
 

 

Abstract— We consider a Casson’s model describing the 

blood flow through vessels with a rough microstructure. Precise 

analytical formulas and some apriori estimates on relation 

between velocity, viscosity and stress of flow were derived for 

stationary blood flow. We compare different flow states 

depending on relation between vessels’ diameters and 

wavelength of vessel walls. 

 
Index Terms— Casson’s flow, hemodynamics, non-

Newtonian fluid,  small parameter, variable viscosity. 

 

I. INTRODUCTION 

EMODYNAMIC research is an important branch of 

science. It plays a crucial role for biological and 

medical applications. The knowledge of blood flow 

behavior in thin capillaries could help to overcome different 

diseases caused by anomaly of vessels’ geometry. Scientists 

are interested in effects and common influence of blood flow 

characteristics such as velocity, pressure gradient, stress of 

capillaries’ walls, viscosity etc. [1-5,8,9]. It turned out that 

blood flow in thin capillaries couldn’t be described only by 

Newtonian fluid model. The flow in the area near the 

capillaries’ walls has other rheological properties. This is 

caused by a high concentration of red blood cells near the 

walls.  A possible mathematical model to describe such flow 

is Casson’s system of differential equations. The research 

carried out in [1-5,8,9] deals with either vessels of 

cylindrical geometry or with simply stenosed arteria.  

The novelty of present work is to take into account all 

possible micro-geometrical properties of vessel walls. In this 

paper we derive analytical formulas and estimates for blood 

velocity in the presence of boundary roughness. We 

investigate effects of rough vessels to flow characteristics. 

Three possible types of roughness are analyzed. For each 

case we study the flow behavior when  both vessel diameter 

and roughness wavelength are small. A specific property of 

the considered problem is a varying viscosity which depends 

on the vessel radius. Some general methods of estimation in 

hydrodynamic problems with variable viscosity were 

developed by authors in [6,7].  
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In this paper we use numerical computations to validate 

theoretical results. It was discovered that high boundary 

oscillations cause velocity variations for vessels with 

sufficiently small diameters. An increase in viscosity and the 

yield stress implies a decrease of velocity. It was also noted 

that the smaller  non-Newtonian region near the walls of the 

capillaries, the lower the blood flow velocity. 

The paper is organized as follows: in section II we state the 

problem mathematically; section III deals with estimation of 

the crucial parameters of the blood flow; some analytical 

formulas for the described model are derived in section IV; 

finally, different types of vessel roughness and its effect on 

blood flow are compared in section V. 

II. STATEMENT OF THE PROBLEM 

Consider two-phase blood flow of variable viscosity in a 

thin cylindrical vessel {( , ),  0 ,  0 ( )}z r z L r R z       having 

a rough boundary ( )R z . The flow is a Newtonian one close 

to the center of vessel, where the concentration of 

erythrocytes is high. We denote this domain by  

{( , ),  0 ,  0 r },Newt
pz r z L R      where (τ )p yR  is the 

boundary between Newtonian and non-Newtonian flows. 

There is a limit stress τ ,y  upon reaching which the blood 

begins to behave like a non-Newtonian fluid. It determines 

the border between two phases of flow: τ( (τ ), ) τ .p y yR z   

According to a research in hemodynamics, blood is plasma 

with rare sprinkles of red blood cells away from the vessel 

center. Thus, there exists a layer (τ ) ( )p yR r R z   with non-

Newtonian rheological properties. To simplify our analysis 

we consider the stationary symmetric flow along the vessel’s 

walls caused by constant pressure gradient. We assume that 

only one component of the velocity ( , , )r zu u u u  is non-

zero: φ 0,ru u  0.zu   For simplicity of notations, we 

denote further  ( )zu r  by ( ).u r The considered flow can be 

modelled by dimensionless Casson’s equations:    

 
Fig. 1. Geometry of vessel 
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and by momentum equation which in our case reads as  
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Here u  is an unknown velocity of flow,  p  is a pressure, 

τ is a stress tensor, τ y is the yield stress, μ( )r  is 

Newtonian viscosity.  Boundary conditions are naturally set 

as follows: the stress τ is finite at 0,r  0u  at 

( ),r R z and 0 ,  Lp p are given pressure on vertical vessel’s 

walls. 

