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Dynamic Behaviors of a Discrete May Type
Cooperative System Incorporating
Michaelis-Menten Type Harvesting

Zhenliang Zhu, Fengde Chen, Liyun Lai and Zhong Li

Abstract—A discrete May type cooperative model incorpo- They investigated the local stability property of the positive

rating Michaelis-Menten type harvesting takes the form equilibrium of the following delayed system.
- _ __mz(k) po= ( by M? )
skt 1) = alk)exp{ri - biah) k) + Fr A S N
. a
) i = w(re—by— )
m1E+m2x(k) 3 fE(t*T)‘i‘ 2
asy(k) Chen, Xie and Chen[10] proposed a stage structured May
y(k+1) = ylk)exp {7"2 —bay(k) - 2(k) + k2} type cooperative system, they showed that the cooperation

between the species is not the essential factor to ensure
! Per ) ; the permanence of the system, while the death rate of the
which ensure the permanence, extinction of the first species and t . d the birth rate of the i A .
the existence of a unique globally attractive interior equilibrium mature species an € birth rate of the immature species are
of the system are obtained, respectively. Numeric simulations two of the most important factors lead to the permanence

is proposed and studied in this paper. Sufficient conditions

are carried out to show the feasibility of the main results. or extinction of the system. Other topics such as the the
Index Terms—Global attractivity; Extinction; Cooperation; influence of feedback 99””0'5 to the cooperat!\{e _System
Equilibrium; Permanence. ([6], [11]-[17]), the stability property of the equilibria of

cooperative model ([3]-[6], [8]-[10],[18]), the existence of
periodic solution or almost periodic solution ([7], [24]) and

|. INTRODUCTION the persistent property of the cooperative system ([13]-[21])
are also well studied.

T HE aim of this paper is to investigate the dynamic be- | [3] Wei and Li incorporating harvesting to system (1.2),
haviors of the following discrete May type cooperativgnis |eads to the following model

model incorporating Michaelis-Menten type harvesting

) T = ac(rl —bix — (ﬁal; ) — Eqx,
a1r Y 1
z(k+1) = x(k)expsry —bix(k) — —————— (1.3)
ey B {rs = burlh) = G io= y(r by - ).
Eq L 2
_m1E+m2x(k) }’ The authors of [3] investigated the persistent and stability
azy(k) property of the system (1.3). Recently, Xie, Chen and Xue[4]
yk+1) = y(k)exp {Tz —boy(k) — 2(k) + ks }v revisited the dynamic behaviors of the system (1.3). Their

(1.1) study indicates that the condition which ensure the existence
wherery, by, a1, k1, E,q,m1, ma, 72, b2, a0, ko are all posi- of a unique positive equilibrium is enough to ensure the

tive constants. globally attractive of the positive equilibrium.
In [1], May proposed the following two species coopera- Chen, Wu and Xie[5] argued the discrete time models gov-
tive system erned by difference equations are more appropriate than the
continuous ones when the populations have nonoverlapping
. alxr . .
T = x(rl —bx — ), generations, corresponding to system (1.3), they proposed the
ycjykl (1.2) following discrete cooperative model incorporating harvest-
) = — by — —2 ) ing:
Y 9(7“2 2y~ Ty g

arx(k
He showed that system (1.2) admits a unique positive ex(k + 1) z(k) exp {7“1 — Eq—bix(k) — W_(Jﬁ},

quilibrium which is globally attractive. Since then, many asy (k)

scholars([3]-[40]) done works on this direction. For exampley(k + 1) = y(k)exp {7’2 — bay(k) — L},

Roberts and Joharjee[2] argued that the beneficial effects (k) + k2 (1.4)
erex(k),y(k) are the population density of the species

of the indirect, interspecies interactions not being realiszgi_‘

immediately, and should introduced the delay to system (1. dy at k-generation. They did not investigate the extinction
Zhenliang Zhu, Fengde Chen, Liyun Lai and Zhong Li are all with thgrOperty of the system (1'4)' Concemeq with the Stab!“ty

