our species, given
the development of a highly influential and socially cohesive
force that is predicated on the existence of one star, namely,
monotheism.

Monotheism was first established by a small Egyptian sect
led by Akhenaten (Akhen-Aten) over a twenty year period
after he became Pharaoh in 1353 BCE as Amenophis IV
during the 18th Dynasty (1550-1307 BCE). Loosely coupled
with the independent development of Zoroastrianism (which
emerged in Persia as a prehistoric Indo-Iranian religious sys-
tem in the second millennium BCE), Akhenaten’s challenge
significantly disturbed the status quo of a fundamentally
polytheistic society and seeded all the basic monotheistic val-
ues and many of the associated practices that have emerged
since, [71], [72].
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Judging from the artwork at the time, Akhenaten’s be-
havior may have been the result of him suffering from
a genetic disorder known as Marfan Syndrome (due to a
mutation of fibrillin 1 on chromosome 15) which is a disease
of microfibril dysfunction often leading to the development
of a psychotic illness involving acute self-centric behavior
[73]. The point here is that Akhenatenism was directly
influenced by the Aten - the sun disk - from which the
name Akhen-Aten (which loosely translates from Middle
Egyptian as ‘worshiper of the sun’ or more specifically, the
‘sun-disk’) is derived. Moreover, it is arguable that there
is a correlation between the catalyst for, and, the initial
development of monotheism and regions of the Earth where
the weather conditions prohibit biological diversity due to
a lack of water. This is particularly noticeable in regard to
societies with an agricultural infrastructure that could and
still can (at least for the present) support a population in a
relatively small geographical location due to its disposition
to a regular source of water, i.e. arid regions where the ‘Aten’
is a dominant daily feature in the sky and where there are
rivers such as the Nile and Jordan, for example.

Given the influence of monotheism on society that has
developed since 1300 BCE, it has been, and, continues to
be a detrimental factor on social development, especially
in comparison to the philosophical, social and scientific
progress that emerged in ancient Greece starting with the
philosopher Thales (624-546 BCE), whose intellectual dis-
position was predicated on polytheism and the political
processes it inspired, namely, Democracy. It is arguable
that the social influence of monotheism has and continues
to actively hinder the scientific, technological and social
development of the ‘Greek mind’, especially in regard to
the narrow-band spectrum associated with the educational
ethos of monotheistic communities. For example, in Europe,
some 1500 years of scientific and technological stagnation
occurred through the active suppression of the Greek view
of life following the legalization of Christianity in the Roman
Empire by Constantine through the Edict of Milan in Febru-
ary 313 AD. Even before the development of Christianity
of Europe in the fourth century AD, whatever may have
been the achievements under centuries of Roman republican
and imperial rule, the advancement of science was not, by
comparison with Greek culture, one of them. Although Greek
science was accepted and applied by the Romans, little was
added to it, but upon the introduction and proliferation of
Christianity in Roman society, intellectual activity became
centered on the theology associated with monotheistic prac-
tice rather than ‘pagan science’, even though a number of
Greek and Roman pagan scientists and philosophers were
given the status of ‘righteous pagan’.

Ironically, it is due to primarily Islamic culture that much
of the scientific progress associated with ancient Greek
civilization was at least documented, studied, translated and
above all tolerated, but not, by comparison with the Greek’s,
developed further. As a result of this, Greek culture was
eventually re-born in Europe (mainly through the scholarship
exercised in southern Spain) in the 15th century AD which
led to the renaissance in southern Europe and later, the
reformations in northern Europe. It is therefore interesting to
contemplate how much more technologically advanced our
civilization might be today, had there been a continuity and

proliferation of Greek culture, philosophy and science from
its inception some 2500 years ago and Rome had not adopted
Christianity for what was, at the time, politically correct
reasons associated with the unification of the Roman empire
under one religion. However, had monotheism not been
initiated by an individual suffering from Marfan Syndrome
and developed as it has, it might have occurred at another
time and evolved along a different path because our planet
orbits a single star. In other words, monotheism might be
an inevitability for an intelligent species that evolves on
a planet sustained by just one star. On the basis, it is
therefore arguable that one star can inhibit the continuity of
scientific progress of an intelligent species leading to long
term damage on societal cohesion, thereby limiting both the
scientific progress and the longevity of the species. This
‘damage’ is predicated on the principle that monotheism
deprives an intelligent species from a fundamental need,
namely, customer choice; a depravity that polytheists do not
suffer from such as in Hinduism and modern paganism or in
non-theistic religions such as Buddhism. This lack of choice
can then lead to the development of a ‘blame culture’ and
severe intolerance, thereby limiting scientific progress from
the strength acquired through intellectual diversity when
differentiation between races is not a conscious issue as
in ancient Greek and pre-Christian Roman societies, for
example. Another way of appreciating this is to consider
that the continuity of one idea is always subservient to the
diffusion of many ideas. This may be considered to be a
societal reflection of the Central Limit Theorem, driven by
disruptive ideas, and, more recently, disruptive technologies,
the relatively recent information technology revolution being
of particular significance in this respect. An example of such
a ‘societal reflection’ is the collapse of communism in the
1980s which is arguably an important epoch in regard to the
longevity of our civilization to date.

