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Abstract—A discrete May type cooperative model incorpo-
rating Michaelis-Menten type harvesting takes the form

x(k + 1) = x(k) exp
{

r1 − b1x(k)−
a1x(k)

y(k) + k1

−

Eq

m1E +m2x(k)

}

,

y(k + 1) = y(k) exp
{

r2 − b2y(k)−
a2y(k)

x(k) + k2

}

is proposed and studied in this paper. Sufficient conditions
which ensure the permanence, extinction of the first species and
the existence of a unique globally attractive interior equilibrium
of the system are obtained, respectively. Numeric simulations
are carried out to show the feasibility of the main results.

Index Terms—Global attractivity; Extinction; Cooperation;
Equilibrium; Permanence.

I. I NTRODUCTION

T HE aim of this paper is to investigate the dynamic be-
haviors of the following discrete May type cooperative

model incorporating Michaelis-Menten type harvesting

x(k + 1) = x(k) exp
{

r1 − b1x(k) −
a1x(k)

y(k) + k1

−
Eq

m1E +m2x(k)

}

,

y(k + 1) = y(k) exp
{

r2 − b2y(k)−
a2y(k)

x(k) + k2

}

,

(1.1)
wherer1, b1, a1, k1, E, q,m1,m2, r2, b2, a2, k2 are all posi-
tive constants.

In [1], May proposed the following two species coopera-
tive system

ẋ = x
(

r1 − b1x−
a1x

y + k1

)

,

ẏ = y
(

r2 − b2y −
a2y

x+ k2

)

.
(1.2)

He showed that system (1.2) admits a unique positive e-
quilibrium which is globally attractive. Since then, many
scholars([3]-[40]) done works on this direction. For example,
Roberts and Joharjee[2] argued that the beneficial effects
of the indirect, interspecies interactions not being realised
immediately, and should introduced the delay to system (1.2).
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They investigated the local stability property of the positive
equilibrium of the following delayed system.

ẋ = x
(

r1 − b1x−
a1x

y(t− τ) + k1

)

,

ẏ = y
(

r2 − b2y −
a2y

x(t− τ) + k2

)

.

Chen, Xie and Chen[10] proposed a stage structured May
type cooperative system, they showed that the cooperation
between the species is not the essential factor to ensure
the permanence of the system, while the death rate of the
mature species and the birth rate of the immature species are
two of the most important factors lead to the permanence
or extinction of the system. Other topics such as the the
influence of feedback controls to the cooperative system
([6], [11]-[17]), the stability property of the equilibria of
cooperative model ([3]-[6], [8]-[10],[18]), the existence of
periodic solution or almost periodic solution ([7], [24]) and
the persistent property of the cooperative system ([13]-[21])
are also well studied.

In [3], Wei and Li incorporating harvesting to system (1.2),
this leads to the following model

ẋ = x
(

r1 − b1x−
a1x

y + k1

)

− Eqx,

ẏ = y
(

r2 − b2y −
a2y

x+ k2

)

.
(1.3)

The authors of [3] investigated the persistent and stability
property of the system (1.3). Recently, Xie, Chen and Xue[4]
revisited the dynamic behaviors of the system (1.3). Their
study indicates that the condition which ensure the existence
of a unique positive equilibrium is enough to ensure the
globally attractive of the positive equilibrium.

Chen, Wu and Xie[5] argued the discrete time models gov-
erned by difference equations are more appropriate than the
continuous ones when the populations have nonoverlapping
generations, corresponding to system (1.3), they proposed the
following discrete cooperative model incorporating harvest-
ing:

x(k + 1) = x(k) exp
{

r1 − Eq − b1x(k) −
a1x(k)

y(k) + k1

}

,

y(k + 1) = y(k) exp
{

r2 − b2y(k)−
a2y(k)

x(k) + k2

}

,

(1.4)
wherex(k), y(k) are the population density of the speciesx

andy at k-generation. They did not investigate the extinction
property of the system (1.4). Concerned with the stability
property of the system (1.4), they obtained the following
result.
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Theorem A. Assume that
(H1) ri, bi, ai, E, q, i = 1, 2 are all positive constants,
r1 > Eq,

and

(H2) 0 < r1 − qE ≤ 1, r2 ≤ 1, (i = 1, 2)

hold, then system (1.4) admits a unique positive equilibrium
E(x∗, y∗), which is globally attractive.