College of Mathematics and Computer Science, Fuzhou University, Fuzh&[operty of the system (1'4)’ they obtained the followmg
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Theorem A. Assume that From the second equation, we have
(Hy) 74, bi,a;,E,q, i = 1,2 are all positive constants, (2 + k)
r1 > Fgq, T (2.3)

vy= b2k2+b2£17+(12.
and o _ i ]
Substituting (2.3) into the first equation of system (2.2) and

(H2) 0<ri—qE<1,1m2<1, (i=1,2) simplifying, we finally obtain
hold, then system (1.4) admits a unique positive equilibrium

3 2

E(x*,y*), which is globally attractive. Ao + Ara” + sz + A3 = 0, (2.4)

It brings to our attention that in system (1.3) and (1.4)ynere
the authors only considered the linear harvesting. Suck
kind of harvesting embodies several unrealistic features and Ao = bibakima + a1bamng + bymars > 0,
limitations. For example, in system (1.3), the authors 00k 4, = Eb, by ky my + Eay by my + Eby my s
h(E,z) = gEz as the fishing term, it easy to see that
h tends to infinity as the effor tends to infinity if the +a1 by ky ma + az by kyma + ay agmy
populationz is finite and fixed, or as the populatientends +my (baky +19) (b ko — 1),
to infinity if the effort E is finite and fixed. To overcome
this drawback, recently, many scholars ([32], [33], [34], [35]) A2 = FEaibzkymi+ Eaz by kimy

argued that the nonlinear harvesting, or named as Michaelis-

. ) . —bg k1 komory + Eayasmy + Ebs k
Menten type harvesting is more suitable. If we adopt the R P 20

Michaelis-Menten type harvesting to system (1.2), we will —Emiriry —agkimary —kamaryre
establish the following model £ Eby by ky kaymy — Eby kymy
E
T = x(rl —bix — ar ) — 9 , +FEby ks myre + Eqro,
Y+ k1 mi1E + max (1.5)
. asy ’ Ag = *E(ml 1 7(]) (bg kl k2+(12 k1+7’2 k2)
y = y(rz—bzy— )
X + kQ

. ) ~Under the assumption of Lemma 2.4; > 0 and A3 < 0,
wherez andy denote the densities of two populations at timgence, (2.4) admits a unique positive solutioh, Conse-

t. The parameters.,ry,ai, as, by, ba, ki, k2, £, q,m1,m2  quently, system (1.1) admits a unique positive equilibrium
are all positive constants. Based on system (1.5), we co@qx*,y*), where

establish the discrete May type cooperative system with

Michaelis-Menten type harvesting, i.e., system (1.1). To the . _ r2 (" + k2) (2.5)
best of the authors knowledge, this is the first time that yo= ba ko +boz* +as '
the discrete population model with Michaelis-Menten typ
harvesting is proposed and studied.

As far as system (1.1) is concerned, the extinction, pdremma 2.[19])Let f(u) = uwexp(a — fu), wherea and 3
manence and the global attractivity are the most importa@ie positive constants, thef(u) is nondecreasing for <
topics that need to be investigated. (0, 5.

The rest of the paper is arranged as follows. We will
introduce some useful Lemmas in the next section, an
then investigate the persistent property of the system (1.1) (% 4 1) = u(k) exp(a — Bu(k)), k=1, 2
in Section 3. We will investigate the extinction property
in Section 4, and investigate the stability property of th&herea and 3 are positive constants and(0) > 0. Then
positive equilibrium in Section 5. Some numeric simulation) If o < 2, then kET u(k) = 3.
which show the feasibility of the main results are present o1,
in Section 6. We end this paper by a briefly discussion. ?ﬁl) If o<1, thenu(k) < 5,k =2,3.....

