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Abstract—In this paper, linear and non-linear analysis of
Double-Diffusive convection in the presence of magnetic field
and gravity modulation with heat and concentration source in
a micropolar fluid is studied by assuming the strength of heat
and concentration source same. The expression for Rayleigh
number and correction Rayleigh number are obtained using
regular perturbation method. The effects of parameters on heat
and mass transport is investigated using non-linear analysis
by deriving eighth order Lorenz equation. It is found that
coupling parameter and Chandrasekhar number stabilizes the
system. Whereas internal Rayleigh number and Darcy number
destabilizes the system.

Index Terms—double diffusive Chandarsekhar convection,
temperature and concentration based internal heat source,
micropolar fluid, porous media, gravity modulation.

I. INTRODUCTION

MANY practical important fluid mechanics problems
involve the flow through porous medium. The storage

and movement of fluid in porous medium are controlled by
porosity and permeability of the porous medium. The flow
through porous medium has been extensively studied because
of its applications in science and engineering

(
see Nield and

Bejan [1]
)
. The important topic discussed in this paper is

the convective heat and mass transport in a porous medium
in the presence of heat and concentration source and gravity
modulation. Many authors like Sheremet et al. [2], Sivaraj
and Sheremet [3], Miroshnichenko et al. [4], Izadi et al. [5],
investigated the flow in a porous medium under different
situations.

The presence of two or more components with different
molecular diffusivity in a gravitational field developed a new
field of convection known as double diffusive convection. In
double diffusive convection two types of modes are possible:

• Diffusivity mode – when larger diffusive component is
heavier on top and

• Finger mode – when smaller diffusive component is
heavy on top.

Oceanography is the primary cause of research in double
diffusive convection. In many physical situations such as
earth’s ocean, crystal growth, geophysical system, chemistry,
metallurgy, etc., double diffusive convection arises. The good
review of double diffusive phenomenon can be found in
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Turner [6] and Huppert and Turner [7]. The development of
double diffusive phenomena in oceanography is summarized
in detail by Schmitt [8] and its engineering applications by
Chen and Johnson [9].

Nield [10] was the first to study the double diffusive
convection in porous medium using linear stability analysis
for different thermal and solutal boundaries. Later Taunton
et al. [11], Rudraiah et al. [12], Poulikakos [13], Rosenberg
and Spera [14], Kuznetsor and Nield [15], [16], Rana and
Chand [17], Bhadauria et al. [18], Akbar et al. [19], Hameed
and Harfash [20], Harfash [21], Garaud [22], Raghunatha and
Shivakumara [23] investigated double diffusive convection in
porous medium under different situations.

Double diffusive convection occurs due to the interaction
of gravity field with gradients of fluid density. Therefore
double diffusive convection may be enhanced or reduced by
changing gravity. Microgravity environment in space stations
will not remain constant, but it fluctuates with amplitude
and frequency, this fluctuating gravity is called g-jitter or
gravity modulation, which significantly influences natural
convection. Therefore, it is very important to understand
the effect of gravity modulations on the double diffusive
convection phenomena.

Gresho and Sani [24] were first to study the effect of
gravity modulation in a fluid layer. Murray et al. [25]
using Floquet theory studied the effect of vertical oscillat-
ing on solutal convection. Saunders et al. [26] investigated
the effect of gravity modulation on the double diffusive
convection. Using linear stability analysis, Siddheshwar et
al. [27] studied the effect of heat and mass transport in
a double diffusive convection with porous medium under
gravity modulation. Bhadauria et al. [28], [29], Maria and
Sangeetha [30], Purusothaman et al. [31] investigated the
effect of time-periodic body force in a horizontal layer of
fluid heated from below.

When fluid contains free suspended particles it undergoes
translation and rotation relative to the fluid. One way of tak-
ing these type of fluids is by modelling through Eringen mi-
cropolar fluid. In these type of fluids stress is non-symmetric,
hence they do not satisfy the Navier-Stokes equation and
these fluids are non-Newtonian in nature. In order to explain
the kinematics of these fluids spin and micro inertia are
added to velocity. Micropolar fluid theory have innumerable
applications in science and engineering

(
see Lukasazewicz

[32]
)

which motivted many authors Ahamadi [33], Jean
and Bhatacharya [34], Datta and Sastry [35], Siddheshwar
and Pranesh [36]–[39], Pranesh and Arun Kumar [40], [41],
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Pranesh and Riya Baby [42], Pranesh and Sameena [43] to
consider this fluid for their research.

One of the simplest way to control the onset of convection
and heat and mass transport is by applying the external
magnetic field, which is known as magneto-convection or
Chandrasekhar convection. Siddheshwar and Pranesh [36],
[37], [39] studied the effect of magnetic field in a micropolar
fluid.