It brings to our attention that in system (1.3) and (1.4),
the authors only considered the linear harvesting. Suck
kind of harvesting embodies several unrealistic features and
limitations. For example, in system (1.3), the authors took
h(E, x) = qEx as the fishing term, it easy to see that
h tends to infinity as the effortE tends to infinity if the
populationx is finite and fixed, or as the populationx tends
to infinity if the effort E is finite and fixed. To overcome
this drawback, recently, many scholars ([32], [33], [34], [35])
argued that the nonlinear harvesting, or named as Michaelis-
Menten type harvesting is more suitable. If we adopt the
Michaelis-Menten type harvesting to system (1.2), we will
establish the following model

ẋ = x
(

r1 − b1x−
a1x

y + k1

)

−
Eqx

m1E +m2x
,

ẏ = y
(

r2 − b2y −
a2y

x+ k2

)

,

(1.5)

wherex andy denote the densities of two populations at time
t. The parametersr1, r2, a1, a2, b1, b2, k1, k2, E, q,m1,m2

are all positive constants. Based on system (1.5), we could
establish the discrete May type cooperative system with
Michaelis-Menten type harvesting, i.e., system (1.1). To the
best of the authors knowledge, this is the first time that
the discrete population model with Michaelis-Menten type
harvesting is proposed and studied.

As far as system (1.1) is concerned, the extinction, per-
manence and the global attractivity are the most important
topics that need to be investigated.

The rest of the paper is arranged as follows. We will
introduce some useful Lemmas in the next section, and
then investigate the persistent property of the system (1.1)
in Section 3. We will investigate the extinction property
in Section 4, and investigate the stability property of the
positive equilibrium in Section 5. Some numeric simulations
which show the feasibility of the main results are presented
in Section 6. We end this paper by a briefly discussion.

II. L EMMAS

We first establish a Lemma, which ensure the existence of
the positive equilibrium of the system (1.1).

Lemma 2.1.Assume that

b1k2 > r1 >
q

m1

(2.1)

holds, then system (1.1) admits a unique positive equilibrium.

Proof. The positive equilibrium of system (1.1) satisfies the
equations

r1 − b1x−
a1x

y + k1
−

Eq

m1E +m2x
= 0,

r2 − b2y −
a2y

x+ k2
= 0.

(2.2)

From the second equation, we have

y =
r2 (x+ k2)

b2 k2 + b2 x+ a2
. (2.3)

Substituting (2.3) into the first equation of system (2.2) and
simplifying, we finally obtain

A0x
3 +A1x

2 +A2x+A3 = 0, (2.4)

where

A0 = b1b2k1m2 + a1b2m2 + b1m2r2 > 0,

A1 = Eb1 b2 k1 m1 + Ea1 b2 m1 + Eb1 m1 r2

+a1 b2 k2 m2 + a2 b1 k1 m2 + a1 a2 m2

+m2 (b2 k1 + r2) (b1 k2 − r1) ,

A2 = Ea1 b2 k2 m1 + Ea2 b1 k1 m1

−b2 k1 k2 m2 r1 + Ea1 a2 m1 + Eb2 k1 q

−Em1 r1 r2 − a2 k1 m2 r1 − k2 m2 r1 r2

+Eb1 b2 k1 k2 m1 − Eb2 k1 m1 r1

+Eb1 k2 m1 r2 + Eqr2,

A3 = −E (m1 r1 − q) (b2 k1 k2 + a2 k1 + r2 k2) .

Under the assumption of Lemma 2.1,A1 > 0 andA3 < 0,
hence, (2.4) admits a unique positive solutionx∗, Conse-
quently, system (1.1) admits a unique positive equilibrium
E(x∗, y∗), where

y∗ =
r2 (x∗ + k2)

b2 k2 + b2 x∗ + a2
. (2.5)

This ends the proof of Lemma 2.1.

Lemma 2.2([19])Let f(u) = u exp(α−βu), whereα andβ
are positive constants, thenf(u) is nondecreasing foru ∈
(0, 1

β
].

Lemma 2.3([19]) Assume that sequence
{

u(k)
}

satisfies

u(k + 1) = u(k) exp(α− βu(k)), k = 1, 2.....

whereα and β are positive constants andu(0) > 0. Then
(i) If α < 2, then lim

k→+∞

u(k) = α
β
.

(ii) If α ≤ 1, thenu(k) ≤ 1

β
, k = 2, 3.....

Lemma 2.4([36]) Suppose that functionsf, g : Z+ ×
[0,∞) → [0,∞) satisfy f(k, x) ≤ g(k, x)(f(k, x) ≥
g(k, x)) for k ∈ Z+ and x ∈ [0,∞) and g(k, x) is
nondecreasing with respect tox. If

{

x(k)
}

and
{

u(k)
}

are the nonnegative solutions of the following difference
equations:

x(k + 1) = f(k, x(k)), u(k + 1) = g(k, u(k)).

respectively, andx(0) ≤ u(0)(x(0) ≥ u(0)), then

x(k) ≤ u(k)(x(k) ≥ u(k)) for all
k ≥ 0.