Lemma 2.4[36]) Suppose that functiong,g : Z,
Il. LEMMAS [0,00) - [Oa OO) SatiSfy f(kvx) < g(k,ll?)(f(k,:l?)
g({c,x)) for k € Zy and z € [0,00) and g(k,z) is
nondecreasing with respect to. If {z(k)} and {u(k)}
are the nonnegative solutions of the following difference

This ends the proof of Lemma 2.1.

emma 2.3[19]) Assume that sequende(k)} satisfies

[V X

We first establish a Lemma, which ensure the existence
the positive equilibrium of the system (1.1).

Lemma 2.1.Assume that equations:
q
biky > 11 > P (2.1) x(k+1) = f(k,x(k)), u(k+1) = gk, u(k)).
holds, then system (1.1) admits a unique positive equilibriurespectively, and:(0) < «(0)(2(0) > u(0)), then
Proof._ The positive equilibrium of system (1.1) satisfies the 2(k) < u(k)(z(k) > u(k)) for all
equations E>0.
r—bpp — Eq - 0, Lemma 2.5. ([15]) Assume thafz(k)} satisfiesz(k) > 0
y+ki  miE+mox (2.2) and
asy
by = 0. o(k + 1) < x(k) exp {a(k) - b(k):c(k:)}
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for k € N, wherea(k) and b(k) are nonnegative sequences-rom the second equation of system (1.1), we also have

bounded above and below by positive constants. Then

1
lim supz(k) < o exp(a® —1).
c— 400

Lemma 2.6([15]) Assume tha{x(k)} satisfies

2(k +1) > z(k) exp {a(k) - b(k)x(k:)}, k> N,

limsupy,_, o, (k) < «* and z(Ny) > 0, wherea(k) and
b(k) are nonnegative sequences bounded above and below

by positive constants any € N. Then

k— o0 " hu

al al
lim inf z(k) > min o exp{a’ — b%z* .

IIl. PERMANENCE

This section we will establish a set of sufficient condition

which ensure the permanence of the system (1.1).
Theorem 3.1.Assume that

(B1) 1 > L
my

halds, then system (1.1) is permanent.

Proof. From the first equation of system (1.1), we have

x(k+1) < z(k)exp{r: — biz(k)}. (3.1)
Applying Lemma 2.5 to (3.1) leads to
limsup (k) < 1 exp{r, — 1} EC Ve (3.2)
k——+o00 bl

From the second equation of system (1.1), we have

ylb+1) <y exp {ra—bay()},  (33)
Applying Lemma 2.5 to (3.3) leads to
limsupy(k) < 1 exp{rs — 1} M. (3.4)
k——+o00 b2

From the first equation of system (1.1), we also have
z(k+1)

> x(k)exp {rl —bix(k) — #ﬁfzﬁ
_ Eq } (3.5)
m1E + moxz(k)
> xz(k)exp {Tl —biz(k) — alil(k) - 77i(]E‘}

Applying Lemma 2.6 to (3.5) leads to

lim inf 2(k) > min {Ag exp{A1}, Ag}, (3.6)
k— o0
where q a
A = r———(by+—=)M
1 1 my ( 1 k1) 1
r — i (37)
my
Ny = ; a
1+ k_l

y(k+1)
. B _ azy(k)
= y(k)exp {7’2 bay(k) 200 + ks kQ} (3.8)
> y(k)exp {7“2 —bay(k) — M}
ko
Applying Lemma 2.6 to (3.8) leads to
lim inf y(k) > min {Ag exp{A4}, Ag}. (3.9)
k——+oco
where ry
A3 = as
by + =
ko s
Ay = ro—(ba+ k_)MQ
2

%3.2), (3.4), (3.6) and (3.9) show that under the assumption
B1) holds, system (1.1) is permanent.

Remark 3.1. Noting that ¢ represents the catchablity co-
efficient, hence, conditionH;) shows that if catchablity
coefficient is enough small, then the system is permanent.
i. e., limited harvesting has no influence to the persistent
property of the system.