The onset of double diffusive convection in a horizontal
layer of fluid can be controlled by maintaining the non-
uniform temperature gradient

(
see Siddheshwar and Pranesh

[36]
)

and non-uniform concentration gradient
(
Pranesh and

Arun [40]
)
. These non-linear temperature and concentra-

tion distribution arises when there is a presence of heat
and concentration source. Many authors have studied the
double diffusive convection in the presence of heat source
in a porous medium. Hill [44] and Anjanna and Hill [45]
investigated the double diffusive convection in the presence
of concentration dependent heat source. Although many
studies are available on double diffusive convection in a
porous medium with internal heat source, no attention is
given to study the onset of double diffusive convection in
a porous medium in the presence of both internal heat and
concentration source.

Thus, the main objective of this paper is to show how
the onset of Double-Diffusive-Chandrasekhar convection and
heat and mass transport is affected in the presence of internal
heat and concentration source in a micropolar fluid under
gravity modulation.

II. MATHEMATICAL FORMULATION

The physical configuration of the problem consists of
a material with voids which are interconnected between
two horizontal parallel plates separated by a distance ’d’.
In this problem the voids are filled with micropolar fluid.
The system involves magnetic effect based on temperature
and concentration internal heat source and is exposed to
gravity modulation. The lower plate is considered to be hotter
than upper plate and gravity acts downwards. The solute is
added from the lower plate. Cartesian coordinates are taken
with origin at the lower plate and z-axis along the vertical
direction, (see figure-1).

Fig. 1: Physical Configuration

The governing equations of the problem are:

∇.~q = 0, (1)

ρ0

[
1

φ

∂−→q
∂t

+
1

φ2
(−→q .∇)−→q

]
= −∇P − ρg0[1 + εcos(γt)]k̂+(

2ζ

φ
+ η
)
∇2−→q −

(
ζ + η

K

)
−→q + ζ∇×−→ω + µm(

−→
H.∇)

−→
H,

(2)

ρ0I

[
∂−→ω
∂t

+
1

φ
(−→q .∇)−→ω

]
=
(
λ′ + η′

)
∇(∇.−→ω ) + (η′∇2−→ω )+

ζ

φ
(∇×−→q )− 2ζ−→ω ,

(3)

∂T

∂t
+(−→q .∇)T = κ∇2T+

β

ρ0Cv
(∇×−→ω ).∇T+Qi(T−T0), (4)

∂C

∂t
+ (−→q .∇)C = κs∇2C +Qi(C − C0), (5)

∇.
−→
H = 0, (6)

∂
−→
H

∂t
+ (−→q .∇)

−→
H = (

−→
H.∇)−→q + γm∇2−→H, (7)

ρ = ρ0 [1− αt(T − T0) + αs(C − C0)] . (8)

where, −→q is the velocity, −→ω is the spin, ρ is the density,

P = p + µm
H2

2
is the hydromagnetic pressure,

−→
H is the

magnetic field, γm is the magnetic viscosity co-efficent, T
is the temperature, C is the concentration, Qi is strength
of internal heat and concentration source, β is the heat
conduction parameter, Cv is the specific heat, ε is the
amplitude, γ is the frequency, φ is the porosity, K is the
permeability, g0 is the accelaration due to gravity.
The equations (1)-(8) are solved subjected to stress free
isothermal and isoconcentration conditions given by,

W =
∂2W

∂z2
= T = C = 0 at z = 0 and z = d.

A. Solution of Motionless State

Considering that the density, pressure, temperature, mag-
netic field and solutal concentration in motionless state are
horizontally linear gradients, the parameters takes the values:

−→q b = 0; −→ω b = 0;
−→
H b = H0k̂; ρ = ρb(z);

P = Pb(z); T = Tb(z); C = Cb(z).

Substituting these in equations (1-8), we get the following
solutions of the system in motionless state:

−∇Pb − ρbg0 = 0, (9)

κ∇2Tb +Qi(Tb − T0) = 0, (10)

κs∇2Cb +Qi(Cb − C0) = 0, (11)
ρb = ρ0 [1− αt(Tb − T0) + αs(Cb − C0)] . (12)

The motionless state of the system is slightly distrubed
and in perturbed state the parameters takes the form:

−→q = −→q b +−→q
′
,−→ω = −→ω b +−→ω

′
,
−→
H =

−→
H 0k̂ +

−→
H

′
, ρ = ρb + ρ

′
,

P = Pb + P
′
, T = Tb + T

′
, C = Cb + C

′
.

(13)

Substituting equation (13) in equations (1-8), using the mo-
tionless state solution and non-dimensionalizing the resultant
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equations using the following definitions,

q∗ =
q
′

χ/d
, P ∗ =

P
′

P0
, T ∗ =

T
′

∆T
,∇∗ = ∇d,

t∗ =
t
′

d2/κ
, ω∗ =

ω
′

κ/d2
, C∗ =

C
′

∆C
,H∗ =

H
′

H0
,

(x∗, y∗, z∗) =
(x

′
, y

′
, z

′
)

d
.

and introducing the stream functions,

u =
∂Ψ

∂z
, w =

−∂Ψ

∂x
and Hx =

∂Φ

∂z
,Hz =

−∂Φ

∂x
,

we get the following dimensionaless equations after ne-
glecting asterisks :