Lemma 2.5. ([15]) Assume that{x(k)} satisfiesx(k) > 0
and

x(k + 1) ≤ x(k) exp
{

a(k)− b(k)x(k)
}
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for k ∈ N , wherea(k) and b(k) are nonnegative sequences
bounded above and below by positive constants. Then

lim sup
k→+∞

x(k) ≤
1

bl
exp(au − 1).

Lemma 2.6.([15]) Assume that{x(k)} satisfies

x(k + 1) ≥ x(k) exp
{

a(k)− b(k)x(k)
}

, k ≥ N0,

lim supk→+∞
x(k) ≤ x∗ and x(N0) > 0, wherea(k) and

b(k) are nonnegative sequences bounded above and below
by positive constants andN0 ∈ N. Then

lim inf
k→+∞

x(k) ≥ min

{

al

bu
exp{al − bux∗},

al

bu

}

.

II I. PERMANENCE

This section we will establish a set of sufficient conditions
which ensure the permanence of the system (1.1).

Theorem 3.1.Assume that

(B1) r1 >
q

m1

holds, then system (1.1) is permanent.

Proof. From the first equation of system (1.1), we have

x(k + 1) ≤ x(k) exp{r1 − b1x(k)}. (3.1)

Applying Lemma 2.5 to (3.1) leads to

lim sup
k→+∞

x(k) ≤
1

b1
exp{r1 − 1}

def
= M1. (3.2)

From the second equation of system (1.1), we have

y(k + 1) ≤ y(k) exp
{

r2 − b2y(k)
}

, (3.3)

Applying Lemma 2.5 to (3.3) leads to

lim sup
k→+∞

y(k) ≤
1

b2
exp{r2 − 1}

def
= M2. (3.4)

From the first equation of system (1.1), we also have

x(k + 1)

≥ x(k) exp
{

r1 − b1x(k)−
a1x(k)

y(k) + k1

−
Eq

m1E +m2x(k)

}

≥ x(k) exp
{

r1 − b1x(k)−
a1x(k)

k1
−

Eq

m1E

}

.

(3.5)

Applying Lemma 2.6 to (3.5) leads to

lim inf
k→+∞

x(k) ≥ min

{

∆2 exp{∆1},∆2

}

, (3.6)

where
∆1 = r1 −

q

m1

− (b1 +
a1

k1
)M1

∆2 =
r1 −

q

m1

b1 +
a1

k1

.

(3.7)

From the second equation of system (1.1), we also have

y(k + 1)

= y(k) exp
{

r2 − b2y(k)−
a2y(k)

x(k) + k2

}

≥ y(k) exp
{

r2 − b2y(k)−
a2y(k)

k2

}

.

(3.8)

Applying Lemma 2.6 to (3.8) leads to

lim inf
k→+∞

y(k) ≥ min

{

∆3 exp{∆4},∆3

}

. (3.9)

where
∆3 =

r2

b2 +
a2

k2

,

∆4 = r2 − (b2 +
a2

k2
)M2.

(3.2), (3.4), (3.6) and (3.9) show that under the assumption
(B1) holds, system (1.1) is permanent.

Remark 3.1. Noting that q represents the catchablity co-
efficient, hence, condition (B1) shows that if catchablity
coefficient is enough small, then the system is permanent.
i. e., limited harvesting has no influence to the persistent
property of the system.

IV. EXTINCTION OF THE FIRST SPECIES

Concerned with the extinction of the first species, we have
the following result.

Theorem 4.1.Assume that

r1 <
qE

m1E +m2F
, (4.1)

where

F =
1

b1 +
a1

M2 + k1

exp{r1 − 1},

and M2 is defined by (3.4). Then the first species will be
driven to extinction, i.e.,

lim
k→+∞

x(k) = 0.

Proof. Condition (4.1) implies that for enough small positive
constantε > 0,

r1 <
qE

m1E +m2F (ε)
(4.2)

holds, where

F (ε) =
1

b1 +
a1

M2 + ε+ k1

exp{r1 − 1}+ ε.

Already, in the proof of Theorem 3.1, we had showed in
(3.4) that

lim sup
k→+∞

y(k) ≤
1

b2
exp{r2 − 1}

def
= M2. (4.3)

Therefore, forε > 0 small enough which satisfies (4.2), there
exists aN1 > 0 such that

y(k) < M2 + ε for all k ≥ N1. (4.4)
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Fork > N1, from (4.4) and the first equation of system (1.1),
we have

x(k + 1)

= x(k) exp
{

r1 − b1x(k)−
a1x(k)

y(k) + k1

−
Eq

m1E +m2x(k)

}

≤ x(k) exp
{

r1 − b1x(k)−
a1x(k)

M2 + ε+ k1

}

.

