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Abstract—In this paper, we mainly utilize the reduced six-
order compact finite difference scheme (R-CFDS6) based on
proper orthogonal decomposition (POD) and operator split-
ting method (R-CFDS6-OSM) to solve the two-dimensional
Fisher-Kolmogorov equation and extended Fisher-Kolmogorov
equation. Toward this end, the CFDS6 is built to attain
high accuracy for one-dimensional extended Fisher-Kolmogorov
equation. Then by means of the operator splitting method,
the two-dimensional extended Fisher-Kolmogorov equation has
been converted into a succession of one-dimensional equations
successfully, which can be solved easily with CFDS6 compared
with Alternating direction implicit method. Finally, by POD
method, we develop the R-CFDS6-OSM with fewer unknowns
and sufficiently high accuracy to improve the computational
efficiency of CFDS6 and furnish the algorithm procedure of
R-CFDS6-OSM. Some numerical examples are carried out
to validate the high accuracy, effectiveness and feasibility of
the R-CFDS6-OSM for the numerical solution of 2D Fisher-
Kolmogorov equation.

Index Terms—High order compact finite difference scheme,
Proper orthogonal decomposition, Operator-splitting method,
Extended-Fisher-Kolmogorov equation

I. INTRODUCTION

THE Fisher-Kolmogorov (FK) equation is considered as
a kind of nonlinear partial differential equations named

by Fisher and Kolmogorov, which is used to describe the
diffusion of organisms and the interaction in adaption. By
adding the fourth order derivative term in FK equation, the
new model, presented by Coullet [1] and Dee, is called as
the extended Fisher-Kolmogorov (EFK) equation. The EFK
equation is of important physical background. For example,
it is widely applied in sorts of physical phenomena such as
the hydrodynamics, plasma physics, thermonuclear reaction,
population growth and spread of infectious diseases and so on
[2]. However, due to their nonlinearity or the complexity of
computing domains, especially when their source term have
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no fixed rules, even if there exists the analytical solution [3]
theoretically, it isn’t easy to find the exact solution for the
problem in the actual engineering applications. Thus, finding
the numerical solutions becomes a feasible method.

Tracing back to the existing literatures, many numerical
solutions including the finite difference scheme (FDM) [4],
[5], finite element Galerkin method [6] and collocation
method [7], [8] have been published in order to pursue
the efficient and accurate numerical methods for the EFK
equation or the equation which has similar characters in one
and higher dimension. In these methods mentioned above, the
FDM is always regarded as the convenient and efficient way
for finding the numerical solution of EFK equation because
of the easy programming, straightforward and intuitive math-
ematical expression and wide application in applied fields of
sciences. Although some classical numerical schemes such
as the central difference or Euler method can be carried
out to solve the equation successfully, they converge very
slowly and may largely deviate from the exact solution after
some computing steps. Therefore, it is imperative for the FK
equation to develop a scheme that can guarantee a satisfying
numerical solution and reflect the properties of equations.

In the last decades, many scholars focus their eyes on the
compact finite difference scheme (CFDS). It has been proved
by many researches that the CFDS can lead to higher order
accurate approximations with smaller stencils compared with
corresponding explicit schemes in each coordinate direction
[9], [10], [11]. As one of the most effective numerical
implementations, a variety of high-order CFDS have been de-
veloped. For instance, Li employed six-order CFDS in space
to solve the 2D parabolic equation [12], nonlinear dispersive
waves [13]. Feng constructed the compact finite difference
for a class of space-time fractional differential equations
with the order of the spatial fractional derivative more than
two[14]. Deng and Xie proposed two high-order numerical
method for the one-dimensional Burgers’ equations[15]. The
authors in [16] proposed a compact finite-difference method
which uses a weighted compact scheme in space and Runge-
Kutta methods in time for the accurate simulation of the
atmospheric flows Sun constructed an unconditionally stable
scheme with combination of CFDS in spatial discretization
and Crank-Nicolson scheme for the temporal discretization
[17]. Zhai and Feng have introduced a novel method which
obtain six-order CFDS based on three different types of dual
partitions [18]. Especially, Mohebbi and Dehghan developed
High-order compact solution for heat and advection-diffusion
[19]. Moreover, they employed high order difference scheme
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and radial basis functions meshless approach for the frac-
tional Rayleigh-Stokes problem [20]. However, the CFDS6
for EFK and FK equations, especially the case of desirable
accuracy in high dimension, they usually need small spatial
discrezation or extended finite difference stencils and a
small time step which brings heavily computational loads.
Therefore, an important problem for CFDS6 is how to build
a scheme which not only saves the computational time in
the practical problems but also holds a sufficiently accurate
numerical solution.