IV. EXTINCTION OF THE FIRST SPECIES
Concerned with the extinction of the first species, we have
the following result.
Theorem 4.1Assume that
qF
<K—F%T 7
& mlE + TI’LQF

where
1

bial exp{r — 1},

1+ 7M2 T
and M, is defined by (3.4). Then the first species will be
driven to extinction, i.e.,

F=

lim (k) =0.

k——+oco

Proof. Condition (4.1) implies that for enough small positive
constant > 0,

qF

_ 4.2
< mi1E 4+ maF(g) (4.2)
holds, where
1
F(e) = a1 exp{r1 — 1} +e¢.
b+ —m—
! M2 + e+ kl

Already, in the proof of Theorem 3.1, we had showed in
(3.4) that

1 e
limsupy(k) < . exp{rs — 1} def M. (4.3)
2

k——+o00
Therefore, fore > 0 small enough which satisfies (4.2), there
exists alN; > 0 such that

y(k) < My + ¢ for all k> Ny. (4.4)
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Fork > N, from (4.4) and the first equation of system (1.1), V. GLOBAL ATTRACTIVITY
we have In section 3, we had showed that under very simple
z(k+1) assumption, system (1.1) is permanent, also , in section 2,
we obtain a set of sufficient conditions which ensure the
arz(k) existence of the positive equilibrium. It is nature to ask: what
= x(k)exp {Tl —bia(k) - y(k) + k1 would ensure the global attractivity of the positive equilibri-
Eq (4.5)  um? Concerned with this topic, we have the following result.
miE + mox(k) } Theorem 5.1.Assume that
arx(k) "
< xz(k)exp {T1 —biz(k) - m} (A2) v, b;,a;, E,q, i =1, 2 are all positive constants,

and

Applying Lemma 2.5 to (4.5) leads to q
(Ag) — < < min{l,blkg}, rg <1
mi

1

kEToow(k) < _— a1 exp{ri =1}, (46) o4 then system (1.1) admits a unique positive equilibrium
My +e+ky E(z*,y*), which is globally attractive.
Hence, there exists &, > N; such that Proof Let (z(k),y(k)) be arbitrary solution of system (1.1)
with z(0) > 0 andy(0) > 0. Denote
k 1 1

a(k) < by + ai exp{r; —1}+e Uy = limsup z(k), V1 = liminf z(k).
d "YU My etk (4.7) koo horeo
2] F(e) for all k> Ns. Us = limsup y(k), Vo = liminf y(k).

k—+o0 k—+o00

For k > Ns, again, from the first equation of system (1. 1)We claim thatl’; = Vi = 2* and Uy = Vi = y*.

we have From the first equation of system (1.1), we obtain
z(k+1) z(k+1)
_ _ . arz(k) arz(k)
- ‘T(k:) exXp {7"1 blx(k) y(k) Tk = ,CC(I{/’) exp {7"1 - bll’(k) — m (5 1)
Eq E '
——— 4.8 ' S
m1E+m2E1$q(k)} ( ) m1E+m2x(k)}
< z(k)exp {7’1 — m} S ac(k:)exp{rl —blx}.
Eq Considering the auxili t follows:
< _ _ g the auxiliary equation as follows:
- ZC(]{?) exp{rl m1E+m2F(€)}
u(k 4+ 1) = u(k) exp {r1 — bru(k)}, (5.2)

Hence, ) -
From (A3) we have0 < r; < 1, according to (ii) of Lemma

FE 1
(k) < x(NQ)eXp{(ﬁ q ) (k — Na) } 2.3, we can obtain(k) < 7 for all k& > 2, whereu(k) is

mi1E + moF (e arbitrary positive solution of (5.2) with initial valug(0) > 0.
. _ (4.9)  From Lemma 2.2/ (u) = wexp(r1 — byu) is nondecreasing
It then immediately follows from (4.2) that for u € (0,7]. According to Lemma 2.4 we can obtain
' (k) < u(k) for all k& > 2, whereu(k) is the solution of
Jm z(k) = 0. (5.2) with the initial valueu(2) = z(2). According to (i) of