[
1

φPr

∂

∂t
− Λ
(

1 +
N1

φΛ

)
∇2 +Da−1

]
∇2Ψ =(

−R∂T
∂x

+Rs
∂C

∂x

)(
1 + εcosωt

)
−N1∇2ωy+

Q
Pr
Pm
∇2
(
∂Φ

∂z

)
−Q Pr

Pm
J(Φ,∇2Φ) +

1

φ2Pr
J(Ψ,∇2Ψ),

(14)[
N2

Pr

∂

∂t
−N3∇2 + 2N1

]
ωy =

N1

φ
∇2Ψ +

N2

φPr
J(Ψ, ωy),

(15)[
∂

∂t
−∇2 −Ri

]
T = −g(z)

[
∂Ψ

∂x
+N5

∂ωy
∂x

]
+N5J(ωy, T )

+J(Ψ, T ),
(16)[

∂

∂t
− τ∇2 −Ri

]
C = −h(z)

∂Ψ

∂x
+ J(Ψ, C), (17)

[
∂

∂t
− Pr
Pm
∇2

]
Φ =

∂Ψ

∂z
+ J(Ψ,Φ). (18)

The non-dimensionalized parameters obtained in the above
equations are given in Table I.

B. Linear Stability Analysis

In this section, we neglect Jacobians in equations (16)-(20)
to consider only the linear terms to obtain the condition for
the onset of convection. Eliminating C, T, ωy , Φ from the
resulting equations we get:

X2∇2

{
X3

[
X1∇2

(
X4X5 −Q

Pr
Pm

∂2

∂z2

)
+X5h(z)Rs(

1 + εcos(γt)
)]

+X1X5
N1

2

φ
∇4

}
Ψ = RX1X5g(z)(

1 + εcos(γt)
)
∂2

∂x2
∇2

[
X3 +

N1N5

φ
∇2

]
Ψ.

(19)

where,

X1 =
∂

∂t
− τ∇2 −Ri,

TABLE I: Non-dimensionalized parameters

N1 =
ζ

ζ + η
(Coupling parameter)

N2 =
I

d2
(Inertia parameter)

N3 =
η

µd2
(Couple stress parameter)

N5 =
β

ρ0Cvd2
(Micropolar heat conduction parameter)

Da =
K1

d2
(Darcy number)

Pr =
ζ + η

ρ0κ
(Prandtl number)

Pm =
ζ + η

ρ0γm
(Magnetic Prandtl number)

Q =
µmH2

0d
2

κ(ζ + η)
(Chandrasekhar number)

R =
αtρ0∇Tg0d3

κ(ζ + η)
(Rayleigh number)

Rs =
αsρ0∇cg0d3

κ(ζ + η)
(Solutal Rayleigh number)

Ri =
Qid

2

κ
(Internal Rayleigh number)

Λ =

ζ
φ

+ η

ζ + η
(Modified viscosity ratio)

τ =
κs

κ
(Diffusivity ratio)

ω =
γd2

κ
(Internal Rayleigh number)

h(z) =

√
Ricos

√
τRi(1− z)

sin
√
τRi

g(z) =

√
Ricos

√
Ri(1− z)

sin
√
Ri

X2 =
∂

∂t
−∇2 −Ri,

X3 =
N2

Pr

∂

∂t
−N3∇2 + 2N1,

X4 =
1

φPr

∂

∂t
− Λ

(
1 +

N1

Λφ

)
∇2 +Da−1 and

X5 =
∂

∂t
− Pr
Pm
∇2.

The boundary conditions for solving (21) are obtained as:

Ψ =
∂2Ψ

∂x2
=
∂4Ψ

∂x4
=
∂6Ψ

∂x6
=
∂8Ψ

∂x8
=
∂10Ψ

∂x10
=
∂12Ψ

∂x12
= 0

at z = 0 and z = 1.
(20)

Following the Venezian [46] approach, we expand eigen
value and eigen function as

R = R0 + ε2R2 + .... (21)

Ψ = Ψ0 + εΨ1 + ε2Ψ2 + .... (22)

Substituting (23) and (24) in (21) , equating like powers of
ε on both sides we get:

L1Ψ0 = 0, (23)

L1Ψ1 = X5cos(γt)
∂2

∂x2
∇2Ψ0

[
R0g(z)X1

(
X3 +

N1N5

φ
∇2

)
−Rsh(z)X2X3

]
,

(24)
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L1Ψ2 = X5

{
cos(γt)

∂2

∂x2
∇2Ψ1

[
R0g(z)X1

(
X3 +

N1N5

φ
∇2

)
−Rsh(z)X2X3

]
+R2g(z)X1

(
X3 +

N1N5

φ
∇2

)
∂2

∂x2
∇2Ψ0

}
,

(25)

where,

L1 =

{
X2

[
X1

(
X3X4X5∇2 +

N2
1

φ
X5∇4−

Q
Pr
Pm

X3
∂2

∂z2
∇2

)
+Rsh(z)X3X5

∂2

∂x2

]
∇2−

R0

[
g(z)X1X5

(
X3 +

N1N5

φ
∇2

)
∂2

∂x2
∇2
]}

Ψ0.