A large number of numerical examples have proved that
the proper orthogonal decomposition (POD) is an effective
and feasible technique, which can provide the adequate
approximation for numerical models with fewer unknowns.
It can vastly alleviate the computational loads under guar-
anteeing the sufficiently accurate solution. The POD is also
known as Karhunen-Loève expansions in signal analysis or
principal component analysis in statistics, which has been
extensively used in the real-life application. Especially, it
has been applied to some reduced models including finite
element methods and finite volume element method [21],
[22], meshless method [23], finite difference method [24]
successfully. Nevertheless, most of these methods based on
POD are restricted to problems involving first and second
spatial derivatives. There are no papers concerning with
reduced high-order compact finite difference scheme based
on POD has been carried out for EFK equation involving
fourth derivatives and mixed derivatives. Thus, the first task
in this paper is to build the R-CFDS6 based on POD for
solving the EFK and FK equations

Alternating Direction Implicit(ADI) method is a classical
scheme to manage the multi-dimensional problem. The main
idea of ADI method is that the sets of one-dimensional prob-
lems can be obtained by different method in the discretization
of space and time. Since each one-dimensional problem
in each time step usually requires tridiagonal matrices to
solve, this way is feasible to deal with multi-dimensional
problem. Nevertheless, the accuracy of ADI only has second
order, which generates the accumulation of the truncated
errors in the process of computation. Especially, ADI may
produce considerable dissipation because it is complex to
implement in the program of computer and it requires a
large amount of computational effort. Thus, a crucial issue
for multi-dimensional problem is how to build more accurate
or convenient scheme. The authors of [25] solve the Burgers’
equation by introducing the splitting technique that splits
it into two sub-equations. Then each sub-equation can be
solved by different FDM. Similar with that, coupled with
cubic spline method, there are two-time-level splitting [26]
and three-time-level splitting technique [27] for solving the
Burgers’ equation. In [28], the authors have split the full
problem into hyperbolic, nonlinear and linear problem, then
different numerical method can be used for the numerical
solution of each of them. Sun [29] gave the framework of
splitting method for the radiative transfer problem. Therefore,
Operator splitting method (OSM) is an efficient method to
solve multi-dimensional problem and nonlinear equation. To
the best knowledge of authors, no high-order CFDS com-
bined with POD and OSM (R-CFDS6-OSM) aimed to solve
two-dimensional EFK and FK equations efficiently has been
developed so far. Hence, the second task in this paper is to

develop the R-CFDS6-OSM based on POD and OSM method
to attain high accurate numerical solution of two-dimensional
EFK and FK equations, which only contains very fewer
unknowns and simplifies whole process of computation.

The rest of this paper is arranged as follows. In Section II,
we build the CFDS6 for the one-dimensional EFK equations
and give the stability analysis. In Section III, the splitting
method is illustrated and the whole detailed procedure of
the algorithm is given. In Section IV, the R-CFDS6-OSM
based on the POD technique for the 2D EFK equation is
established. In Section V, we utilize four numerical examples
to demonstrate the reliability and effective of this algorithm.
Section VI provides the main conclusions and discussion.

II. THE CONSTRUCTION OF HIGH-ORDER COMPACT
FINITE DIFFERENCE SCHEME

We consider the following 1D EFK equation.
ut + γ ∂4u

∂x4 − ∂2u
∂x2 + f(u) = g, a ≤ x ≤ b, 0 < t ≤ T,

u(x, 0) = u0, a ≤ x ≤ b,
u(a, t) = u(b, t) = 0, a ≤ x ≤ b, 0 < t ≤ T,
uxx(a, t) = uxx(b, t) = 0, a ≤ x ≤ b, 0 < t ≤ T.