(4.5)

Applying Lemma 2.5 to (4.5) leads to

lim
k→+∞

x(k) ≤
1

b1 +
a1

M2 + ε+ k1

exp{r1 − 1}, (4.6)

Hence, there exists aN2 > N1 such that

x(k) <
1

b1 +
a1

M2 + ε+ k1

exp{r1 − 1}+ ε

def
= F (ε) for all k > N2.

(4.7)

For k > N2, again, from the first equation of system (1.1),
we have

x(k + 1)

= x(k) exp
{

r1 − b1x(k)−
a1x(k)

y(k) + k1

−
Eq

m1E +m2x(k)

}

< x(k) exp
{

r1 −
Eq

m1E +m2x(k)

}

≤ x(k) exp
{

r1 −
Eq

m1E +m2F (ε)

}

.

(4.8)

Hence,

x(k) ≤ x(N2) exp
{(

r1 −
Eq

m1E +m2F (ε)

)

(k −N2)
}

.

(4.9)
It then immediately follows from (4.2) that

lim
k→+∞

x(k) = 0.

This ends the proof of Theorem 4.1.

Remark 4.1.Condition (4.1) seems a little complicated, the
reason is that we here try to considering the influence of
the second species, however, if we use the estimate of upper
bound (3.2) in Theorem 3.1, we could establish the following
more stronger but concise result.

Corollary 4.1. Assume that

r1 <
qE

m1E +m2M1

. (4.10)

Then the first species will be driven to extinction, i.e.,

lim
k→+∞

x(k) = 0.

V. GLOBAL ATTRACTIVITY

In section 3, we had showed that under very simple
assumption, system (1.1) is permanent, also , in section 2,
we obtain a set of sufficient conditions which ensure the
existence of the positive equilibrium. It is nature to ask: what
would ensure the global attractivity of the positive equilibri-
um? Concerned with this topic, we have the following result.

Theorem 5.1.Assume that

(A2) ri, bi, ai, E, q, i = 1, 2 are all positive constants,

and

(A3)
q

m1

< r1 ≤ min{1, b1k2}, r2 ≤ 1

hold, then system (1.1) admits a unique positive equilibrium
E(x∗, y∗), which is globally attractive.

Proof Let
(

x(k), y(k)
)

be arbitrary solution of system (1.1)
with x(0) > 0 andy(0) > 0. Denote

U1 = lim sup
k→+∞

x(k), V1 = lim inf
k→+∞

x(k).

U2 = lim sup
k→+∞

y(k), V2 = lim inf
k→+∞

y(k).

We claim thatU1 = V1 = x∗ andU2 = V2 = y∗.

From the first equation of system (1.1), we obtain

x(k + 1)

= x(k) exp
{

r1 − b1x(k)−
a1x(k)

y(k) + k1

−
Eq

m1E +m2x(k)

}

≤ x(k) exp
{

r1 − b1x
}

.

(5.1)

Considering the auxiliary equation as follows:

u(k + 1) = u(k) exp
{

r1 − b1u(k)
}

, (5.2)

From (A3) we have0 < r1 ≤ 1, according to (ii) of Lemma
2.3, we can obtainu(k) ≤ 1

b1
for all k ≥ 2, whereu(k) is

arbitrary positive solution of (5.2) with initial valueu(0) > 0.
From Lemma 2.2,f(u) = u exp(r1 − b1u) is nondecreasing
for u ∈ (0, 1

b1
]. According to Lemma 2.4 we can obtain

x(k) ≤ u(k) for all k ≥ 2, whereu(k) is the solution of
(5.2) with the initial valueu(2) = x(2). According to (i) of
Lemma 2.3, we can obtain

U1 = lim sup
k→+∞

x(k) ≤ lim
k→+∞

u(k) =
r1

b1
. (5.3)

From the second equation of system (1.1), we obtain

y(k + 1) ≤ y(k) exp
{

r2 − b2y(k)
}

.

Similar to the analysis of (5.1)-(5.3), we have

U2 = lim sup
k→+∞

y(k) ≤
r2

b2
. (5.4)

Then, for sufficiently small constantε > 0, without loss of
generality, we may assume that

ε <
1

2
min

{

r2

b2 +
a2

k2

,

r1 −
q

m1

b1 +
a1

k1

}

,
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it follows from (5.3) and (5.4) that there is an integerk1 > 2
such that

x(k) <
r1

b1
+ ε

def
= Mx

1 ,

y(k) <
r2

b2
+ ε

def
= M

y
1 for all k > k1.