(26)

The expression for R0, which is unmodulated Rayleigh
number is obtained by taking Ψ0 = sin(παx)sin(πz) which
satiafies the boundary conditions (20).

R0 =

(
k2 −Ri

){ (
N3k

2 + 2N1

) [ (
τk2 −Ri

)
.

(A1k2 +Qπ2 +RsH(z)α2π2)
]

+
N2

1
φ
k4 (τk2 −Ri)

}
(τk2 −Ri)α2π2G(z)

[
(N3k2 + 2N1)− N1N5

φ
k2
]
(27)

where,

A1 =

[
Λ(1 +

N1

Λφ
)k2 +Da−1

]
, H(z) =

∫ 1

0

h(z)sin2(πz)dz,

G(z) =

∫ 1

0

g(z)sin2(πz)dz and k2 = π2(α2 + 1).

Following the analysis of Siddheshwar and Pranesh [37], we
get the expression for correction Rayleigh numberR2c as:

R2c =
−π2k2α2HA2

2Y1

2
[
τk2 −Ri

]
Pr
Pm

k2
(
Y 2
1 + Y 2

2

)
.{[

N3k2 + 2N1

]
− N1N5

φ
k2
} (28)

where,

Y1 = k4
{(

N3k
2 + 2N1

) [
A2

(
(k2 −Ri)B1 − γ2B2

)]
−

γ2N2

Pr

[
A2(k2 −Ri)B2 −B1

]}
+RsH1(z)π2k2α2[(

N3k
2 + 2N1

)
B3 − γ2N2

Pr
B4

]
− N2

1

φ
k6
[

(k2 −Ri)B1−

γ2B2

]
−R0G1(z)

{
π2k2α2

[(
N3k

2 + 2N1

)
B5 − γ2N2

Pr
B6

]
+

N1N5

φ
π2k6α2B1

}
+Q

Pr
Pm

π2
[(
N3k

2 + 2N1

)
B5 − γ2N2

Pr
B6

]
,

Y2 = −γ
[
k4
{(

N3k
2 + 2N1

) [
(k2 −Ri)B2 +B1

]
+

1

φPr[
(k2 −Ri)B1 − γ2B2

]
+
N2

Pr

[
A2(k2 −Ri)B1 − γ2B2

]
− γ2

φPr

[
(k2 −Ri)B2 +B1

]}
+RsH1(z)π2k2α2[(

N3k
2 + 2N1

)
B4 +

N2

Pr
B3

]
− N2

1

φ
k6
[
(k2 −Ri)B2 +B1

]
+Q

Pr
Pm

π2
[(
N3k

2 + 2N1

)
B6 +

N2

Pr
B5

]
−R0G1(z){

π2k2α2
[(
N3k

2 + 2N1

)
B2 +

N2

Pr
B1

]
+
N1N5

φ
k2B2

}]
,

A2 =
Pr
Pm

k2
(k2 − τRi

τ

)(
R0G(z)

[
N3k

2 + 2N1

]
−N1N5

φ
k2
)

+
N1N5

φ
k2γ2 −RsH(z)

[
k2 −Ri

]
[
N3k

2 + 2N1

] Pr
Pm

k2,

B1 =
Pr
Pm

k2
(
τk2 −Ri

)
− γ2, B2 =

(
τk2 −Ri

)
+
Pr
Pm

k2,

B3 =
Pr
Pm

k2
(
k2 −Ri

)
− γ2, B4 =

(
k2 −Ri

)
+
Pr
Pm

k2,

B5 =
(
τk2 −Ri

) (
k2 −Ri

)
− γ2,

B6 =
(
τk2 −Ri

)
+
(
k2 −Ri

)
and H =

4π2 −Ri
2π2

.

C. Non-Linear Analyses

The phenomenon of non-linear analysis is required to
measure or interpret the results such as: rate of heat transport,
rate of mass transport, convection amplitudes and so on.
The heat and mass transport of the system is determined
as a function of Rayleigh number, commonly called as
Nusselt and Sherwood number denoted by Nu and Sh
respectively. A strong convection can be measured using heat
and mass flux, where the physical mechanism of fluid can be
understood in a better way with less amount of mathematical
analysis.

The finite amplitude free convection is carried out by the
truncated Fourier series representation by taking

Ψ(x, y, t) = A(t)sin(παx)sin(πz), (29)

ωy(x, y, t) = B(t)sin(παx)sin(πz), (30)

T (x, y, t) = E(t)cos(παx)sin(πz) + F (t)sin(2πz),
(31)

C(x, y, t) = J(t)cos(παx)sin(πz) +M(t)sin(2πz),
(32)

Φ(x, z, t) = P (t)sin(παx)cos(πz) + S(t)sin(2παx).
(33)

where A, B, E, F, J, M, P and S describes the amplitudes
which are time dependent and are obtained from the system
dynamics.