(1)
The form of f(u) occurs most in applications is that f(u) =
u3−u and γ is a constant. We first divide the time span [0,T]
into K time steps, which means that the time increment τ =
T/K and T = k · τ, k = 1, 2, · · ·K . The uniform 1D mesh
is consist of N points. The spatial step is h = (b − a)/N .
xi = (i− 1) · h, i = 1, 2, · · ·N .

According to different discretization in space, the CFDS
can be classified into two broad categories. The first step of
first ones is to apply central difference to the governing par-
tial differential equation. Then, the higher-order derivatives
in the truncation error are constantly replaced with low-order
derivatives of the partial differential equation, which is called
the traditional explicit finite differences. Based on the Taylor
expansion, the main idea of second ones is that the spatial
derivatives of u can be approximated by solving a system
of linear equations for any scalar value u. In this paper, we
choose the second way to build high-order compact finite
difference scheme for EFK equation.

The technique in [10] has implied that the derivatives of
u can be obtained by solving a diagonal system. For more
details on the whole derivation, please refer to [10], [30],
which will not be described here again. In the following, we
just list the final formulae of an implicit sixth-order compact
finite difference scheme.

For the approximate second-order derivatives at interior
nodes, the sixth-order scheme is given by the following:

2

11
u′′i−1 + u′′i +

2

11
u′′i+1 =

3

44h2
(ui+2 − ui + ui−2)

+
12

11h2
(ui+1 − 2ui + ui−1) .

(2)

For the approximate fourth-order derivatives at interior
nodes, the sixth-order scheme is given by the following:

7

26
u′′′′i−1 + u′′′′i +

7

26
u′′′′i+1 =

1

h4
(

1

78
ui−3 +

19

13
ui−2

− 465

78
ui−1 +

700

78
ui −

465

78
ui+1 +

19

13
ui+2 +

1

78
ui+3).

(3)
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For many EFK problems, they usually consider periodic
boundary condition. Thus, we can rewrite the Eq. (2)-(3)
as the matrix form:

B2u
′′ = A2u (4)

B4u
′′′′ = A4u (5)

where
u = (u1, u2, · · · , uN−1, uN )

B2=



1 2
11 0 0 · · · 2

11 0
2
11 1 2

11 0 · · · · · · 0
0 2

11 1 2
11 · · · · · · 0

...
. . . . . . . . . . . . . . .

...
0 · · · · · · 2

11 1 2
11 0

0 · · · · · · 0 2
11 1 2

11
0 2

11 · · · · · · 0 2
11 1


N×N

A4=
1

h4



700
78 − 465

78
19
13

1
78 · · ·

− 465
78

700
78 − 465

78
19
13

1
78

19
13 − 465

78
700
78 − 465

78
19
13

1
78

19
13 − 465

78
700
78 − 465

78
...

. . . . . . . . . . . .
0 · · · 1

78
19
13 − 465

78
0 1

78 · · · 1
78

19
13

0 19
13

1
78 · · · 1

78
0 0 · · · · · · · · ·

1
78

19
13 − 465

78 0
· · · 1

78
19
13 0

1
78 · · · 1

78 0
19
13

1
78 · · · 0

. . . . . . . . .
...

700
78 − 465

78
19
13

1
78

− 465
78

700
78 − 465

78
19
13

19
13 − 465

78
700
78 − 465

78
· · · · · · 0 0


N×N

(6)

A2 =
1

h2

− 51
22

12
11

3
44 · · · − 51

22
12
11 0

12
11 − 51

22
12
11

3
44 · · · 3

44 0
3
44

12
11 − 51

22
12
11

3
44 · · · 0

...
. . . . . . . . . . . . . . .

...
0 · · · 3

44
12
11 − 51

22
12
11

3
44

0 3
44 · · · 3

44
12
11 − 51

22
12
11

0 12
11

3
44 · · · 3

44
12
11 − 51

22


N×N

B4=



1 7
26 0 0 · · · 7

26 0
7
26 1 7

26 0 · · · · · · 0
0 7

26 1 7
26 · · · · · · 0

...
. . . . . . . . . . . . . . .