Lemma 2.3, we can obtain
This ends the proof of Theorem 4.1. -
» . . Uy =limsupz(k) < lim u(k) = —.
Remark 4.1. Condition (4.1) seems a little complicated, the k—+o00 k=00 b1

reason is that we here try to considering the influence QFom the second equation of system (1.1), we obtain
the second species, however, if we use the estimate of upper
bound (3.2) in Theorem 3.1, we could establish the following y(k+1) < y(k)exp {TQ — bzy(k)}-
more stronger but concise result.

(5.3)

Corollary 4.1. Assume that Similar to the analysis of (5.1)-(5.3), we have

r2

o —8 (4.10) Vo =lmswpy(h) < g - (54)
mi B+ ma My Then, for sufficiently small constast > 0, without loss of
Then the first species will be driven to extinction, i.e.,  generality, we may assume that
lim (k) =0. 1 - —
k=00 £< = min{ 2 a3 2111 },
bt T bt
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it follows from (5.3) and (5.4) that there is an inteder> 2 for all k£ > k. Similar to the analysis of (5.6)-(5.8), we can

swch that obtain
1 def o
a(k) < pote= M, 655 U = limsupy(k) < — 2 (5.10)
. —+00 2 71.
y(k) < Z—2+gd=efM1y for all k> ky. MY + ko
2
. . , . Then, for above > 0, it follows from (5.8) and (5.10) that
5.5) combine with the first equation of system (1.1) lead . .
Eo ) q Y (1.1) tﬁere is an integeks > k; such that for allk > k-,
z(k+1) - Eq
miE +moM? €
B arz(k) x(k) < = 5 f ppz,
= x(k)exp {7’1 —bx(k) - ———— by +
y(k) + ka1 MY+ ky (5.11)
Eq ) € def , ry
m1E+m2$(k)} 66 Wk < ity
k T 1 e
< z(k)exp {7’1 —byz(k) — L() M + k2
MY+ Noting that
FEq } 9
mlE + mng ' - Eq <r
Considering the auxiliary equation as follows: “ my B+ ma MY
1
k — >0, 5.12
wk+1) = u(kyexp {ri — bru(k) -~ EL MY+ (512)
Ml + kl a9 S 0
_ Eq } Mlx + k2 ’
ma ks + ma My (57) it immediately follows that
Because of0 < r; — e < 1, obviously, ANES " Eq
my my IRy
Eq q B ME m1E 4+ ma M7 n €
————, and s0,0 < n < 7 2 aj 2
m1E + ma MY mi bit+
Eq < r; <1, according to (ii) of Lemma 2.3 1 1+
—_————— T 9,y — €x.
miE +moMg T 9 < g, Te= M (5.13)
we can obtain ! '
1 MY = T &
u(k) £ ———a— 2 by 4+ 22 + 9
bl + yi 2 M:E + k/,2
Ml + kl r2 l My
for all k& > ki, whereu(k) is arbitrary positive solution of < by +te=Mi

(5.7) with initial valueu(k,) > 0. From Lemma 2.2, According to the first equation of system (1.1) and the