In the context of the discussion above, let us assume
that the longevity of an intelligent species is better served
by their development on a planet (or planets) that orbits
a binary or triple star system, the stability of such orbits
being accepted to be significantly more complex and thereby
leading to conditions that are not necessarily suitable for
the development of life. On the basis of this assumption,
observations of intelligible signals might be better served by
selecting regions of the cosmos that are known or at least
suspected to contain multiple star systems supporting (stable)
orbits of rocky planets, especially binary Red Dwarf stars.

Red Dwarfs stars are the most common type of star in
the Milky Way (∼ 75%), at least in the neighborhood of
the Sun. Further, unlike the 10 billion year lifespan of the
Sun, the lifespan of a Red Dwarf is of the order of trillions
of years, thereby providing significantly greater time for
intelligent species to develop, possibly over multiple cycles.
In fact, the nearest star to the Sun - Proxima Centauri - is a
main sequence type M5 Red Dwarf approximately 4.2 light
years distance from the Earth. It is both a triple star system
(consisting of three Red Dwarf stars) and a planetary system
consisting of one planet slightly larger than the Earth, with
a relatively stable orbit in the habitable zone.

The arguments presented above imply that the term ne
should be considered to be the average number of planets
that can potentially support life per multiple star system (that
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has planets) and leads to the following Hypothesis (which
should be considered in a complementary sense to Conjecture
VII.1):

Conjecture XIII.1. In the search for extraterrestrial intelli-
gence, concentration should focus on the chirplet demodula-
tion of (water-hole) signals directed at multiple Red Dwarf
star systems that are suspected or known to have rocky
planets with a stable orbit in a habitable zone.

This conjecture, and the reasons for stating it, can of
course be challenged, especially in the context of the stability
of planets orbiting multiple stars. Indeed, it could be argued
that intelligent life is more likely to occur on planets orbiting
relatively rare single stars because of the greater likelihood
of stable orbits being achieved. In this context, and, coupled
with the arguments given above, the value N in Equation (39)
becomes lower. The issue as to which argument may have
a greater validity depends on further experimental evidence
into the percentage of stable planetary orbits associated
with multiple star systems compared with the relative low
percentage of single stars supporting planets in the habitable
zone. Either way, it should be appreciated that 99.9...%
of all the species that have ever evolved on the Earth are
now extinct and the idea that an intelligent species such as
ourselves should defy such a statistically significant result
in an evolutionary context and geological time frame is null
and void.

Another issue concerns the multiplicity of chirp modu-
lated signals. In the chirp demodulation method discussed
in Sections X and XI, it is assumed that there is just
one chirp modulated transmission which is taken to be
embedded in the noise that is analyzed. But suppose that
technologically advanced civilizations exist throughout our
local region of the milky-way and beyond and that in each
case, these civilization establish Conjecture VII.1 (ideally
with the rigorous proof that currently eludes the author)
and consequently emit chirp modulated binary strings. If a
signal is detected which happens to be a combination of
emissions in the sense that the noise contains the sum of
chirp modulated information from different sources in the
same locality, then the demodulated output would become
distorted especially if the chirp pulse length is the same
for each source. However, this scenario assumes that there
are parallel civilizations emitting (chirp modulated) binary
information over a similar time frame (at least on the scale
of a light year) which is arguably going to be very rare.

XIV. CONCLUSIONS

In revisiting the chirp function we have shown the impor-
tance of the chirp in a range of physical problems and further,
have developed the conjecture that there is one and only one
phase-only function that has a conjugate eigenfunction upon
Fourier transformation, namely, the function exp(ir2/2). We
have considered the problem of how to chirplet modulate
a binary string (using a one-sided or two-sided chirplet)
and briefly demonstrated the numerical performance of some
exemplar MATLAB functions (as provided in the Appendix
A). These functions have been designed to test the process
using a Nyquist sampled chirplet with period T , showing that
a zero BER can be achieved subject to relatively low values
of the SNR as illustrated in Figure 10.

