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Abstract—In this paper, we investigate the oscillatory be-
havior of a class of impulsive fractional partial differential
equations with Neumann and Dirichlet boundary conditions
by using the definitions and the related properties of the mod-
ified Riemann-Liouville fractional order and the differential
inequality method. Some sufficient conditions for the oscillation
of the solutions of the impulsive fractional differential equation
are obtained. As an application, we included an example to
illustrate the main result.

Index Terms—impulsive; fractional partial differential equa-
tions; modified Riemann-Liouville fractional partial derivative;
oscillation.

I. INTRODUCTION

FRACTIONAL differential equations have gained in-
creasing attention due to their various applications in

science and engineering such as rheology, dynamical pro-
cesses in self-similar and porous structures, heat conduction,
control theory, electroanalytical chemistry, chemical physics,
and economics, etc. The growing interest is caused both by
the intensive development of the theory of fractional calculus
itself and by the applications.

The oscillation theory as a part of the qualitative theory of
differential equations has been developed rapidly in the last
decades, and there has been plenty of works on the oscillatory
behavior of integer order partial differential equations [1−3].
Some new developments in the oscillatory behavior of solu-
tions of fractional differential equations with damping terms
have been reported by authors [4− 9]. In [5], P. Prakash has
studied the oscillatory behavior of solutions of the nonlinear
fractional partial differential equation with damping and
forced term subject to Robin boundary condition by using the
differential inequality method as well as the integral average
method.

Recently, the oscillatory behavior of various classes of
fractional differential equations has been investigated by
many authors [10−15]. In [15], A. Raheem established some
sufficient conditions for oscillation of solutions of a class of
impulsive partial fractional differential equations with forcing
term subject to Robin and Dirichlet boundary conditions
by using differential inequality method. For more related
references, please refer to [19− 21].

The main purpose of this paper is to give several os-
cillation theorems for the fractional impulsive differential
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equation:

Dα
+,t

(
r(t)Dα

+,tu(x, t)
)

+ p(t)Dα
+,tu(x, t)

= a(t)h(u)∆u(x, t)

+

j∑
i=1

ai(t)hi (u (x, t− τi)) ∆u (x, t− τi)

−m(x, t, u(x, t))− q(x, t)F (u(x, t)), t 6= tk

Dα
+,tu

(
x, t+k

)
= σ

(
x, tk, D

α
+,tu (x, tk)

)
,

k = 1, 2, 3, · · · , (x, t) ∈ Ω×R+ ≡ E

u
(
x, t+k

)
= δ (x, tk, u (x, tk)) ,

k = 1, 2, 3, · · · , (x, t) ∈ Ω×R+ ≡ E

(1)

with two kinds of boundary conditions

∂u(x, t)

∂N
= g(x, t, u(x, t)), (x, t) ∈ ∂Ω×R+, t 6= tk (2)

and
u(x, t) = 0, (x, t) ∈ ∂Ω×R+, t 6= tk (3)

where 0 < α < 1, ∆ is the Laplacian in Rn, Ω is a bounded
domain in Rn with a smooth boundary ∂Ω and Ω = Ω∪∂Ω,
N is the unit out normal vector to ∂Ω, g(x, t, u(x, t)) ∈
C(∂Ω × R+ × R;R+). And 0 < t1 < · · · < ti < · · · , and
lim
i→∞

ti = +∞.

Throughout this paper, we assume that the following
conditions hold:

(H1) r(t) ∈ Cα (R+;R+), p(t), a(t) ∈ C (R+;R+),
ai(t) ∈ C (R+;R+) ; h(u), hi(u) ∈ C(R;R) and
τi ≥ 0 are constants, i ∈ Ij = {1, 2 · · · , j}; u 6= 0,
g(x, t, u(x, t)) is a piecewise continuous function, such
that ug(x, t, u(x, t))h(u) < 0, ug(x, t, u(x, t))hi(u) <
0, uh′(u) ≥ 0, uh′i(u) ≥ 0.

(H2) q(x, t) ∈ C
(
E;R+

)
, q(t) = min

x∈Ω
q(x, t); F (u) ∈

C(R;R), for x 6= 0, there exist positive constant c, such that
F (x)

x
≥ c > 0.