(5.5)

(5.5) combine with the first equation of system (1.1) leads
to

x(k + 1)

= x(k) exp
{

r1 − b1x(k)−
a1x(k)

y(k) + k1

−
Eq

m1E +m2x(k)

}

≤ x(k) exp
{

r1 − b1x(k)−
a1x(k)

M
y
1 + k1

−
Eq

m1E +m2M
x
1

}

.

(5.6)

Considering the auxiliary equation as follows:

u(k + 1) = u(k) exp
{

r1 − b1u(k)−
a1u(k)

M
y
1 + k1

−
Eq

m1E +m2M
x
1

}

.

(5.7)

Because of0 < r1 −
q

m1

≤ 1, obviously,
q

m1

>

Eq

m1E +m2M
x
1

, and so, 0 < r1 −
q

m1

< r1 −

Eq

m1E +m2M
x
1

< r1 ≤ 1, according to (ii) of Lemma 2.3,

we can obtain

u(k) ≤
1

b1 +
a1

M
y
1 + k1

for all k ≥ k1, whereu(k) is arbitrary positive solution of
(5.7) with initial valueu(k1) > 0. From Lemma 2.2,

f(u) = u exp
(

r1 − b1u−
a1u

M
y
1 + k1

−
Eq

m1E +m2M
x
1

)

is nondecreasing for

u ∈

(

0,
1

b1 +
a1

M
y
1 + k1

]

.

According to Lemma 2.4 we can obtainx(k) ≤ u(k) for all
k ≥ k1+1, whereu(k) is the solution of (5.7) with the initial
value u(k1 + 1) = x(k1 + 1). According to (i) of Lemma
2.3, we can obtain

U1 = lim sup
k→+∞

x(k) ≤ lim
k→+∞

u(k) =

r1 −
Eq

m1E +m2M
x
1

b1 +
a1

M
y
1 + k1

.

(5.8)
(5.5) combine with the second equation of system (1.1) leads
to

y(k + 1)

= y(k) exp
{

r2 − b2y(k)−
a2y(k)

x(k) + k2

}

≤ y(k) exp
{

r2 − b2y(k)−
a2y(k)

Mx
1 + k2

}

,

(5.9)

for all k > k1. Similar to the analysis of (5.6)-(5.8), we can
obtain

U2 = lim sup
k→+∞

y(k) ≤
r2

b2 +
a2

Mx
1 + k2

. (5.10)

Then, for aboveε > 0, it follows from (5.8) and (5.10) that
there is an integerk2 > k1 such that for allk > k2,

x(k) <

r1 −
Eq

m1E +m2M
x
1

b1 +
a1

M
y
1 + k1

+
ε

2

def
= Mx

2 ,

y(k) <
r2

b2 +
a2

Mx
1 + k2

+
ε

2

def
= M

y
2 .

(5.11)

Noting that

r1 −
Eq

m1E +m2M
x
1

< r1,

a1

M
y
1 + k1

> 0,

a2

Mx
1 + k2

> 0,

(5.12)

it immediately follows that

Mx
2 =

r1 −
Eq

m1E +m2M
x
1

b1 +
a1

M
y
1 + k1

+
ε

2

<
r1

b1
+ ε = Mx

1 ;

M
y
2 =

r2

b2 +
a2

Mx
1 + k2

+
ε

2

<
r2

b2
+ ε = M

y
1 .

(5.13)

According to the first equation of system (1.1) and the
positivity of x(k), y(k), we can obtain

x(k + 1)

= x(k) exp
{

r1 − b1x(k)−
a1x(k)

y(k) + k1

−
Eq

m1E +m2x(k)

}

≥ x(k) exp
{

r1 −
q

m1

− b1x(k) −
a1x(k)

k1

}

.

(5.14)

Considering the auxiliary equation as follows:

u(k+1) = u(k) exp
{

r1−
q

m1

−b1u(k)−
a1u(k)

k1

}

. (5.15)

Since0 < r1−
q

m1

< r1 ≤ 1, according to (ii) of Lemma 2.3,

we can obtainu(k) ≤ 1

b1+
a1

k1

for all k ≥ k2, whereu(k) is

arbitrary positive solution of (5.15) with initial valueu(k2) >

0. From Lemma 2.2,f(u) = u exp
{

r1−
q

m1

− b1u−
a1u

k1

}

is nondecreasing foru ∈
(

0, 1

b1+
a1

k1

]

. According to Lemma

2.4 we can obtainx(k) ≥ u(k) for all k ≥ k2, whereu(k) is
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the solution of (5.15) with the initial valueu(k2) = x(k2).
According to (i) of Lemma 2.3, we have

V1 = lim inf
k→+∞

x(k) ≥ lim
k→+∞

u(k) =
r1 −

q

m1

b1 +
a1

k1

. (5.16)

From the second equation of system (1.1) and the positivity
of x(k), we can obtain

y(k + 1) ≥ y(k) exp
{

r2 − b2y(k)−
a2y(k)

k2

}

. (5.17)

Similar to the analysis of (5.14)-(5.16), we have

V2 = lim inf
k→+∞

x2(k) ≥
r2

b2 +
a2

k2

.