We have further considered a protocol for computing
T based on the factorization of a known bandwidth by
treating the integer string associated with the bandwidth
as a semi-prime, thereby illustrating a method of securing
chirplet modulated information as discussed in Section XI.
A relative entropy test has been considered in order to obtain
a statistically significant metric that differentiates between a
randomized binary string and a binary string that represents
an intelligibility associated with a range of natural languages
as studied in Section XII. In this context, Section XIII has
presented some speculative arguments associated with a pos-
sible application of chirplet modulation for communicating
through the ‘waterhole’.

A. Some Open Questions and Ideas for Further Investigation

1) An important result given in this work in compounded
in Conjecture VII.1. This is based on the result that,
from Theorem VI.1, for (complex) eigenvalue λ

Fn[exp[±iφ(r)] = λ exp[∓iφ(k)/2]

if φ(r) = exp(ir2/2). In the proof of Theorem VI.1, it
has not been proved that this results is applicable under
the statement ‘if and only if’ and hence Conjecture VI.3
remain a conjecture until proven otherwise. Thus, an
open question is whether it is possible to prove that there
can be no other phase-only conjugate eigenfunction of
the Fourier transform, other than the chirp function, cou-
pled with a study of the Hermite Polynomials discussed
in Section V for the complex case.

2) In [74], it is demonstrated that at least four different
sources of independent information can be embedded
in an audio signal by applying chirplet modulation at
four different frequency ranges. In the context of the
algorithms considered in Section X, this is equivalent
to changing the value of T in the chirplet modulation
of N different binary strings and embedding the chirp
streams in noise. It remains to be investigated as to
whether this approach is applicable, and, if so, what is
the maximum value of N that provides recovery upon
chirplet demodulation subject to an acceptable BER. If
applicable, this would provide the potential for using
chirplet modulation to communicate multiple binary
strings in parallel, increasing the information content
and throughput by a factor of N .

3) A study is required of the minimum bandwidth that can
be used for chirplet modulation subject to the noise
characteristics of the bandwidth. An open question is
therefore what bandwidths are available within current
communication infrastructures and whether there is suf-
ficient bandwidth left for the application of frequency
hopping, for example.

4) No bit-error correction schemes have been considered
in the case when the BER is non-zero and a study is
therefore required to obtain a threshold for the BER
below which bit-error correction algorithms are appli-
cable. The relationship between this characteristic and a
minimum bandwidth that can be applied is required in
order to obtain an optimum criteria for the application
of chirplet modulation in general.

5) The study given in Section X.C is based on the applica-
tion of Gaussian noise. Although this is a common noise
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type in many communication systems due to the ‘effect’
of the Central Limit Theorem, an equivalent study is
required using different noise types.

6) The chirplet modulation/demodulation schemes consid-
ered in this work are based exclusively on the applica-
tion of a linear chirplet, with an instantaneous frequency
that varies linearly with time. A study of the characteris-
tics and performance associated with the application of
different chirp types (such as the quadratic and exponen-
tial chirplet, for example) for modulation/demodulation
is therefore an area for further research.

7) The chirplet modulation method considered in Section
IX is based on coding bits using ‘up-chirplets’ which
are characterized by an increasing frequency for both
t > 0 and t < 0. Another approach is to differentiate
between a bit through application of an ‘up-chirplet’ and
a ‘down-chirplet’, where, in the latter case, the chirplet
is characterized by a (linear) decrease in frequency
with time. In this case, correlation with an up-chirplet,
for example, will recover one bit type (0 or 1) alone.
The other bit types could then be inferred indirectly.
The effect of implementing this approach on the BER
for different SNRs can easily be studied by modifying
the Chirplet Modulation and Chirplet Demodulation
functions given in Appendix A for both single- and two-
sided up/down-chirplets.

8) The relative entropy test developed in Section XII.D
has only been explored for four diverse natural
languages and a further study is required for a much
broader spectrum of modern and ancient languages to
ascertain the extent to which this test can differentiate
between random or otherwise binary strings. Moreover,
such a study requires an extension into the nature of
intelligible signals that transcends natural languages
alone.