Substituting equations (29)-(33) into equations (14)-(18)
and equating the co-efficients of like terms we get the
following eighth order differential equations that describe the
non-linear non-autonomous Lorenz system:

Ȧ(t) =
−R[1+ ∈ cos(γt)]παφPr

k2
E(t)−Da−1(φPr)A(t)+

Rs[1+ ∈ cos(γt)]παφPr
k2

J(t)− Λ
(

1 +
N1

Λφ

)
πPrk

2A(t)−

N1φPrB(t)− QP 2
r φ

Pm
P (t)− QP 2

r φπ
2α(k2 − 4π2)

Pmk2
P (t)S(t),

(34)

Ḃ(t) = −N3Prk
2

N2
B(t)− N1Prk

2

N2φ
A(t)− 2N1Pr

N2
B(t),

(35)
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Ė(t) = −A(t)F (t)π2α−G(z)
[
A(t)πα+N5B(t)πα

]
−

N5B(t)F (t)π2α− E(t)k2 +RiE(t),
(36)

Ḟ (t) =
π2α

2
A(t)E(t) +

N5π
2α

2
B(t)E(t)− 4π2F (t) +RiF (t),

(37)
J̇(t) = −π2αA(t)M(t)−H(z)παA(t)− τk2J(t)+RiJ(t),

(38)

Ṁ(t) =
π2α

2
A(t)J(t)−4τπ2M(t)+RiM(t),

(39)

Ṗ (t) =
−Prk2

Pm
P (t) + πA(t) + π2αA(t)S(t),

(40)

Ṡ(t) =
−π2α

2
A(t)P (t)− Pr

Pm
4π2α2S(t),

(41)
where, the over dot denotes the time derivative.

The complete problem contains many properties given
by generalized Lorenz model (36)-(43), which is uniformly
bounded in time. Here we observe that the equation pos-
sess an important symmetry which are invariant under the
transformation:

(A,B,E, F, J,M,P, S)→
(−A,−B,−E,−F,−J,−M,−P,−S),

(42)

The equations (34)-(41) must be dissipative in comparison
with the original equations (1)-(8), thus having a contraction
in the phase space volume, at a uniform rate given by
equation below:

∂Ȧ(t)

∂A(t)
+
∂Ḃ(t)

∂B(t)
+
∂Ė(t)

∂E(t)
+
∂Ḟ (t)

∂F (t)
+
∂J̇(t)

∂J(t)
+
∂Ṁ(t)

∂M(t)
+

∂Ṗ (t)

∂P (t)
+
∂Ṡ(t)

∂S(t)
= −

[
Λ(1 +

N1

Λφ
)φPrk

2 +
N3Prk

2

N2
+

2N1Pr
N2

+ k2 + (4π2 −Ri) + (τk2 −Ri) + (4τπ2 −Ri)+

Pr
Pm

k2 +
Pr
Pm

4π2α2

]
.

(43)

1) Heat and Mass transport: Transport of heat and mass
is an important study in fluid convection, because the increase
in Rayleigh number at the onset of convection is easily
found by both heat and mass transport in the system. The
Nusselt and Sherwood numbers gives the total heat and mass
transport respectively in the system given by:

Nu =

[
k
2π

∫ 2π
k

0
(1− z + T )zdx

]
z=0[

k
2π

∫ 2π
k

0
(1− z)zdx

]
z=0

. (44)

Substituting equation (44) into (43) and solving it we get
Nu which represents Nusselt number:

Nu = [1− 2πF (t)]. (45)

Sh =

[
k
2π

∫ 2π
k

0
(1− z + C)zdx

]
z=0[

k
2π

∫ 2π
k

0
(1− z)zdx

]
z=0

. (46)

Substituting equation (46) into (43) and solving it we get
Sh which represents Sherwood number:

Sh = [1− 2πM(t)]. (47)

TABLE II: Values of Rc,Nu and Sh for different values of
N1, Ri and Q in case of modulation and without modulation