...

0 · · · · · · 7
26 1 7

26

...
0 · · · · · · 0 7

26 1 7
26

−1 · · · · · · 0 0 0 1


N×N

We refer to [10], [30] for more details on other boundary
conditions, which will not be described here again. As de-
scribe above, the semi-discrete method for the EFK equation
in Eq. (1) is that the EFK equation has been transformed
into a system of initial value problem, which is consist of
ordinary differential equations (ODEs) by compact scheme
Eq. (2)-(5). Then the time-dependent governing ODEs can
be solved successfully by means of the fourth-order Runge-
Kutta (RK4) scheme.

du

dt
= L1 (u) + L2 (g) (7)

where the operator L1 (u) represents the non-linear operator
in spatial, L2 (g) represents non-homogeneous operator in
spatial. Assuming that the value of uk at tk is given, then
the numerical solution uk+1 at tk+1 = tk+τ can be achieved
through the following operations:

u0 = u(x, tk), g0 = g(x, tk)
k0 = τ · L1(u0) + τ · L2(g0)
u1 = u0 + k0/2, g1 = g(x, tk+ 1

2
)

k1 = τ · L1(u1) + τ · L2(g1)
u2 = u0 + k1/2, g2 = g(x, tk+ 1

2
)

k2 = τ · L1(u2) + τ · L2(g2)
u3 = u0 + k2, g3 = g(x, tk+1)
k3 = τ · L1(u3) + τ · L2(g3)
K = 1

6 (k0 + 2k1 + 2k2 + k3), uk+1 = u0 +K
(8)

The derivatives related to the operator L1(u) at each time
level can be computed by the Eq. (4)-(5). In additional,
the non-homogeneous terms are known. Then, the numerical
solution of EFK or FK equation at tk+1 can be obtained by
the RK4 method. Thus, we can calculate the value at any
time steps through many iterations under the given initial
value.

In the following, we will use the linear stability theory
to study the stability of proposed method in Eq. (7) by the
theory in [31]. For the sake of discussion, but without losing
generality, we assume the g(x, t) = f(x, t) = 0 in Eq. (1),
then the Eq. (7) can be rewritten as follows:

du

dt
= Qu, (9)

where Q = B−12 A2 − γB−14 A4. Moreover, it should be
noted that the Q include the spatial step (denoted h).

We can define the following polynomials for the time-
dependent governing ODEs.

R(s) = 1 + s+
1

2!
s2 +

1

3!
s3 +

1

4!
s4, (10)

where s = τλ, λ is the eigenvalue of Q.

Based on the previous work in [31], it is easily known that
if

‖R(s)‖∞ < 1, (11)

the stability of the RK4 scheme is guaranteed. By compu-
tation, it is not difficult to conclude that the stable region
of RK4 scheme is s ∈ [−2.78529, 0]. Thus, the Eq. (9)-(11)
can be used to confirm the simple stability bound.

τ <
2.78529

‖λ‖∞
. (12)
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III. THE ESTABLISHMENT OF CFDS6 FOR THE 2D EFK
EQUATION

The ADI method proposed by Peaceman and Rachford
[32] is a well-known method to solve multi-dimensional
problems, which replaces multi-dimensional problems with
a number of one-dimensional problems. Nevertheless, the
accuracy of ADI is found that it only has second order
accuracy. Besides, this method may result a complicated
set of equations, which is very expensive to solve. The
benefits of ADI method are that the equation in each step can
be solved by the tri-diagonal matrix algorithm successfully.
Nevertheless, the ADI method for two-dimensional EFK
equation, they usually need more advanced way to deal
with the mixed derivatives. Compared with ADI, operator
splitting method (OSM) is an effective numerical method
for solving multi-dimensional problems by converting it to a
series of one-dimensional problems and the programming is
very simple. It also can be used to accelerate that calculation
of problems relate to operators of different time scales. In
this section, instead of using ADI, we use CFDS6-OSM to
solve 2D EFK equation. First, we apply OSM to decompose
it into sub-equation. Then, we solve each sub-equation by
CFDS6.