B. Final Comments

In this extended paper, the author has attempted to in-
troduce the reader to the chirp function and some of its
applications in a way that illustrates how its characteristics
emerge from fundamental physical models. It is therefore,
with the exception of the Fourier transform, unlike any other
function which forms the kernel of an integral transforms.
There is a fundamental relationship between the Fourier
transform and the chirp function which is compounded in the
Bluestein decomposition of the Fourier transform; the basis
for Theorem VI.1. In this context, it is arguable that the chirp
transform should be considered to be even more fundamental
than the Fourier transform of a function f(r), given that
the Bluestein decomposition of a Fourier transform yields
what is essentially a chirp transform of f(r) exp(−iαr2)
(ignoring the additional complex exponential that occurs
outside the integral). Coupled with the results compounded
in Equations (22) and (23), Theorem VI.I is a principal
component of the arguments leading to Conjecture VII.1.
In this context, the paper has aimed to qualify an aspect
of communications engineering that has been respected by
engineers since the early 1950s, [1]. This has been the
governing purpose for the composition of this work that, in

its development, has yielded two other results that are of
note in terms of original contributions: (i) the prime number
factorization of the angular bandwidth used to compute
the chirplet period; (ii) application and extension of the
Kullback-Leibler Divergence to evaluate the intelligibility of
a binary string.

To the best of the authors knowledge, the application
of chirplet demodulation in the analysis of SETI signals
does not appear to have been considered and may therefore
be worth including in the portfolio of signal processing
algorithms currently being used. Thus, coupled with the
highly speculative argument given Section XIII, which is a
personal view of the author alone, the following is proposed
in regard to the search for extraterrestrial intelligence:

(i) Point our radio telescopes at binary Red Dwarf star sys-
tems and ‘listen’ to the noise received in the waterhole
bandwidth.

(ii) Demodulate the signals received to base-band and
chirplet demodulate the result using different values of
the chirp rate and chirplet period or, at least to start
with, the chirplet period alone, the latter case assuming
that chirplet modulation has been implemented for a
Nyquist sampled chirplet - as considered in the paper
(a restriction that can be relaxed).

(iii) Test the output binary streams for intelligibility using
the method discussed in XII.D, a method that is rou-
tinely used to differentiate between bit streams derived
from real noise and those that appear to be noise but
are in fact encrypted fields or else have some plaintext
or encrypted information embedded in them.

C. Final Remark

By thinking about the search for extraterrestrial intelligent
signals as a problem in cryptography, it is possible that
new ideas will emerge that are of value in the advancement
of secure communications in general as given in Section
IX, for example. Similarly, the developments taking place
in cryptology may become increasingly applicable to SETI.
In this paper, the author has failed to achieve one of the
principal goals which is to replace Conjecture VII.1 with a
Theorem VII.1. The extensive nature of this work is in some
ways a reflection of the authors frustration in not having
achieved this. Nevertheless, the author hopes that the material
will serve readers with enough information and direction to
encourage further investigation into the reoccurring physical
significance of the chirp function coupled with the apparent
uniqueness of the chirplet transform in regard to the inter-
pretation of cosmic noise.

APPENDIX A
PROTOTYPE MATLAB FUNCTIONS FOR CHIRPLET

MODULATION AND DEMODULATION

The functions given in this Appendix have not been tested
formally and are provided only to give the reader a guide to
the basic algorithms required to implement the computational
procedures discussed in Section X and to help the reader
appreciate the theoretical models presented. Where possible,
the notation used for array variables and constants etc. are
based on the mathematical notation used or are acronyms for
function names. Note that the m-code has been condensed
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spatially in order to conform to the format of this publication
while minimizing the number of pages required to present
it. The software was developed and implemented using (64-
bit) MATLAB R2017b with double precision floating point
arithmetic.

A. MATLAB Function for Chirplet Modulation
function []=CM(T,SNR,opt)
%INPUTS: (int) T - chirplet period.
%(double) SNR - Signal-to-Noise Ratio.
%opt=1 - one-sided modulation.
%opt=2 - two-sided modulation.
%Read binary string from default
%file name ’bstring.txt’.
fid=fopen(’bstring.txt’,’r’);
f=fread(fid); fclose(fid);
N=size(f,1);%Compute size of string.
%Convert binary string (composed of
%ASCII decimal integers 48 and 49)
%into an array composed of values
%-1 (equivalent to 0) and 1.
for n=1:N
temp=f(n); if temp==48, K(n)=-1;
else K(n)=1; end
end
%Compute (complex) chirplet, checking
%to see if T is odd, and, if so, setting
%its value to next largest even number.
if mod(T,2)==1 T=T+1; end
%opt=1 for single-sided modulation.
if opt==1
for n=1:T
t(n)=n-1; end
end
%opt=2 for two-sided modulation.
if opt==2
for n=1:T
t(n)=n-(T/2); end
end
%Compute Nyquist sampled chirplet array.
alpha=1/(2*T);
p=complex(cos(alpha*t.*t), ...
sin(alpha*t.*t));
%Chirp modulate the bit array.
for m=1:N