(H3) m ∈ C(E ×R;R), and

m(x, t, η) =

{
≥ 0 η ∈ (0,+∞),
≤ 0 η ∈ (−∞, 0);

(H4) σ
(
x, tk, D

α
+,tu (x, tk)

)
, δ (x, tk, u (x, tk)) : E ×

R+ × R → R, they are both piecewise continuous with
discontinuities of first kind only at t = tk, and left continuous
at t = tk, k = 1, 2, 3, . . ., and there exist positive constants
αk, αk, βk, βk, such that ξ 6= 0, ζ 6= 0,

αk ≤
σ (x, tk, ξ)

ξ
≤ αk,

β
k
≤ δ (x, tk, ζ)

ζ
≤ βk,
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where βk ≤ αk.

II. PRELIMINARIES

Definition 2.1([16]) The Riemann-Liouville fractional
integral of order α > 0 of a function f : R+ → R on
the half-axis R+ is given by

(Iα0+f)(t) =
1

Γ(α)

∫ t

0

(t− v)α−1f(v)dv (4)

provided that the right side is pointwise defined on R+,
where Γ is the gamma function.

Definition 2.2([17]) The modified Riemann-Liouville
fractional partial derivative of order α > 0 is defined as


Dα
t f(t) =

1

Γ(1− α)

d

dt

∫ t

0

(t− ξ)−α(f(ξ)− f(0))dξ,

if 0 < α < 1,

Dα
t f(t) = (fn(t))

α−n
, if 1 ≤ n ≤ α < n+ 1.

(5)
Definition 2.3 The solution u(x, t) of problems (1),

(2)((3)) is called nonoscillatory in the domain E, if it is
either eventually positive or eventually negative. Otherwise,
it is called oscillatory.

The following is a list of some calculation formulas related
to modified Riemann-Liouville derivative

Dα
t t
r =

Γ(1 + α)

Γ(1 + r − α)
tr−α,

Dα
t (f(t)h(t)) = h(t)Dα

t f(t) + f(t)Dα
t h(t),

Dα
t f [h(t)] = f ′hD

α
t h(t) = Dα

hf [h(t)](h′(t))α.

For convenience, we denote:

R(t) = Iα+

(
p(t)

r(t)

)
, ξ =

tα

Γ(1 + α)
, r̃(ξ) = r(t),

p̃(ξ) = p(t), q̃(ξ) = q(t), ψ̃(ξ) = ψ(t), R̃(ξ) = R(t).

III. MAIN RESULTS

Theorem 3.1 If impulsive fractional differential inequality

Dα
+,t

[
r(t)Dα

+,tU(t)
]

+ p(t)Dα
+,tU(t) ≤ −cq(t)U(t),

αk ≤
Dα

+,tU
(
t+k
)

Dα
+,tU (tk)

≤ αk, k = 1, 2, 3, · · ·,

β
k
≤
U
(
t+k
)

U (tk)
≤ βk, k = 1, 2, 3, · · ·,

(6)
has no eventually positive solutions and the impulsive frac-
tional differential inequality

Dα
+,t

[
r(t)Dα

+,tU(t)
]

+ p(t)Dα
+,tU(t) ≥ −cq(t)U(t),

αk ≤
Dα

+,tU
(
t+k
)

Dα
+,tU (tk)

≤ αk, k = 1, 2, 3, · · ·,

β
k
≤
U
(
t+k
)

U (tk)
≤ βk, k = 1, 2, 3, · · ·,

(7)
has no eventually negative solutions, then every nontrivial
solution u(x, t) of the problem (1) and (2) is oscillatory in
E.

Proof Suppose that u(x, t) is a nonoscillatory solution of
the problem (1) and (2). Without loss of generality, we may
assume that u(x, t) is an eventually positive solution of the
problem (1) and (2) in the domain E, then there exists a
t0 ≥ 0, such that u(x, t) > 0 and u(x, t − τi) > 0 for
(x, t) ∈ Ω× [t0,+∞).