Without Modulation
ε = 0

With Modulation
ε = 0.1

N1 Ri Q Rc Nu Sh Rc Nu Sh
0 -2 0 3359.23 1.83638 1.69595 3359.30 1.8385 1.69549
0.1 3525.61 1.83755 1.69439 3525.68 1.8393 1.69439
0.5 4264.99 1.84127 1.68694 4264.10 1.84244 1.68769
0 -2 10 3934.6 1.8462 1.70388 3934.77 1.84723 1.70385
0.1 4117.69 1.84749 1.70266 4117.81 1.84812 1.70286
0.5 4931.34 1.85119 1.69687 4931.52 1.85103 1.69733
0 -1 0 3095.75 1.85793 1.83237 3095.80 1.85605 1.83293
0.1 3248.82 1.85884 1.83157 3248.88 1.85709 1.83226
0.5 3928.83 1.86194 1.82273 3928.92 1.86073 1.82431
0 -1 10 3637.11 1.86817 1.84087 3637.20 1.86324 1.84274
0.1 3805.84 1.86918 1.84047 3805.94 1.86463 1.84194
0.5 4555.44 1.87242 1.83413 4555.59 1.86908 1.83659
0 0 0 2839.24 1.88052 2.04092 2839.28 1.87965 2.04069
0.1 2979.37 1.88124 2.03769 2979.42 1.88042 2.03793
0.5 3601.64 1.88379 2.02718 3601.71 1.88323 2.02784
0 0 10 3347.14 1.89077 2.04968 3347.22 1.88744 2.05044
0.1 3501.9 1.89161 2.04751 3501.98 1.88849 2.04974
0.5 4189.16 1.89447 2.0409 4189.28 1.89206 2.04236
0 1 0 2589.5 1.90431 2.38328 2589.53 1.90421 2.38183
0.1 2717.03 1.90488 2.38438 2717.03 1.90478 2.38294
0.5 3283.16 1.90698 2.37749 3283.22 1.90695 2.37769
0 1 10 3064.45 1.91447 2.39484 3064.51 1.91264 2.39645
0.1 3205.6 1.91517 2.39442 3205.67 1.91345 2.39363
0.5 3832.2 1.91765 2.39221 3832.29 1.91634 2.39409
0 2 0 2346.23 1.92928 3.09949 2346.25 1.93132 3.09844
0.1 2461.51 1.92979 3.10407 2461.54 1.93175 3.09788
0.5 2973.03 1.93156 3.07167 2973.07 1.93326 3.06403
0 2 10 2788.69 1.93963 3.10424 2788.74 1.94201 3.10377
0.1 2916.6 1.94023 3.11812 2916.65 1.94252 3.11315
0.5 3484.13 1.9423 3.08776 3484.20 1.94432 3.08195

III. RESULTS AND DISCUSSION

In a thermal convection, the presence of internal heat
and concentration source has an important application in the
field of engineering. In this paper the effect of temperature
and concentration dependent internal energy source, along
with gravity modulation and magnetic field in a micropolar
fluid over a porous medium is investigated using both lin-
ear and non-linear analysis. The expression for the critical
Rayleigh and correction Rayleigh number as a function
of N1, N2, N3, N5, Ri, Rs, τ, Q, Pr, Pm, Da, Λ, and φ are
obtained using regular perturbation method for linear analysis
case.

The results obtained in linear analysis are depicted
in figures 2 to 14. Before discussing the results
obtained, we make some comments on parameters
N1, N2, N3, N5, Ri, Rs, τ, Q, Pr, Pm, Da,Λ and φ. The pa-
rameters N1, N2, N3 and N5 arises due to suspended parti-
cles. Because of Clausius-Duhem inequality

(
see Siddhesh-

war and Pranesh [37]
)

these parameters are non-negative,
have couple stress which is more significant for small values
of N3, it indicates that 0 < N1 ≤ 1 , N3 is a small positive
real number and N2 and N5 are positive real number. Low
amplitude gravity modulation is considered for the study.
From figures we found that R2c remains positive for all

IAENG International Journal of Applied Mathematics, 50:2, IJAM_50_2_14

Volume 50, Issue 2: June 2020

 
______________________________________________________________________________________ 



frequency of gravity modulation. For small values of γ, R2c

increases with increase in γ, for moderate values of γ, R2c

decreases with increase in γ and for large values of γ, R2c

becomes 0. Thus small values of the frequency stabilizes the
system, moderate values of frequency destabilizes the system
and for larger values of frequency the effect of modulation
disappears. Let γm = γ0 be the frequency at which R2c

changes from stabilizing to destabilizing. The parameters Λ,
Da, φ arises due to porous and the parameters Q and Pm
arises due to presence of magnetic field. The range of values
of these parameters to analyse the problem is taken as a
standard value. The parameter Ri arises due to heat and
concentration source. It should be noted that the strength
of both the source is taken to be same and moderate values
are considered. Ri > 0 and Ri < 0 respectively represent the
source and sink. The moderate values of Rs are considered
and the value of τ is taken as < 1, because heat diffusivity is
more compare to solute diffusivity. Because of the presence
of suspended particles due to which viscosity increases, the
Pr value is taken greater than that of the fluid without
suspensions.

Figures (2)–(5) are the plots of R2c versus N1, N2, N3 and
N5 respectively. From figure (2) we obsereve that increases
in N1, increase the concentration of the suspended particles,
these particle consumes more energy, thus delaying the onset
of convection. Therefore N1 stabilizes the system. From
figure (3) we see that increases in N2, increases the inertia
of the fluid. N2 increases for small values of γ, making the
system stable. Whereas N2 makes the system unstable for
moderate values of γ. It should be noted here N2 affects
only R2c, but not R0 (see eqn[29]). From figure (4), we
find that when N3 increases, R2c decreases, this is because
when N3 increases the coupling between vorticity and spin
increases and hence makes the system unstable. In figure
(5), we notice that increase in N5, heat supplied to the fluid
increases and because of presence of microelements, heat
transport is decreased thus delaying the onset of convection.
Thus increase in N5 stabilizes the system.