Then, for aboveε > 0, there is an integerk3 > k2 such that
for all k > k3,

x(k) >

r1 −
q

m1

b1 +
a1

k1

− ε
def
= mx

1 ,

y(k) >
r2

b2 +
a2

k2

− ε
def
= m

y
1 .

(5.18)

(5.18) combine with the first equation of system (1.1) leads
to

x(k + 1)

= x(k) exp
{

r1 − b1x(k) −
a1x(k)

y(k) + k1

−
Eq

m1E +m2x(k)

}

≥ x(k) exp
{

r1 − b1x(k) −
a1x(k)

m
y
1 + k1

−
Eq

m1E +m2m
x
1

}

, k > k3.

(5.19)

Similar to the analysis of (5.14)-(5.16), we have

V1 = lim inf
k→+∞

x(k) ≥

r1 −
Eq

m1E +m2m
x
1

b1 +
a1

m
y
1 + k1

. (5.20)

(5.18) combined with the second equation of system (1.1)
leads to

y(k + 1) ≥ y(k) exp
{

r2 − b2y(k)−
a2y(k)

mx
1 + k2

}

(5.21)

for all k > k3. Similar to the analysis of (5.14)-(5.16), we
can obtain

V2 = lim inf
k→+∞

y(k) ≥
r2

b2 +
a2

mx
1 + k2

. (5.22)

Then, for aboveε > 0, it follows from (5.20) and (5.22) that
there is an integerk4 > k3 such that for allk > k4,

x(k) >

r1 −
Eq

m1E +m2m
x
1

b1 +
a1

m
y
1 + k1

−
ε

2

def
= mx

2 ,

y(k) >
r2

b2 +
a2

mx
1 + k2

−
ε

2

def
= m

y
2 .

(5.23)

Also, sincemx
1 > 0,my

1 > 0, it follows that

Eq

m1E +m2m
x
1

<
q

m1

,

a1

m
y
1 + k1

<
a1

k1
,

a2

mx
1 + k2

<
a2

k2
,

(5.24)

and so

mx
2 =

r1 −
Eq

m1E +m2m
x
1

b1 +
a1

m
y
1 + k1

−
ε

2

>

r1 −
q

m1

b1 +
a1

k1

− ε = mx
1 ;

m
y
2 =

r2

b2 +
a2

mx
1 + k2

−
ε

2

>
r2

b2 +
a2

k2

− ε = m
y
1 .

(5.25)

Continuing the above steps, we can get four sequences
{

Mx
k

}

,
{

M
y
k

}

,
{

mx
k

}

and
{

m
y
k

}

such that

Mx
k =

r1 −
Eq

m1E +m2M
x
k−1

b1 +
a1

M
y
k−1

+ k1

+
ε

k
,

M
y
k =

r2

b2 +
a2

Mx
k−1

+ k2

+
ε

k
;

(5.26)

and

mx
k =

r1 −
Eq

m1E +m2m
x
k−1

b1 +
a1

m
y
k−1

+ k1

−
ε

k
,

m
y
k =

r2

b2 +
a2

mx
k−1

+ k2

−
ε

k
.

(5.27)

Clearly, we have

mx
k ≤ V1 ≤ U1 ≤ Mx

k , m
y
k ≤ V2 ≤ U2 ≤ M

y
k , k = 0, 1, 2....

(5.28)
Now, we will prove

{

Mx
k

}

,
{

M
y
k

}

is monotonically de-
creasing,

{

mx
k

}

,
{

m
y
k

}

is monotonically increasing by mean-
s of inductive method. First of all, from (5.13) and (5.25) it
is clear thatMx

2 < Mx
1 , M

y
2 < M

y
1 ,m

x
2 > mx

1 m
y
2 > m

y
1 .

Now we assume thatMx
k < Mx

k−1
,M

y
k < M

y
k−1

and
mx

k > mx
k−1,m

y
k > m

y
k−1

hold, then

Eq

m1E +m2M
x
k

>
Eq

m1E +m2M
x
k−1

,

b1 +
a1

M
y
k + k1

> b1 +
a1

M
y
k−1

+ k1
,

b2 +
a2

Mx
k + k2

> b2 +
a2

Mx
k−1

+ k2
.