Case 1: t 6= tk. Integrating the first equation of Eq.(1) with
respect to x over the domain Ω, we have

Dα
+,t

∫
Ω

(r(t)Dα
+,tu(x, t))dx+ p(t)

∫
Ω

Dα
+,tu(x, t)dx

= a(t)

∫
Ω

h(u)∆u(x, t)dx

+

j∑
i=1

ai(t)

∫
Ω

hi(u(x, t− τi))∆u(x, t− τi)dx

−
∫

Ω

m(x, t, u(x, t))dx−
∫

Ω

q(x, t)F (u(x, t))dx. (8)

By using Green’s formula and Eq.(2), we obtain∫
Ω

h(u)∆u(x, t)dx

=

∫
∂Ω

h(u)
∂u(x, t)

∂N
dS −

∫
Ω

h′(u)|grad u|2dx

= −
∫
∂Ω

h(u)g(x, t, u(x, t))dS −
∫

Ω

h′(u)|grad u|2dx

≤ 0, t ≥ t0, (9)

∫
Ω

hi(u(x, t− τi))∆u(x, t− τi)dx

= −
∫
∂Ω

g(x, t− τi, u(x, t− τi))hi(u(x, t− τi))dS

−
∫

Ω

h′i(u(x, t− τi))|grad u(x, t− τi)|2dx

≤ 0, t ≥ t0, (10)

where dS is an area element of dΩ.
It is obvious that∫

Ω

m(x, t, u(x, t))dx ≥ 0, t ≥ t0, (11)∫
Ω

q(x, t)F (u(x, t))dx ≥
∫

Ω

cq(t)u(x, t)dx

≥ cq(t)U(t), t ≥ t0. (12)

From (8)-(12), we obtain

Dα
+,t

[
r(t)Dα

+,tU(t)
]
+p(t)Dα

+,tU(t) ≤ −cq(t)U(t), t ≥ t0,
(13)

where

U(t) =

∫
Ω

u(x, t)dx.

Case 2: t = tk. From the second and third equations of
Eq.(1), together with the assumption (H4) can deduce that

αk ≤
Dα

+,tu
(
x, t+k

)
Dα

+,tu (x, tk)
=
σ
(
x, tk, D

α
+,tu (x, tk)

)
Dα

+,tu (x, tk)
≤ αk,

k = 1, 2, 3, · · · .

β
k
≤
u
(
x, t+k

)
u (x, tk)

=
δ (x, tk, u (x, tk))

u (x, tk)
≤ βk, k = 1, 2, 3, · · · .
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then integrating the two inequalities above with respect to x
over the domain Ω, we derive

αk ≤
Dα

+,tU
(
t+k
)

Dα
+,tU (tk)

=

∫
Ω
Dα

+,tu
(
x, t+k

)
dx∫

Ω
Dα

+,tu
(
x, t+k

)
dx
≤ αk,

k = 1, 2, 3, · · · .
(14)

β
k
≤
U
(
t+k
)

U (tk)
=

∫
Ω
u
(
x, t+k

)
dx∫

Ω
u (x, tk) dx

≤ βk, (15)

k = 1, 2, 3, · · · .

Thus (13)-(15) imply that the function U(t) =
∫

Ω
u(x, t)dx

is an eventually positive solution of the fractional impulsive
differential inequality (6) which contradicts the conditions of
theorem.

Secondly, if u(x, t) is an eventually negative solution of
the problem (1) and (2) in the domain E, then using above
procedure, we can easily show that U(t) =

∫
Ω
u(x, t)dx is

an eventually negative solution of the fractional impulsive
differential inequality (7) which again contradicts the condi-
tions of theorem. This completes the proof.

Lemma 3.2([15]) The smallest eigenvalue λ0 of the
Dirichlet problem{

∆w(x) + λw(x) = 0, in Ω

w(x) = 0, on ∂Ω
(16)

is positive and the corresponding eigenfunction φ(x) is
positive in Ω.

Theorem 3.3 If impulsive fractional differential inequality

Dα
+,t

[
r(t)Dα

+,tV (t)
]

+ p(t)Dα
+,tV (t) ≤ −cq(t)V (t)

αk ≤
Dα

+,tV
(
t+k
)

Dα
+,tV (tk)

≤ αk, k = 1, 2, 3, · · ·

β
k
≤
V
(
t+k
)

V (tk)
≤ βk, k = 1, 2, 3, · · ·

(17)
has no eventually positive solutions and the impulsive frac-
tional differential inequality

Dα
+,t

[
r(t)Dα

+,tV (t)
]

+ p(t)Dα
+,tV (t) ≥ −cq(t)V (t)

αk ≤
Dα

+,tV
(
t+k
)

Dα
+,tV (tk)

≤ αk, k = 1, 2, 3, · · ·

β
k
≤
V
(
t+k
)

V (tk)
≤ βk, k = 1, 2, 3, · · ·

(18)
has no eventually negative solutions, then every nontrivial
solution u(x, t) of the problem (1), (3) is oscillatory in E.
Proof To obtain a proof by contradiction, let u(x, t) be
a nonoscillatory solution of the problem (1) and (3). Then,
u(x, t) is either eventually positive or eventually negative in
E. If u(x, t) is an eventually positive solution of the problem
(1) and (3) in the domain E, then there exists t1 ≥ 0, such
that u(x, t) > 0 and u(x, t − τi) > 0 for (x, t) ∈ Ω ×
[t1,+∞).