au Eq ) positivity of z(k), y(k), we can obtain
Mf—f—k/’l mlE—i—mng

flu) =uexp (7’1 —bu —

is nondecreasing for ok +1)
1 _ B B a1z (k)
we <O, e z(k) exp {Tl bz (k) OET
RN v B Ol } (14
According to Lemma 2.4 we can obtairik) < u(k) for all m1E + maw(k)
k > ki +1, whereu(k) is the solution of (5.7) with the initial > (1) exp {m _ Ly — 2R }
valueu(k; + 1) = z(k1 + 1). According to (i) of Lemma my k1
2.3, we can obtain Considering the auxiliary equation as follows:
Eq
- z q aru(k)
Uy = limsupa(k) < lim (k) = miE + moMj . u(k+1) = u(k) exp {rl—m—l—blu(k)——l}. (5.15)
k— 400 T k—+oo bl + ya/l
My k1(5 8) Sincel < Tl,i < r < 1, according to (ii) of Lemma 2.3,
. my
(5.5) combine with the second equation of system (1.1) leawle can obtain.(k) < —g for all k > ko, whereu(k) is
to bt
y(k+1) arbitrary positive solution of (5.15) with initial valugks) >
q alu
asy(k) 0. From Lemma 2.2 (u) :uexp{rl—m—l—blu—k—l}
= y(k —boy(k) — ——— _ . )
y(k) exp {TQ 2y(k) xz(k) + k:g} (5:9) s nondecreasing fot € (0, 1a1 } According to Lemma
a2y(k> b1+ k_
< ylk)exp {TQ — bay(k) = ME + ky }’ 2.4 we can obtain(k) > u(k) for all k > ks, whereu(k) is
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the solution of (5.15) with the initial value(kz) = x(k2). Also, sincemi > 0,mY > 0, it follows that

According to (i) of Lemma 2.3, we have

q P _ 4
r— p— miE +mom¥% ~ my’
Vi =liminfz(k) > lim wu(k) = a; (5.16) ap a1
k——+o00 k——+oco bl + E mzl’ T kl kl, (524)
as as
From the second eqL_Jation of system (1.1) and the positivity m < Ty’
of z(k), we can obtain
asy (k) and so
ylk+1) = y(k) exp {rz — bay(k) - T boo6an) o
"N
Similar to the analysis of (5.14)-(5.16), we have mi = i+ mamy €
al 2
b - -
Vo = liminf zo(k) > r2a . Lt Y+ k
k—+o0 by + ﬁ , q
N
Then, for aboves > 0, there is an integets > &k, such that > 72‘11 —e&=mJ;
for all k£ > ks, by + T (5.25)
q T2 19
T —— m — _ -
(k) > s — e = mi, L oy —2 2
b+ —— (5.18) mi + ks
k1 T2 y
y(k) > 12 _ ety ” b+%—5—m1
b2 + % 1 2 k2

(5.18) combine with the first equation of system (1.1) leadSontinuing the above steps, we can get four sequences

to {Mmiy, {M}}, {mi} and{m}} such that
x(k+1) .
q
arx(k "R Me
= x(k)exp {7’1 —biz(k) — y(klz)i—(l—;ﬁ My = my +;7112 i N %7
b R —
_ Eq } TN Tk (5.26)
arz(k) bo + a2 k’
> k —bz(k) — ——— 2 z
> (k) exp {r = bua(h) = S5 ME, + s
- } k> ks. and
m1E + mam7 .
Similar to the analysis of (5.14)-(5.16), we have ry— m
r 1 2Mp_1 €
ry — 7Eq e by + ———— = K’
V= 1kim_ii_nf x(k) > miE ngmzml (5.20) r’;nk_l + k1 ; (5.27)
! mll’ + k1 my, by + a9 L
(5.18) combined with the second equation of system (1.1) My + ke

leads to Clearly, we have

azy(k)

mi + ko
for all £ > k3. Similar to the analysis of (5.14)-(5.16), we
can obtain

} (5.21) mip <Vi <Uy <Mjj, m] <Va<Uy <M/ k=0,1,2..
(5.28)
Now, we will prove { M}, {M}'} is monotonically de-
creasing{mj }, {m{} is monotonically increasing by mean-
s of inductive method. First of all, from (5.13) and (5.25) it
is clear thatMy < MY, My < M{,m% > mj mj > mj.
Now we assume thaf/f < MF , .M} < M} , and
Then, for above > 0, it follows from (5.20) and (5.22) that 1,7 > m? | m? >m? | hold, then
there is an integek, > k3 such that for allk > k4,

y(k+1) > y(k)exp {m — bay(k) —

T2
a2 (5.22)