for n=1:T
c(n,m)=K(m)*p(n); end
end
%Concatenate c, returning reals
%and normalising the result.
c=real(c(:)); c=c/max(abs(c));
%Compute normally distributed random
%numbers and normalise the result.
NT=size(c,1); r=randn(1,NT)’;
r=r/max(abs(r));
%Add noise to c using specified SNR
s=SNR*c+r; %and output to file.
dlmwrite(’cm.txt’,s);

B. MATLAB Function for Chirplet Demodulation
function []=CD(T,opt)

%INPUTS:%int T - chirplet period.
%opt=1 - single-sided modulation.
%opt=2 - two-sided modulation.
%Read chirp modulated data
s=dlmread(’cm.txt’);
%Compute (complex) chirplet
%checking to see if T is an odd
%number and if so, setting value
%to the next highest even number.
if mod(T,2)==1 T=T+1; end
%opt=1 for one-sided modulation.
if opt==1
for n=1:T
t(n)=(n-1); end
end
%opt=2 for two-sided modulation.
if opt==2
for n=1:T
t(n)=n-(T/2); end
end
%Compute Nyquist sampled chirplet.
alpha=1/(2*T); %Compute chirp rate.
p=complex(cos(alpha*t.*t), ...
sin(alpha*t.*t));
%Demodulate data by correlation with
%the conjugate of the chirplet. This
%is implemented through application
%of the MATLAB convolution function
%conv by the flipping data from left
%to right and returning the central
%components of the convolution that
%is the ’same’ size as the input data
%The output is normalised and the
%real component returned.
d=conv(s,conj(fliplr(p)),’same’);
d=real(d/max(abs(d)));
%Recover bit array by checking
%polarity of array d for points
%at the centre of a chirplet
%of length T which occur at points
%(T/2)-1, 3*(T/2)-1, ...
NT=size(d,1); %Compute size of d.
step=round(NT/T);%Compute step size.
n=1; %Start array processing.
for m=1:step
M=2*m-1; temp=d((M*T/2)-1);
if temp <= 0 f(n)=0; n=n+1; end
if temp > 0 f(n)=1; n=n+1; end
end %and write result to file.
fid=fopen(’cd.txt’,’w’);
fprintf(fid,’%d’,f); fclose(fid);

C. MATLAB Function to compute Basic Statistics of the
Relative Entropy Test

function [Mean,Std,Median,Mode]=RET(M);
%INPUTS: (int) M - length of Relative
%Entropy Signal (RES).
%OUTPUTS: Mean - Mean of the RES.
%Std - Standard Deviation of the RES.
%Median - Median of the RES.
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%Mode - Mode of the RES.
%Shuffle random number generator.
rng(’shuffle’);
%Read binary string from default file.
fid1=fopen(’binary_string.txt’,’r’);
bstring=fread(fid1); fclose(fid1);
%Compute length of string
L=size(bstring,1);
%and convert binary string to an array of
%bits B with elements equal to 0 and 1.
for n=1:L
temp=bstring(n); if temp==48, B(n)=0;
else B(n)=1; end
end %Compute binary histogram
h=hist(B,2);%and evaluate
%probabilities of bits.
p(1)=h(1)/L; p(2)=h(2)/L;
%Compute relative entropy signal.
for m=1:M
%Return random bits using function rand,
RB=round(rand(1,L));%compute histogram
h=hist(RB,2);%and evaluate
%probabilties of bits.
q(2)=h(2)/L; q(1)=h(1)/L;
%Compute relative entropy.
RES(m)=-sum(p.*log2(q/p)); end
%Plot the RES in figure 1.
figure(1), plot(RES);
%Compute the 100-bin histgram of RES
h=hist(RES,100);%and plot a bar graph
%of the result in figure 2.
figure(2), bar(h);
%Compute the Mean, Standard Deviation,
%Median and Mode of the RES.
Mean=mean(RES); Std=std(RES);
Median=median(RES); Mode=mode(RES);
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