Case 1: t 6= tk. Multiplying the first equation of Eq.(1) by
φ(x) and integrating with respect to x over the domain Ω,

we have

Dα
+,t

∫
Ω

(
r(t)Dα

+,tu(x, t)
)
φ(x)dx

+ p(t)

∫
Ω

Dα
+,tu(x, t)φ(x)dx

= a(t)

∫
Ω

h(u)∆u(x, t)φ(x)dx

+

j∑
i=1

ai(t)

∫
Ω

hi (u (x, t− τi)) ∆u (x, t− τi)φ(x)dx

−
∫

Ω

m(x, t, u(x, t))φ(x)dx−
∫

Ω

q(x, t)F (u(x, t))φ(x)dx

(19)
By using Green’s formula and lemma 3.2, we obtain∫

Ω

∆u(x, t)φ(x)dx =

∫
Ω

u(x, t)∆φ(x)dx

= − λ0

∫
Ω

u(x, t)φ(x)dx

≤ 0, t ≥ t1,

(20)

∫
Ω

∆u(x, t− τi)φ(x)dx

=− λ0

∫
Ω

u(x, t− τi)φ(x)dx ≤ 0, t ≥ t1, (21)

and ∫
Ω

m(x, t, u(x, t))φ(x)dx ≥ 0, t ≥ t1, (22)

∫
Ω

q(x, t)F (u(x, t))φ(x)dx ≥
∫

Ω

cq(t)u(x, t)φ(x)dx

≥ cq(t)V (t), t ≥ t1. (23)

From (19)-(23), we get

Dα
+,t

[
r(t)Dα

+,tV (t)
]
+p(t)Dα

+,tV (t) ≤ −cq(t)V (t), t ≥ t1,
(24)

where
V (t) =

∫
Ω

u(x, t)φ(x)dx.

Case 2: t = tk. From the second and third equations of
Eq.(1), together with the assumption (H4) can deduce that

αk ≤
Dα

+,tu
(
x, t+k

)
Dα

+,tu (x, tk)
=
σ
(
x, tk, D

α
+,tu (x, tk)

)
Dα

+,tu (x, tk)
≤ ᾱk,

k = 1, 2, 3, · · · .

β
k
≤
u
(
x, t+k

)
u (x, tk)

=
δ (x, tk, u (x, tk))

u (x, tk)
≤ β̄k, k = 1, 2, 3, · · · .

then multiplying the above two inequalities by φ(x) respec-
tively and integrating with respect to x over the domain Ω,
we derive

αk ≤
Dα

+,tV
(
t+k
)

Dα
+,tV (tk)

=

∫
Ω
Dα

+,tu
(
x, t+k

)
φ(x)dx∫

Ω
Dα

+,tu (x, tk)φ(x)dx
≤ αk,

k = 1, 2, 3, · · · .
(25)

β
k
≤
V
(
t+k
)

V (tk)
=

∫
Ω
u
(
x, t+k

)
φ(x)dx∫

Ω
u (x, tk)φ(x)dx

≤ βk,

k = 1, 2, 3, · · · .
(26)
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Thus (24)-(26) imply that the function V (t) =∫
Ω
u(x, t)φ(x)dx is an eventually positive solution of

the fractional impulsive differential inequality (17) which
contradicts the conditions of the theorem.

Secondly, if u(x, t) is an eventually negative solution of
the problem (1) and (3) in the domain E, then using above
procedure, we can easily get a contradiction to the conditions
of theorem. This completes the proof.

Using above results, next we shall establish some more
oscillation criteria for the impulsive fractional differential
equations.

For this, we need the following lemma.

Lemma 3.4([15]) Let

G(t) =

∫ t

0

(t− v)−αf(v)dv, α ∈ (0, 1), t > 0.

Then

G′(t) = Γ(1− α)(Dα
+f)(t), α ∈ (0, 1), t > 0.