Figure (6) depicts the effects of internal source/sink pa-
rameter Ri on R2c . In this paper the values of Ri are taken
in such a way that the buoyancy force will not dominate heat
source or sink. We observe that the impact of increases in
Ri positively is to supress the R2c. Thus the internal source
energy destabilizes the system, whereas increase in heat sink
(Ri < 0) stabilizes the system.

Figure (7) and (8) shows the effects of solute Rayleigh
number Rs and diffusivity ratio τ on R2c. Increase in Rs
increases R2c indicating that the effect of Rs is to inhibit
the onset of double diffusive convection. Positive value of Rs
are considered indicating the concentration are added from
below. Increase in τ , advances the convection, indicating the
effect of τ is to destabilize the system. Values of τ are taken
< 1 as discussed earlier.

Figures (9), (10) and (11) respectively shows the effects of
Chandrasekhar number Q, prandtl number Pr and magnetic
prandtl numberPm on R2c. We observe that increase in Q
delays the onset of convection thus stabilizing the system.
This is because increase in Q increases the Lorentz force
in horizontal direction, which will not allow the fluid more
freely in the vertical direction, hence Q stabilizes the system.
For small values of γ, Pr destabilizes and for moderate

values Pr stabilizes the system and Pm in general stabilizes
the system

(
see Siddheshwar and Pranesh [36]

)
.

Figures (12), (13) and (14) respectively shows the effects
of modified viscosity ratio Λ, Darcy number Da and porosity
parameter φ. We observe that the effect of Λ is to stabilize
the system whereas increase in Da and φ destabilizes the
system.

The heat and mass transport across the porous medium
plays an important role in double diffusive convection. This
is also one of the objective of the paper. Heat and mass
transport across the fluid layer are quantified by Nusselt
number (Nu) and Sherwood number (Sh) respectively. The
effect of different parameters on Nu and Sh with respect to
time ‘t’ is considered by solving the non-autonomous differ-
ential equations with appropriate initial condition and results
obtained are depicted in figures (15)-(27). From the figures
it is observed that Nusselt number and Sherwood number
starts with Nu=Sh=1, which signifies the conduction state.
As time progress Nu and Sh increases which show the
convective regime has taken place. It is also observed that
Nu and Sh remains oscillating for small time. However for
large time Nu levels off to a steady-state value, whereas Sh
remains oscillating because of sudden chaos that has taken
place. Also from the figures we found that mass transport is
more compare to heat transport.

From figures (15)–(27) following observations are made:
Increase in N1, N2 and N5 decreases Nu, indicating these
parameters stabilizes the system (as noted earlier) and hence
reduces the heat transport. However, increase in these pa-
rameters increases the mass transport (i.e. increases Sh)
due to presence of suspended particles. Increase in N3

destabilizes the system thereby increases the heat transport
and decreases the mass transport. An increase in Ri increases
Nu indicating the heat transport is more for higher values
of Ri and reconfirming it destabilizes the thermal instability.
It is important to note that heat and concentration source,
increases the heat transport whereas heat and concentration
sink, decreases the mass transport. It is interesting to note
that, the increase in Rs decreases both Nu and Sh indicating
the reduced heat and mass transport, this is due to the fact
that inhibiting effect of solute gradient is reduced because
of increase in thermal Rayleigh number. Increase in τ we
observe that increases heat and mass transport. Increase in
Q decreases Nu and Sh which indicates, the strong magnetic
field leads to decrease in heat and mass transport. Increase
in Pr and Pm reduces the heat transport and increases the
mass transport. The porous parameters Da and φ decreases
the heat transport and increases the mass transport, whereas
Λ has reverse effect of that of Da and φ.
Table II, documents the effects of N1, Ri and Q on crit-
ical Rayleigh numberRc, average Nusselt numberNu and
average Shearwood numberSh. The following are the results
observed from the table:

1. Rc|N1 6=0 > Rc|N1=0, 8. Nu|Q6=0 > Nu|Q=0,

2. Rc|Ri>0 < Rc|Ri=0, 9. Sh|N1 6=0 < Sh|N1=0,

3. Rc|Ri<0 > Rc|Ri=0, 10. Sh|Ri>0 > Sh|Ri=0,

4. Rc|Q6=0 > Rc|Q=0, 11. Sh|Ri<0 < Sh|Ri=0,

5. Nu|N1 6=0 > Nu|N1=0, 12. Sh|Q6=0 > Sh|Q=0,

6. Nu|Ri>0 > Nu|Ri=0, 13.Nu|ε=0 > Nu|ε6=0,

7. Nu|Ri<0 < Nu|Ri=0, 14. Sh|ε=0 < Sh|ε6=0.
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Fig. 2: Plot of Frequency of Modulation γ versus Critical Rayleigh Number R2c for different values of Coupling Parameter
N1.

Fig. 3: Plot of Frequency of Modulation γ versus Critical Rayleigh Number R2c for different values of Inertia Parameter
N2.

Fig. 4: Plot of Frequency of Modulation γ versus Critical Rayleigh Number R2c for different values of Couple Stress
Parameter N3.
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Fig. 5: Plot of Frequency of Modulation γ versus Critical Rayleigh Number R2c for different values of Micropolar Heat
Counduction Parameter N5.