Vo = 1kiminfy(k:) >
mi + ke

—+00

ba +

Eq Eq Eq

"Bt mam € a o mE+maMi = B ma My,

z(k) > PR Ty T M2 5 ay b ay
R (5.23) T TR ey
7'2 € def Yy

v = by + —22 T2 ™ byt —2 > by p—2

2Tt ks T MY+ b CUME kS
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From (5.29) and the expression &f, M/, it immediately (5.35) and (5.36) are equivalent to

follows that b wX . Eq
Tl—L ! ?+k1 B ! mlE—f—ng’
ME o — miE 4+ mo M € W (5.37)
s leryai1 k+1 b2Y+_X73-k = ro.
B Mk + kl 2
q a1 X Eq
ry— b X = -
! m1E+m2MZ_1 e . 1_+X+k1 E m1E+m21’
< a FE=Me (530 (5:38)
b1+ 55— ¢ : azY
M;:_1+k1 b2X+X 3 = Ta.
My _ T9 4 £ _+ 2
S (5.37) and (5.38) show thatX,Y) and (X,Y) are all
Mii + ko solutions of system (2.2). however, under the assumption
T2 3 Y H i+ i
< s + 7= M. of Theorem 5.1, system (2.2) has unique positive solution
b — * *
2+ M7+ ks (xz*,y*). Therefore
i Up=Vi= 1 k) =2,
Also, it follows frommi > m7_,,mj > mj_, that e k—1>I-|I-1<>o:E( )=z (5.39)
Uy =Vo= lim y(k)=y"*.
FEq < Eq k—+o0
miE+momi ~ miE+momi_,’ That is, B4 (z*, y*) is globally attractive. This ends the proof
a1 ay of Theorem 5.1.
b+ ——-—<by+ ———, 31
itk m 4k (5:31) VI. EXAMPLES
by + _ %2 by + a2 ) In this section, we shall give three examples to illustrate
mi + ke mi_y + k2 the feasibility of main result.

From (5.31) and the expression of?, m?, it immediatel L .
( ) P oo MM y Example 6.1.Considering the following system:

follows that
1
Eq z(k+1) = x(kz)exp{lb—i
) 1 mE + mamd - 1+ z(k)
mpy = a1 - E+1 Olm(kz)
—_— —0.3z(k —7},
. ) =
E
ry— . E— ylk+1) = y(k)exp {1.5 —0.2y(k)
- miE +momj_; ¢ N
—Z =mg,
bt kP (5.32) 0.1y (k)
my_y + ki Ca(k)+02)
¥ . T2 € (6.1)
M1 = by + a2 k+1 Corresponding to system (1.1), we hawve = 1.5;r2 =
mi, + ko 1.5;01 = 0.3;b2 = 0.2;a; = 0.1;a2 = 0., E = 159 =
> T2a2 _E_ my. 1;ky = 1;ks = 0.2; my = 1;me = 1; One could easily
by + — k see thatr; = 1.5 > 1 = q , thus the coefficients of
mk_l + k2

m
y ~ system (6.1) satisfies COﬂdi%iO(lAl) in Theorem 3.1.
(5.29)-(5.32) show thaf M’} and {M}/} are monotoni- From Theorem 3.1, system (6.1) is permanent. Numeric
cally decreasing{mj} and {m}} are monotonically in- simulations also support our finding(see Fig. 1 and 2).