Lemma 3.5([18]) Assume that

w′(t) ≤ h(t), t 6= tk, t ≥ t0,

w
(
t+k
)
≤ (1 + dk)w (tk) , k = 1, 2, 3, · · · ,

where 0 < t1 < · · · < tk < · · · and lim
k→∞

tk = +∞;

w ∈ PC1[R+, R], h ∈ C[R+, R] and dk > 0 are constants.
Then

w(t) ≤ w (t0)
∏

t0<tk<t

(1 + dk) +

∫ t

t0

∏
s<tk<t

(1 + dk)h(s)ds,

t ≥ t0.
Lemma 3.6 If 0 < α < 1, and then(

Dα
+I

α
0+f

)
(x) = f(x)

Proof By the definition 2.1 and 2.2, we get(
Dα

+I
α
0+f

)
(x)

=
1

Γ(1− α)

d

dx

∫ x

0

dt

(x− t)α
×[ 1

Γ(α)

∫ t

0

f(s)ds

(t− s)1−α − I
α
0+f(0)

]
=

1

Γ(α)Γ(1− α)

d

dx

∫ x

0

dt

(x− t)α

∫ t

0

f(s)

(t− s)1−α ds

=
1

Γ(α)Γ(1− α)

d

dx

∫ x

0

f(s)ds

∫ x

s

(x− t)−α(t− s)α−1dt.

Letting t = s+ µ(x− s), using the definition of the Beta
function∫ x

s

(x− t)−α(t− s)α−1dt =

∫ 1

0

µα−1(1− µ)−αdµ

=B(α, 1− α),(
Dα

+I
α
0+f

)
(x) =

B(α, 1− α)

Γ(α)Γ(1− α)

d

dx

∫ x

0

f(s)ds = f(x).

This completes the proof.

Theorem 3.7 Suppose that for some t∗ ≥ 0,∫ ∞
t∗

1

r(s)eR(s)
ds =∞ (27)

and

lim
ξ→∞

∫ ξ

t∗

∏
t∗<ξk<s

β
k

αk
ψ̃(s)ds = +∞ (28)

where ψ̃(s) = ceR̃(s)q̃(s). Then every nontrival solution of
problem (1)-(2) is oscillatory in the domain E.
Proof To prove the theorem, it is sufficient to prove that the
impulsive fractional differential inequality (1) and (2) admit
no eventually positive solutions and no eventually negative
solutions, respectively.

Again, we argue by contradiction. If the impulsive frac-
tional differential inequality (6) has an eventually positive
solution U(t), then there exists t∗ ≥ 0 satisfying U(t) >
0, U(t− τi) > 0, G(t) > 0 for t ≥ t∗, such that

Dα
+

[
eR(t)r(t)Dα

+U(t)
]

= eR(t)Dα
+

[
r(t)Dα

+U(t)
]

+ r(t)Dα
+U(t)Dα

+e
R(t)

= eR(t)Dα
+

[
r(t)Dα

+U(t)
]

+ r(t)Dα
+U(t)eR(t)Dα

+I
α
+

(
p(t)

r(t)

)
= eR(t)Dα

+

[
r(t)Dα

+U(t)
]

+ eR(t)p(t)Dα
+U(t)

= eR(t)
[
Dα

+[r(t)Dα
+U(t)] + p(t)Dα

+U(t)
]

< −ceR(t)q(t)U(t)

< 0. (29)

Thus eR(t)r(t)Dα
+U(t) is strictly decreasing for t ≥ t∗ and

Dα
+U(t) is eventually of constant sign. We claim Dα

+U(t) >
0 on t ∈ [t∗,∞). Otherwise, assume that there exists a
sufficiently large T ∈ [t∗,∞) such that Dα

+U(T ) < 0. Then
it is obvious that

eR(t)r(t)Dα
+U(t) ≤ eR(T )r(T )Dα

+U(T ) = c1 < 0,

where c1 is a constant for t ∈ [T,∞).
Lemma 3.4 yields that

G′(t)

Γ(1− α)
= Dα

+U(t) ≤ c1
eR(t)r(t)

, (30)

Integrating the above inequality from T to t enables us to
get ∫ t

T

G′(s)

Γ(1− α)
ds ≤

∫ t

T

c1
eR(s)r(s)

ds, (31)

G(t) ≤ G(T ) + Γ(1− α)c1

∫ t

T

1

eR(s)r(s)
ds. (32)

As t→∞, limt→∞G(t) ≤ −∞, which contradicts the fact
that G(t) > 0. Hence Dα

+U(t) > 0 for t > T .
Let

w(t) = eR(t) r(t)D
α
+U(t)

U(t)
.