A. The detailed methods for 2D EFK equation

The authors in [33] have developed high order splitting
methods for the numerical solutions of one dimensional
Burgers’ equation with periodic, Dirichlet, Neumann and
Robin boundary conditions. Motivated by the idea, the 2D
EFK equation is split as follows:

For the following 2D EFK equation. ut + γ∆2u−∆u+ f(u) = g, (x, y, t) ∈ Ω× (0, T ],
u(x, y, 0) = u0(x, y), (x, y) ∈ Ω,
u = 0, ∆u = 0, (x, y, t) ∈ ∂Ω× (0, T ],

(13)
where the ∆ is the Laplace operator and f(u) = u3−u. Let
Ω= (0,a2) × (0,b2), Nx and Ny be any positive integers,
hx = a2/(Nx − 1), hy = b2/(Ny − 1), xi = (i − 1)hx,
yj = (j − 1)hy , i = 1, 2, · · · , Nx, j = 1, 2, · · · , Ny . In this
work, for the convenience of computation, we let hx = hy
and Nx = Ny . uni,j ≈ u(xi, yj , tk).

The Eq. (13) has been split into:

du1

dt
= −f(u1) + g (14)

du2

dt
=
∂2u2

∂x2
− γ ∂

4u2

∂x4
(15)

du3

dt
=
∂2u3

∂y2
− γ ∂

4u3

∂y4
(16)

du4

dt
= −2γ

∂4u4

∂x2∂y2
(17)

Authors in [34] presented the OSM for particular ex-
amples of the PDEs with Burgers’ nonlinearity, where the
convergence of the Strang splitting method and theory for
the equation in Sobolve spaces is given. In [35], they
analyze operator splitting for the Benjamin-Ono equation and
show the convergence of both Godunov and Strang splitting
methods. Especially, in [36], the authors have applied the

iterative operator splitting method on the Korteweg-de Vries
(KdV) equation, which is similar with our schemes. Firstly,
splitting the complex problem into simpler sub-problems.
Secondly, each sub-equation is solved with iterative schemes.
In addition, they also have presented the stability criteria of
their method applied to the KdV equation with Von Neu-
mann analysis. Therefore, similar convergence and stability
analysis can be expected for the Eq. (13)-(17).

B. The CFDS6 for the sub-problem

Each sub-problem in Eq. (13)-(17) can be solved by
the CFDS6. In the following, we will give the specific
implementation of the CFDS6-OSM for the 2D EFK equa-
tions. We denote the u ,j = (u1,j , u2,j , · · · , uNx,j)

T and
ui, = (ui,1, ui,2, · · · , ui,Ny

)T .

Algorithm 1 Implementation of the CFDS6-OSM for the 2D
EFK equations

1: Compute the initial value of u0i,j (i = 1, 2, · · · , Nx. j =
1, 2, · · · , Ny)

2: for k = 1, 2, · · · ,K do
(a) Compute the Eq. (14) by the Eq. (7)-(8) with L1 (u) =

u− u3 and L2 (g).
i. Compute the fi,j = (uk−1i,j )3−uk−1i,j for the domain

(i = 1, 2, · · · , Nx. j = 1, 2, · · · , Ny) in Eq. (14).
ii. Compute the gk−1i,j = g(xi, yj , (k− 1) · τ), gk−0.5i,j

and gki,j in Eq. (14). The computational domain is
same as fi,j .

iii. Do j = 1, 2, · · · , Ny Computer the u1
k
,j by the

Eq. (8).
(b) Compute the Eq. (15) by the Eq. (7)-(8) with L1 (u) =

∂2u2

∂x2 − γ ∂4u2

∂x4 and L2 (g) = 0.
i. Do j = 1, 2, · · · , Ny Compute

the (u2xx) ,j=B2
−1A2u1

k
,j and

(u2xxxx) ,j=B4
−1A4u1

k
,j in Eq. (15).