 

                III. APRIORI ESTIMATES    
Below we derive some apriori estimates which help  

to understand the flow behavior.  
Lemma (Friedrich’s inequality) 

The velocity satisfies the following estimate 
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Proof 

Suppose ( )pR r R z  . The boundary condition 

( ( ), ) 0u R z z  and Newton-Leibnitz formula give the 

formula for velocity via its gradient:  
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Squaring (3.2) and applying  Hölder’s inequality, one gets: 
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Integrating the derived inequality over [ , ( )],pR R z  we have 
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Consider now [0, ].pr R The following representation holds: 
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Squaring both sides of this  identity , applying the estimate 
2 2 2( ) 2 2a b a b    and Hölder inequality, we get   
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  Integrating once more over  [0, ],pR  we conclude: 
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Combining both  (3.3) and  (3.4), we get the desired estimate 

for the velocity in the whole flow domain: 

 
2( ) ( ) ( )

2 2 2

0 0

 ,

p

p p

RR z R z R z

R R

u
u dr u dr u dr C dr

r

 
    

 
     (3.5) 

where C is given in (3.1). 

  

Corollary. The Friedrich’s inequality implies directly the 

following estimate of the velocity depending on viscosity 

and stress: 

 

 
2

2

2
1

(0, ( ))
( , ( ))

2

( ) μ ( ) τ τ   

max{2 ( ( ) ), ( ( ) ) }.

p

yL R z
L R R z

p p p

u r C r

C R R z R R z R

 

  

(3.6) 

It is clear from  (3.6) that velocity of flow reduces when the 

viscosity increases. In addition, the velocity takes smaller 

values, when the stress tends to value τ y
. However, an 

increase of the non-Newtonian  layer [ , ( )]pR R z theoretically 

could imply a velocity growth.  Summing up, the parameter 

τ y
 which is crucial for the size of non-Newtonian boundary 

layer, effects on the solution as follows: the smaller values of 

τ y
 the greater the velocity. We confirm numerically this 

observation in Section V on Fig. 3. 

IV. ANALYTICAL FORMULAS 

Now we derive exact analytical formulas for flow 

characteristics. The boundary condition ( ( ), ) 0u R z z   and 

Newton-Leibnitz formula implies  
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Hence, we have 
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Applying (2.1), one gets  for R ( ) :p r R z   
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 Formulas (4.2) and (4.3) give the expression for velocity:  
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Denote by 
s

p
p

z


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 the known pressure gradient and   

integrate the momentum equation:  
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       Substituting (2.1) in (4.3) we derive the dependence of 

velocity on pressure gradient for R ( )p r R z  : 
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The condition (2.2) implies that u  is independent on 

variable  in layer 0 .pr r R   Moreover, a compatibility 

conditions for velocity must be valid on the 

boundary
pr R . Hence, denoting 0.5 ,sp p  we have 
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   Other important flow characteristics are the volumetric 

flow rate Q  and  the flow resistance    given by  

 

( )

0

2π

R z

Q rudr    and    1
0λ ( ).LQ p p    

From (4.5) and definitions of Q  and    it is evident that an 

increase in viscosity leads to a decrease in the volumetric 

flow rate and, conversely, increases the resistance to blood.  

V. ROUGHNESS EFFECT 

Let us introduce a small parameter 0 ε 1 characterizing 

vessel radius. Here parameter ν(ε) is the wavelength of 

walls which tends to zero as ε 0. Denote by k  the limit 

ratio of the vessel radius and the wavelength: 
0

ε
lim .