Then we have w(t) > 0, and it follows from (6) that

Dα
+w(t)

= eR(t)Dα
+[
r(t)Dα

+U(t)

U(t)
] +

r(t)Dα
+U(t)

U(t)
Dα

+e
R(t)

= eR(t)D
α
+[r(t)Dα

+U(t)]

U(t)
−
eR(t)r(t)Dα

+U(t)Dα
+U(t)

U2(t)

+
p(t)

r(t)
w(t)
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= eR(t)
−p(t)Dα

+,tU(t)− cq(t)U(t)

U(t)
− w2(t)

eR(t)r(t)

+
p(t)

r(t)
w(t)

= −ceR(t)q(t)− p(t)

r(t)
w(t)− w2(t)

eR(t)r(t)
+
p(t)

r(t)
w(t)

≤ −ceR(t)q(t). (33)

i.e.,

Dα
+w(t) ≤ −ψ(t), (34)

where ψ(t) = ceR(t)q(t).
From (H1) and inequality (6), it is easy to see that

w
(
t+k
)
≤ ᾱk
βk
w (tk) , k = 1, 2, 3, · · · (35)

Let ξ =
tα

Γ(1 + α)
, w̃(ξ) = w(t), ψ̃(ξ) = ψ(t), we derive

Dα
+w(t) = Dα

+w̃(ξ) = w̃′(ξ)Dα
+(ξ) = w̃′(ξ), (36)

Therefore, we have

w̃′(ξ) ≤ −ψ̃(ξ). (37)

From (35)-(37), we get
w̃′(ξ) ≤ −ψ̃(ξ), ξ 6= ξk, ξ ≥ t∗

w̃
(
ξ+
k

)
≤ αk
β
k

w̃ (ξk) , k = 1, 2, 3, · · ·
(38)

Using Lemma 3.5 and (28), we obtain

w̃(ξ)

≤ w̃(t∗)
∏

t∗<ξk<ξ

αk
β
k

−
∫ ξ

t∗

∏
s<ξk<ξ

αk
β
k

ψ̃(s)ds

=
∏

t∗<ξk<ξ

αk
β
k

w̃(t∗)−
∫ ξ

t∗

∏
t∗<ξk<s

β
k

αk
ψ̃(s)ds


< 0, (39)

which contradicts the fact that w̃(ξ) > 0.
Secondly, suppose that U(t) is an eventually negative

solution of the fractional differential inequality (7) and there
exists G(t) < 0, t ∈ [t∗,∞). Then by using above process
it can be easily shown that Dα

+U(t) < 0 for t > t∗.

Let w(t) = −eR(t)
r(t)Dα

+U(t)

U(t)
, thus w < 0. And from

inequality (7), we get Dα
+w(t) ≥ ceR(t)q(t) = ψ(t) and

αk
β
k

w (tk) ≤ w
(
t+k
)
≤ αk

βk
w (tk) , k = 1, 2, 3, · · · .

that is
w̃′(ξ) ≥ ψ̃(ξ), ξ 6= ξk, ξ ≥ t∗

αk
β
k

w̃ (ξk) ≤ w̃
(
ξ+
k

)
≤ αk

βk
w̃ (ξk) , k = 1, 2, 3, · · ·

(40)
If w̃(ξ) = −ṽ(ξ)

ṽ′(ξ) ≤ −ψ̃(ξ), ξ 6= ξk, ξ ≥ t∗

ṽ
(
ξ+
k

)
≤ αk

β
k

ṽ (ξk) , k = 1, 2, 3, · · ·
(41)

Using lemma 3.5

ṽ(ξ) ≤ ṽ(t∗)
∏

t∗<ξk<ξ

αk
β
k

−
∫ ξ

t∗

∏
s<ξk<ξ

αk
β
k

ψ̃(s)ds, (42)

Therefore,

w̃(ξ)

≥ w̃(t∗)
∏

t∗<ξk<ξ

αk
β
k

+

∫ ξ

t∗

∏
s<ξk<ξ

αk
β
k

ψ̃(s)ds

=
∏

t∗<ξk<ξ

αk
β
k

w̃(t∗) +

∫ ξ

t∗

∏
t∗<ξk<s

β
k

αk
ψ̃(s)ds

 (43)

> 0,

which contradicts the fact that w̃(ξ) < 0. The proof is
complete.