ii. Do j = 1, 2, · · · , Ny Computer the u2
k
,j by the

Eq. (8).
(c) Compute the Eq. (16) by the Eq. (7)-(8) with L1 (u) =

∂2u3

∂y2 − γ ∂4u3

∂y4 and L2 (g) = 0.
i. Do i = 1, 2, · · · , Nx Compute

the (u3yy)i, =B2
−1A2u2

k
i, and

(u3yyyy)i, =B4
−1A4u2

k
i, in Eq. (16).

ii. Do i = 1, 2, · · · , Nx Computer the u3
k
i, by the

Eq. (8).
(d) Compute the Eq. (17) by the Eq. (7)-(8) with L1 (u) =

−2γ ∂4u4

∂x2∂y2 and L2 (g) = 0.
i. Do i = 1, 2, · · · , Nx Compute the

(u4yy)i, =B2
−1A2u3

k
i, .

ii. Do j = 1, 2, · · · , Ny Compute the
(u4yyxx) ,j=B2

−1A2(u4yy)k,j .
iii. Do j = 1, 2, · · · , Ny Computer the uk

,j by the Eq.
(8).

IV. ESTABLISHMENT OF THE R-CFDS6-OSM FOR THE
2D FISHER-KOLMOGOROV EQUATION

We have listed the details of implementation of CFDS6-
OSM for the high accuracy numerical solution of EFK
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equation. Although the CFDS6-OSM for the EFK equation
has been posed above, it usually either needs small spatial
discrezation or extended finite difference stencils and a small
time step which results in computational expensive calcula-
tions. Therefore, a key issue in practical engineering prob-
lems is that how to build a reduced-order scheme possesses
the fewer unknowns so as to ease the computational burden
and gains the sufficiently high accuracy of the CFDS6-
OSM. As described in the Introduction, the POD is an
effective way to reduce the unknowns of original scheme
while guaranteeing the the sufficiently accurate numerical
solutions for the original scheme. Hence, in the following,
we first illustrate the details about the formulation of POD
basis, then the R-CFDS6-OSM is established for the EFK
equation.

A. The procedure of formulating the POD basis

The whole procedures can be summarized as follows:
Step 1. The construction of snapshots
Let ukm = uki,j(1 ≤ m = (j − 1) · Nx + i ≤ M =

Nx · Ny, 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, 0 ≤ k ≤ K).
Then, the CFDS6-OSM solutions can be denoted by
the set

{
ukm
}K
k=1

(1 ≤ m ≤ M). Firstly, we gain the
first L(L ≤ K) sequence of the CFDS6-OSM solutions{
ukm
}L
k=1

(1 ≤ m ≤ M,L ≤ K) for the Eq. (15)
as snapshots, then we get the snapshots which can be
expressed as the M × L snapshot matrices.

D =



u11 u21 · · · uk1 · · · uL1
u12 u22 · · · uk2 · · · uL1
...

...
. . .

...

u1m u2m
. . . uLm

...
...

. . .
...

u1M u2M · · · ukM · · · uLM


Although the snapshot in this paper is obtained through the

CFDS6-OSM solution, in fact, the collection of snapshots
can be constructed through experiments and interpolation
when calculating the actual problem. For example, for some
natural phenomena such as weather change and biology
anagenesis, if the development and change are closely related
to previous results, or if the physical system of the natural
phenomena performs well, that is, the past dynamics is
representative and inclusive of the future dynamics, then the
previous or existing data from experiment can be used to
formed a snapshot. Then the POD basis is obtained via using
the POD method mentioned as follows and we can derive an
efficient scheme with fewer unknowns. Therefore, the devel-
opment and change of some future natural phenomena can
be effectively calculated and predicted, which has important
applied prospect for realistic applications.

Step 2. The singular value decomposition for the snapshot
D

By the singular value decomposition, we have

D = U

(
Sr×r Or×(L−r)

O(M−r)×r O(M−r)×(L−r)

)
V T

where Sr×r = diag {σ1, σ2, · · · , σr}. The σi(i =
1, 2, · · · , r) is the singular value of D, which satisfy the
relations of σ1 ≥ σ2 ≥ · · · ≥ σr > 0. r=rank(D).