Fig. 6: Plot of Frequency of Modulation γ versus Critical Rayleigh Number R2c for different values of Internal Rayleigh
Number Ri.

Fig. 7: Plot of Frequency of Modulation γ versus Critical Rayleigh Number R2c for different values of Solutal Rayleigh
Number Rs.
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Fig. 8: Plot of Frequency of Modulation γ versus Critical Rayleigh Number R2c for different values of Diffusivity Ratio τ .

Fig. 9: Plot of Frequency of Modulation γ versus Critical Rayleigh Number R2c for different values of Chandrasekhar
Number Q.

Fig. 10: Plot of Frequency of Modulation γ versus Critical Rayleigh Number R2c for different values of Prandtl Number
Pr.
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Fig. 11: Plot of Frequency of Modulation γ versus Critical Rayleigh Number R2c for different values of Magnetic Prandtl
Number Pm.

Fig. 12: Plot of Frequency of Modulation γ versus Critical Rayleigh Number R2c for different values of Darcy Number Da.

Fig. 13: Plot of Frequency of Modulation γ versus Critical Rayleigh Number R2c for different values of Modified Viscosity
Ratio Λ.
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Fig. 14: Plot of Frequency of Modulation γ versus Critical Rayleigh Number R2c for different values of Porosity φ.

Fig. 15: Plot of Nusselt Number Nu and Sherwood Number Sh versus Time t is given by (a) and (b) respectively for
different values of Coupling Parameter N1.

Fig. 16: Plot of Nusselt Number Nu and Sherwood Number Sh versus Time t is given by (a) and (b) respectively for
different values of Inertia Parameter N2.

IAENG International Journal of Applied Mathematics, 50:2, IJAM_50_2_14

Volume 50, Issue 2: June 2020

 
______________________________________________________________________________________ 



Fig. 17: Plot of Nusselt Number Nu and Sherwood Number Sh versus Time t is given by (a) and (b) respectively for
different values of Couple Stress Parameter N3.

Fig. 18: Plot of Nusselt Number Nu and Sherwood Number Sh versus Time t is given by (a) and (b) respectively for
different values of Micropolar Heat Counduction Parameter N5.

Fig. 19: Plot of Nusselt Number Nu and Sherwood Number Sh versus Time t is given by (a) and (b) respectively for
different values of Internal Rayleigh Number Ri.
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Fig. 20: Plot of Nusselt Number Nu and Sherwood Number Sh versus Time t is given by (a) and (b) respectively for
different values of Solutal Rayleigh Number Rs.

Fig. 21: Plot of Nusselt Number Nu and Sherwood Number Sh versus Time t is given by (a) and (b) respectively for
different values of Diffusivity Ratio τ .

Fig. 22: Plot of Nusselt Number Nu and Sherwood Number Sh versus Time t is given by (a) and (b) respectively for
different values of Chandrasekhar Number Q.
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Fig. 23: Plot of Nusselt Number Nu and Sherwood Number Sh versus Time t is given by (a) and (b) respectively for
different values of Prandtl Number Pr.

Fig. 24: Plot of Nusselt Number Nu and Sherwood Number Sh versus Time t is given by (a) and (b) respectively for
different values of Magnetic Prandtl Number Pm.

Fig. 25: Plot of Nusselt Number Nu and Sherwood Number Sh versus Time t is given by (a) and (b) respectively for
different values of Darcy Number Da.
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Fig. 26: Plot of Nusselt Number Nu and Sherwood Number Sh versus Time t is given by (a) and (b) respectively for
different values of Modified Viscosity Ratio Λ.

Fig. 27: Plot of Nusselt Number Nu and Sherwood Number Sh versus Time t is given by (a) and (b) respectively for
different values of Porosity φ.
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IV. CONCLUSION

The effect of heat and concentration energy source/sink
on double diffusive convection in a micropolar fluid, in
the presence of magnetic field and gravity modulation is
studied with porous medium. The expression for Rayleigh
number and correction Rayleigh number is obtained by
regular perturbation method. The Nusselt and Sherwood
number are obtained using the solution of Lorenz equations.
The following conclusions are drawn from the study:

• The parameters N1, N5, Rs, Q, Pr, Pm and Λ stabilizes
the system hence delaying the onset of convection.

• The parameters N2, N3, Ri, τ,Da and φ destabilizes the
system by advancing the onset of convection.

• The parametrs N1, N2, N5, Pr, Pm and τ decreases the
heat transpot, whereas as an reverse effect on mass
transport.

• The parameter Ri increases both heat and mass trans-
port.

• Both heat and mass transport is decreased by the pa-
rameters Rs, Q,Da and φ.

• The parameters N3 and Λ increases the heat transport,
whereas decreases the mass transport.

• Mass transport is more compare to heat transport.
• The average Nusselt number Nu with modulation is less

compared to without modulation.
• The average Shearwood number Sh with modulation is

more compared to without modulation.
• The average heat transport increases, whereas average

mass transport decreases when micron sized suspended
particles are added into clear fluid.
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