Theorem 3.8 If all the conditions of Theorem 3.7 hold.
Then every solution of problem (1) and (3) oscillates in E.
Proof Suppose that V (t) is a nonoscillatory solution of
(17). Without loss of generality, the proof that (17) is
oscillatory is similar to that of Theorems 3.7, therefore, we
omit it.

IV. APPLICATION
Example 4.1 Consider the fractional differential equation

D
1
2
+,t

[
e
−t− 2

3
√
π
t
3
2
D

1
2
+,tu(x, t)

]
+ 1

2 te
−t− 2

3
√
π
t
3
2
D

1
2
+,tu(x, t)

= etu2∆u(x, t) + t
2
3 ∆u(x, t− π

3 )

− u3(x, t)

1 + t2 + x2
− (x2 + t2)u(x, t), t 6= tk

D
1
2
+,tu(x, t+k ) = 3D

1
2
+,tu(x, tk),

k = 1, 2, 3, · · · , (x, t) ∈ (0, π)×R+ ≡ E

u(x, t+k ) = u(x, tk),

k = 1, 2, 3, · · · , (x, t) ∈ (0, π)×R+ ≡ E
(44)

with the boundary condition

u(0, t) = u(π, t) = 0, t > 0 (45)

Note here that

r(t) = e
−t− 2

3
√
π
t
3
2
, p(t) = 1

2 te
−t− 2

3
√
π
t
3
2
,

a(t) = et, a1(t) = t
2
3 , m(x, t, u) = u3(x,t)

1+t2+x2 ,

h(u) = u2, h1(u) = 1,

q(x, t) = x2 + t2, q(t) = min
x∈Ω

(x2 + t2) = t2,

σ
(
x, tk, D

1
2
+,tu (x, tk)

)
= 3D

1
2
+,tu(x, tk),

δ (x, tk, u(x, tk)) = u(x, tk),

F (u) = u,
F (u)

u
≥ c = 1.

And take Ω = (0, π), j = 1, β
k

= 1, αk = 3.
We can easily check the conditions of Theorem 3.8, as

follows

R(t) = I
1
2
0+

(
p(t)

r(t)

)
=

1

Γ( 1
2 )

∫ t

0

(t− v)
1
2−1 · v

2
dv
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=
1

Γ( 1
2 )

∫ t

0

(−v)d(t− v)−
1
2

= 2
3
√
π
t
3
2 ,

∫ ∞
t∗

1

r(s)eR(s)
ds =

∫ ∞
t∗

(
e
−t− 2

3
√
π
t
3
2
e

2
3
√
π
t
3
2

)−1

ds

=

∫ ∞
t∗

esds = +∞,

Therefore

lim
ξ→∞

∫ ξ

t∗
eR̃(s)q̃(s)ds

= lim
ξ→∞

∫ ξ

t∗
e

2
3
√
π
s
3
2
s2ds

= lim
ξ→∞

[
√
πs

3
2 e

2
3
√
π
s
3
2 |ξt∗ −

∫ ξ

t∗
e

2
3
√
π
s
3
2√

πds
3
2

]

= lim
ξ→∞

[
√
πs

3
2 e

2
3
√
π
s
3
2 |ξt∗ −

∫ ξ

t∗

3
√
π

2
e

2
3
√
π
s
3
2
s

1
2 ds

]

= lim
ξ→∞

[
√
πs

3
2 e

2
3
√
π
s
3
2 |ξt∗ −

3π

2

∫ ξ

t∗
de

2
3
√
π
s
3
2

]

= lim
ξ→∞

[√
πξ

3
2 e

2
3
√
π
ξ

3
2 − 3π

2
e

2
3
√
π
ξ

3
2

−
√
π(t∗)

3
2 e

2
3
√
π

(t∗)
3
2 − 3π

2
e

2
3
√
π

(t∗)
3
2

]
= +∞,

lim
ξ→∞

∫ ξ

t∗

∏
t∗<ξk<s

β
k

αk
ψ̃(s)ds = +∞.

Therefore, every solution of the problem (44) and (45)
oscillates.
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