U = (α1,α2, · · · ,αM ) is an M × M orthogonal ma-
trix, αi(i = 1, 2, · · · ,M) are the eigenvectors of DDT

arranged corresponding to the order of σi(i = 1, 2, · · · , r).
VL×L = (χ1,χ2, · · · ,χL) is orthogonal matrix and χi(i =
1, 2, · · · , L) is the eigenvectors of DTD. It should be noted
that the arrangement of χi is the same as αi.

It is clearly to find that the number of mesh points M is
much larger than the that of snapshots L extracted from the
CFDS6-OSM solutions. Since there exists the M � L, it
can be concluded that the degree of DDT is much larger
than the degree ofDTD. Especially, the positive eigenvalues
λi = σ2

i of DTD and DDT are identical.
Hence, we can first obtain the eigenvalues λi for the matrix

DTD and the associated eigenvectors χi. By using the
following formulae:

αi =
1

σi
Dχi, i = 1, 2, · · · , r

we can compute the eigenvectors αi(1 ≤ i ≤ r ≤ L)
corresponding to the nonzero eigenvalues for matrix DTD.

Choose

Dd = U

(
Sd×d Od×(L−d)

O(M−d)×d O(M−d)×(L−d)

)
V T ,

where Sd×d = diag {σ1, σ2, · · · , σd}. Thus we have the
following formulae

Dd = ααTD, α = (α1,α2, · · · ,αd).

Step 3. The construction of POD basis
The ‖D‖2,2 = supu∈RL

‖Du‖2
‖u‖2

is the norm of matricesD,
where the ‖u‖2 is the norm for vector u. By the relationship
between the matrix norm and its spectral radius [37], we have
the following:

‖D −Dd‖2,2 =
∥∥D −ααTD

∥∥
2,2

=
√
λd+1 (18)

The L column vectors of D is denoted as uk =
(uk1 , u

k
2 , · · · , ukm, · · · , ukM )T (k = 1, 2, · · ·L), we have the

following:∥∥uk − uk
d

∥∥
2

= ‖(D −Dd)εk‖2 ≤ ‖D −Dd‖2,2‖εk‖2
=
√
λd+1

(19)
The εk represents the unit vector with nth component being
1. uk

d = Ddεk = ααTDεk =
∑

d
j=1(αj ,u

k)αj , where the
(αj ,u

k) denotes the inner product of αj and uk. In a word,
the uk

d is the projection of the uk onto the subspace span
{α1,α2, · · · ,αd}. The inequality Eq. (19) has illustrated
that the uk

d is the optimal approximation of uk under the
error between them is no more than

√
λd+1. Therefore, α

is an orthogonal optimal POD basis of D.

B. Establishment of the R-CFDS6-OSM

In this sub-section, we will utilize the POD basis to
construct the reduced model for the Eq. (15). In Eq. (15),
the uk = (uk1 , u

k
2 , · · · , ukm, · · · , ukM )T (1 ≤ k ≤ K).

By the POD basis α, we get the R-CFDS6-OSM solution
uk
d = ααTDεk = ααTuk and we put it in Eq. (8) to

replace uk by
uk
d = αV k

d (20)
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where the V k
d = (vk1 , v

k
2 , · · · , vkd)T . For the uk, we can

use the following formulae to obtain their second-order
derivatives and fourth-order derivatives:

u′′ = C1u (21)

u′′′′ = C2u (22)

where

C1 =


B2
−1A2 0 · · · 0

0 B2
−1A2

. . .
...

...
. . . . . . 0

0 · · · · · · B2
−1A2


M×M

C2 =


B4
−1A4 0 · · · 0

0 B2
−1A2

. . .
...