ν(ε)
k


  

Different types of roughness are possible depending on 

values of k (see Fig. 2): the case 0  k    corresponds to  

«middle oscillations» which means that the roughness period 

as small as vessel radius; the value 0k   corresponds to 

«small oscillations» which means that the vessel  radius is 

much smaller than the wavelength;  if k   then one deals 

with a «high frequency regime» which corresponds to the 

case when the roughness period  is much smaller than the 

vessel radius. Taking into account the derived analytical 

formula for blood velocity, one can observe the dependence 

on roughness in limits of the integration: 
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Applying Lagrange formula, we can estimate the velocity 

depending on   and ( ) :    

  ' 1 ' 1 2
0 ( ) ε maxμ ( )( τ ) .yu h z h r rp        (5.1) 

This estimate and boundedness of functions 
'
0h , 

'h imply the 

asymptotics  

               1 2maxμ ( )( τ ) as  0.yu k r rp      (5.2) 

Figures 3 a)-d) demonstrate the velocity behavior for all 

possible types of the roughness. To handle the numerical 

computations we chose the following particular cases of 

wavelength:  ν(ε) ε, ν(ε) ,
2

ν(ε) ε which corresponds 

to 0 ,  0,  k k k       respectively. The boundary 

( )r R z  is modeled by 
0
( ) 3h z   and 

   ε

1 1
 ν (ε) sin ν (ε) .h z z

 
 The viscosity is assumed to be the 

polynomial function: α
= 4.1.μ( ) , r r      

Analyzing the roughness effect, one can observe that the 

velocity behavior is similar to the behavior of roughness. 

Small boundary oscillations give a slow change of velocity. 

The growth of velocity is more rapid in case of middle 

oscillations. Finally, high oscillations produce more 

significant effect: the graphs for velocity are rapidly 

oscillating functions as well. Comparing data on Fig. 3, one 

can see that an increase of yield stress τ y
 gives a decrease 

of blood velocity what is agreed with estimate  (3.6).  

We study also the velocity behavior depending on viscosity 

for all roughness types. It was observed that high viscosity 

corresponds the low values of velocity, see plots on Fig. 3 

c), d). This effect is explained by (3.6). Thinner vessels have 

higher velocity for the same given pressure. Plots 3a), 3b) 

and 3c), 3d) compare the velocity behavior for different limit 

stresses and constant values of ε : the higher stress τ y
 the 

lower the velocity, what is proved by (3.6). Observe also 

that roughness leads to oscillations in velocity only for 

sufficiently small values of  (compare Fig. 3a) plotted for 

0.1  and 2c) where 0.01  ). Similar conclusions are 

valid for dependence of the volumetric flow rate on 

roughness, since Q  is strictly proportional to the velocity. 

However, the behavior of blood resistance is the opposite 

one. The more oscillations of roughness, the greater the 

variation of resistance. Clearly, values of resistance are 

inversely proportional to volumetric flow rate. Small 

roughness regime gives a significant reduce in the resistance. 

It achieves the same minimum for both middle and high 

oscillation regimes. The dependence of blood resistance on 

yield stress is the direct one: smaller values of τ y
give 

smaller amplitude for λ . Thus, the thinner non-Newtonian 

layer the greater blood resistance. As a conclusion we can 

state that blood flow does not feel small oscillations of 

boundary. However, the roughness effects on velocity and 

resistance variation speed. High roughness of vessel walls 

effects significantly in very thin capillaries: the flow passes 

in the area below oscillating peaks.    

     The formula (5.2) can be used to estimate the varying 

viscosity as soon as the velocity and stress of flow are 

measured:
1 2( τ )yrpku   . The viscosity of the flow 

is proportional to k   and inversely proportional to the 

velocity.  The varying viscosity, which evidently depends on 

 as well, is a reason why the velocity was higher for 

k   rather than for 0.k   

       
 

                
                

                   Fig. 2. Different roughness regimes                
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                                  c)                                                                           d) 

 Fig. 3.  Comparison of velocity profiles for different types of roughness at several values of yield stress and viscosity    
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