(5.29)
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From (5.29) and the expression ofMx
k ,M

y
k , it immediately

follows that

Mx
k+1

=

r1 −
Eq

m1E +m2M
x
k

b1 +
a1

M
y
k + k1

+
ε

k + 1

<

r1 −
Eq

m1E +m2M
x
k−1

b1 +
a1

M
y
k−1

+ k1

+
ε

i
= Mx

k ;

M
y
k+1

=
r2

b2 +
a2

Mx
k + k2

+
ε

k + 1

<
r2

b2 +
a2

Mx
k−1

+ k2

+
ε

i
= M

y
k .

(5.30)

Also, it follows frommx
k > mx

k−1,m
y
k > m

y
k−1

that

Eq

m1E +m2m
x
k

<
Eq

m1E +m2m
x
k−1

,

b1 +
a1

m
y
k + k1

< b1 +
a1

m
y
k−1

+ k1
,

b2 +
a2

mx
k + k2

< b2 +
a2

mx
k−1

+ k2
.

(5.31)

From (5.31) and the expression ofmx
k,m

y
k, it immediately

follows that

mx
k+1 =

r1 −
Eq

m1E +m2m
x
k

b1 +
a1

m
y
k + k1

−
ε

k + 1

>

r1 −
Eq

m1E +m2m
x
k−1

b1 +
a1

m
y
k−1

+ k1

−
ε

k
= mx

k,

m
y
k+1

=
r2

b2 +
a2

mx
k + k2

−
ε

k + 1

>
r2

b2 +
a2

mx
k−1

+ k2

−
ε

k
= m

y
k.

(5.32)

(5.29)-(5.32) show that
{

Mx
k

}

and
{

M
y
k

}

are monotoni-
cally decreasing,

{

mx
k

}

and
{

m
y
k

}

are monotonically in-
creasing. Consequently, lim

k→+∞

{

Mx
k

}

, lim
k→+∞

{

M
y
k

}

and

lim
k→+∞

{

mx
k

}

lim
k→+∞

{

m
y
k

}

both exist. Let

lim
k→+∞

Mx
k = X, lim

k→+∞

mx
k = X. (5.33)

lim
k→+∞

M
y
k = Y , lim

k→+∞

mx
k = Y . (5.34)

From (5.26) and (5.27) we have

X =

r1 −
Eq

m1E +m2X

b1 +
a1

Y + k1

, Y =
r2

b2 +
a2

X + k2

; (5.35)

X =

r1 −
Eq

m1E +m2X

b1 +
a1

Y + k1

, Y =
r2

b2 +
a2

X + k2

. (5.36)

(5.35) and (5.36) are equivalent to

b1X +
a1X

Y + k1
= r1 −

Eq

m1E +m2X
,

b2Y +
a2Y

X + k2
= r2.

(5.37)

b1X +
a1X

Y + k1
= r1 −

Eq

m1E +m2X
,

b2Y +
a2Y

X + k2
= r2.

(5.38)

(5.37) and (5.38) show that(X,Y ) and (X,Y ) are all
solutions of system (2.2). however, under the assumption
of Theorem 5.1, system (2.2) has unique positive solution
(x∗, y∗). Therefore

U1 = V1 = lim
k→+∞

x(k) = x∗,

U2 = V2 = lim
k→+∞

y(k) = y∗.
(5.39)

That is,E+(x
∗, y∗) is globally attractive. This ends the proof

of Theorem 5.1.

VI. EXAMPLES

In this section, we shall give three examples to illustrate
the feasibility of main result.

Example 6.1.Considering the following system:

x(k + 1) = x(k) exp
{

1.5−
1

1 + x(k)

−0.3x(k)−
0.1x(k)

y(k) + 1

}

,

y(k + 1) = y(k) exp
{

1.5− 0.2y(k)

−
0.1y(k)

x(k) + 0.2

}

.

(6.1)
Corresponding to system (1.1), we haver1 = 1.5; r2 =
1.5; b1 = 0.3; b2 = 0.2; a1 = 0.1; a2 = 0.1;E = 1; q =
1; k1 = 1; k2 = 0.2; m1 = 1;m2 = 1; One could easily
see thatr1 = 1.5 > 1 =

q

m1

, thus the coefficients of

system (6.1) satisfies condition(A1) in Theorem 3.1.
From Theorem 3.1, system (6.1) is permanent. Numeric
simulations also support our finding(see Fig. 1 and 2).