creasing. Consequently,lim {MZ}, lim {M}} and
k— o0 k k— o0 k

kl'}rfoo {mi} kl}?@ {m}} both exist. Let Example 6.2.Considering the following system:
_ 2
; v _ im m® = X, _ k+1) = a(k {1 . S—
pm My =X, T mj =X (5:33) ak+1) sk exp = G 9
lim MY =Y, lim mj=Y. (5.34) 0.1z (k)
oo : - - —0.3z(k) — 7}
k—+ k—+ z(k) ) £ 1
From (5.26) and (5.27) we have
5 y(k+1) = y(k)exp {1.5 —0.2y(k)
q
T mEmX T oo ,M}
T, L@ AN R (5.35) x(k)+0.2)°
Ytk T X 4k - (6:2)
Here all the other coefficients are as that of Example 6.1,
- EEq < . only changer; = 1, ¢1 = 2, ms = 0.9. By calculating, we
S T o Y by + = (5:30) e My = 2 1} =1
Ytk 2T X A ks 17Eexp{rli b=1
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solution x

10 15 20
time n

Fig. 1. Dynamic behaviors of the first component of the
sdution (z(k),y(k)) of system (6.1) with the initial conditions
((0),5(0)= (0.1,3), (1.5,2) (2.5,1), (10,3) and (0.4,0.5),
respectively.

101

o N o ©
T T T T

solution y

10 15 20
time n

Fig. 2.  Dynamic behaviors of the second component of the
sdution (z(k),y(k)) of system (6.1) with the initial conditions
(2(0), 5(0))= (0.1,3), (1.5,2) (2.5,1), (10,3) and (0.4,0.5),

respectively.
consequently
2 qF
" 1.9 mlE + mng ( )

solution x

on
;2]

time n

Fig. 3. Dynamic behaviors of the first component of the
sdution (z(k),y(k)) of system (6.2) with the initial conditions
(z(0),y(0))= (0.1, 3), (1.5, 2) (2.5,1) and(0.4, 0.5), respective-

ly.

5.1. From Theorem 5.1, system (6.4) admits a unique positive
equilibrium, which is globally stable. Numeric simulations
also support our finding(see Fig. 4 and 5).

solution x

L

10
time n

5 15 20

Fig. 4. Dynamic behaviors of the first component of the
sdution (z(k),y(k)) of system (6.4) with the initial conditions
(z(0),y(0))= (0.1, 3), (1.5, 2) (2.5,1) and(0.4, 0.5), respective-

ly.

Hence, it follows from Corollary 4.1 that the first species

will be driven to extinction. numeric simulation (see Fig. 3)

supports this assertion.

Example 6.3.Considering the following system:

0.1z(k)
—0.3x(k) — W}
ylk+1) = y(k)exp {0.5 —0.2y(k)
B 0.1y (k) }
z(k)+0.2J’

(6.4)
Corresponding to system (1.1), we hawve = 0.5;79
0.5;01 = 0.3;02 = 0.2;a1 = 0.1;a2 = 0.1; E = 1;q
0.1;k1 = 1; k2 = 0.2; m; = 1;my = 1; One could easily see
thatbiks = 0.6 > ry = 0.5 > 0.1 = —,1 > ro, thus the

coefficients of system (6.4) satisfyl2) and(Ag) in Theorem

Volume 50, Issue 3:

VII. DISCUSSION

Stimulated by recently works of [3]-[5], [31]-[35],
we propose a discrete May cooperative system incorporating
Michaelis-Menten type harvesting. To the best of authors
knowledge, this is the first time that the discrete population
model incorporating Michaelis-Menten type harvesting is
proposed and studied.

With the help of two Lemmas (Lemma 2.5 and 2.6), we are
able to establish a set of sufficient conditions which ensure
the permanence of the system (Theorem 3.1), the condition is
very simple and easily verified. Numeric simulations (Fig.1
and 2) also support our findings.

We also focus our attention to the extinction property
of the system, since with the develop of the modern so
ociety, more and more species becomes endangered due to
the overfishing. Our result (Theorem 4.1) also confirm this
phenomena. If the catchablity coefficiepis enough large,
then inequality (4.1) holds, and it follows from Theorem 4.1
that the first species will be driven to extinction, despite the
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