Example 6.2.Considering the following system:

x(k + 1) = x(k) exp
{

1−
2

1 + 0.9× x(k)

−0.3x(k)−
0.1x(k)

y(k) + 1

}

,

y(k + 1) = y(k) exp
{

1.5− 0.2y(k)

−
0.1y(k)

x(k) + 0.2

}

.

(6.2)
Here all the other coefficients are as that of Example 6.1,
only changer1 = 1, q1 = 2, m2 = 0.9. By calculating, we
have

M1 =
1

b1
exp{r1 − 1} = 1,
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Fig. 1. Dynamic behaviors of the first component of the
solution (x(k), y(k)) of system (6.1) with the initial conditions
(x(0), y(0))= (0.1, 3), (1.5, 2) (2.5, 1), (10, 3) and (0.4, 0.5),
respectively.
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Fig. 2. Dynamic behaviors of the second component of the
solution (x(k), y(k)) of system (6.1) with the initial conditions
(x(0), y(0))= (0.1, 3), (1.5, 2) (2.5, 1), (10, 3) and (0.4, 0.5),
respectively.

consequently

r1 = 1 <
2

1.9
=

qE

m1E +m2M1

. (6.3)

Hence, it follows from Corollary 4.1 that the first species
will be driven to extinction. numeric simulation (see Fig. 3)
supports this assertion.

Example 6.3.Considering the following system:

x(k + 1) = x(k) exp
{

0.5−
0.1× 1

1× 1 + 1× x(k)

−0.3x(k)−
0.1x(k)

y(k) + 1

}

,

y(k + 1) = y(k) exp
{

0.5− 0.2y(k)

−
0.1y(k)

x(k) + 0.2

}

,

(6.4)
Corresponding to system (1.1), we haver1 = 0.5; r2 =
0.5; b1 = 0.3; b2 = 0.2; a1 = 0.1; a2 = 0.1;E = 1; q =
0.1; k1 = 1; k2 = 0.2;m1 = 1;m2 = 1; One could easily see
that b1k2 = 0.6 ≥ r1 = 0.5 > 0.1 =

q

m1

, 1 ≥ r2, thus the

coefficients of system (6.4) satisfy(A2) and(A3) in Theorem
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Fig. 3. Dynamic behaviors of the first component of the
solution (x(k), y(k)) of system (6.2) with the initial conditions
(x(0), y(0))= (0.1, 3), (1.5, 2) (2.5, 1) and(0.4, 0.5), respective-
ly.

5.1. From Theorem 5.1, system (6.4) admits a unique positive
equilibrium, which is globally stable. Numeric simulations
also support our finding(see Fig. 4 and 5).
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Fig. 4. Dynamic behaviors of the first component of the
solution (x(k), y(k)) of system (6.4) with the initial conditions
(x(0), y(0))= (0.1, 3), (1.5, 2) (2.5, 1) and(0.4, 0.5), respective-
ly.

VII. D ISCUSSION

Stimulated by recently works of [3]-[5], [31]-[35],
we propose a discrete May cooperative system incorporating
Michaelis-Menten type harvesting. To the best of authors
knowledge, this is the first time that the discrete population
model incorporating Michaelis-Menten type harvesting is
proposed and studied.

With the help of two Lemmas (Lemma 2.5 and 2.6), we are
able to establish a set of sufficient conditions which ensure
the permanence of the system (Theorem 3.1), the condition is
very simple and easily verified. Numeric simulations (Fig.1
and 2) also support our findings.

We also focus our attention to the extinction property
of the system, since with the develop of the modern so
ociety, more and more species becomes endangered due to
the overfishing. Our result (Theorem 4.1) also confirm this
phenomena. If the catchablity coefficientq is enough large,
then inequality (4.1) holds, and it follows from Theorem 4.1
that the first species will be driven to extinction, despite the
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Fig. 5. Dynamic behaviors of the second component of the
solution (x(k), y(k)) of system (6.4) with the initial conditions
(x(0), y(0))= (0.1, 3), (1.5, 2) (2.5, 1) and(0.4, 0.5), respective-
ly.

cooperation of the two species.
We finally focus our attention to the stability property of

the positive equilibrium, by using the iterative method, a set
of very simple sufficient conditions which ensure the global
stability property of the positive equilibrium is established.
Numeric simulations (Fig. 4 and 5) also shows the feasibility
of this result.

At the end of the paper, we would like to point out that
numeric simulations (Fig. 1 and 2) show that system (6.1)
also admits a unique positive equilibrium which is globally
attractive, however, since in system (6.1),r1 = 1.5 > 1,
we could not testify the stability property of the positive
equilibrium by using Theorem 5.1. That is, there are still
have room to improve for our Theorem 6.1, however, with
the restriction of our method, we could not give more insight
to this issue at present. We would like to leave this for future
investigation.
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