...
. . . . . . 0

0 · · · · · · B4
−1A4


M×M

By multiplying the αT in the left hand of Eq. (4) and
Eq. (5), we can get the reduced second-order derivatives and
fourth-order derivatives:

(αT )d×M (uk′′)M×1 = (αTC1α)d×d(V k
d )d×1 (23)

(αT )d×M (uk′′′′)M×1 = (αTC2α)d×d(V k
d )d×1 (24)

Similar with the way mentioned in Eq. (7), the Eq. (15) also
can be written in the form of ODE

du

dt
= L1 (u) (25)

In the Eq. (8), the CFDS6 is given. Let V0 = αTuk, we can
achieve the R-CFDS6 for Eq. (15) as follows:

k0 = τ · L1(V0), V1 = V0 + k0/2,

k1 = τ · L1(V1), V2 = V0 + k1/2,

k2 = τ · L1(V2), V3 = V0 + k2,

k3 = τ · L1(V3), K = k0 + 2k1 + k2 + k3,

V k+1 = V0 + 1
6K, uk+1

d = αV k+1.

(26)

We have achieved the R-CFDS6-OSM solution vector uk+1
d

by solving the Eq. (23)-(26) which only involves d(d�M)
unknowns. Hence, in the similar way, we also can achieve
the R-CFDS6-OSM solution for Eq. (16). It can be easily
understood that the CFDS6-OSM on each time step includes
M unknowns while the R-CFDS6-OSM on each time step
only contains d(d < L � M) unknowns. Therefore, it has
been confirmed that the R-CFDS6-OSM can save the CPU
time required for computation, which is far superior to the
CFDS6-OSM for the 2D Fisher-Kolmogorov equation.

V. NUMERICAL EXAMPLES

In order to see whether the present method is capable of
getting an accurate solution, in this section, the CFDS6-OSM
will be evaluated for four EFK or FK examples given below.
In the case of the different number of nodes, we have some
tests of accuracy and efficiency for the method described
in this article. We performed our computations using Matlab
2018a software on a Ryzen 7 1800X, 3.6 GHz CPU machine
with 16 GB of memory. The convergence order of the method

presented in this article is calculated with this formula

R=
log errornew

errorold

log hnew

hold

Example 1: We consider the following 1D EFK
equation(SP1)

∂u
∂t + γ ∂4u

∂x4 − ∂2u
∂x2 + f(u) = g(x, t), (x, t) ∈ Ω× (0, 1]

u(x, 0) = sin(x), 0 ≤ x ≤ 2π,
u(0, t) = u(1, t) = 0, 0 < t ≤ 1.

Exact solution of problem is given by u(x, t) = e−t sin(x)
for x ∈ Ω = [0, 2π] and t ∈ [0, 1]. γ = 2 and g(x, t) =
e−3t sin (x)3 + e−t sin(x).

The derivatives of SP1 is approximated by the Eq. (2)-
(5) and γ = 2. To verify the convergence of CFDS6,
we fix time increment τ = 0.000001 and decrease the
spatial step from 1/10 to 1/80 in Table I. Table I also
presents the maximum error of CFDS6 and computational
time for different distributed points. It shows that CFDS6
has achieved the expected sixth order accuracy, which is
confirmed by solving the SP1 with various mesh sizes. Figure
1-2 depicts the numerical solution and error of CFDS6 Eq.
(8) with h = 0.025π at T = 1. It is obviously noted that
these computed results are in good agreement with the exact
solution of SP1.

TABLE I
THE CONVERGENCE ORDER AND MAXIMUM ERROR FOR SP1 AT t = 1

Nodes 21× 21 41× 41 81× 81

CFDS6-OSM
Max(error) 1.6814e-07 2.6119e-09 5.1793e-11

Time(s) 31.325176 56.985801 116.380887
Order - 6.0084 5.6562
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Fig. 1. The CFDS6(N = 41) solution at t = 0.25, 0.5, 0.75, 1.0 for SP1.
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Fig. 2. The CFDS6(N = 41) error at t = 0.25, 0.5, 0.75, 1.0 for SP1.
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Example 2: We consider the following 1D EFK
equation(SP2)

∂u
∂t + γ ∂4u

∂x4 − ∂2u
∂x2 + f(u) = 0, 0 ≤ x ≤ 2π, 0 < t ≤ 1

u(x, 0) = sin(x), 0 ≤ x ≤ 2π,
u(0, t) = u(1, t) = 0, 0 < t ≤ 1.

The exact solution of SP2 is absent. We let γ = 2. We take
the numerical solution when N = 81 in CFDS6 as the exact
solution u approximately so as to get the maximum absolute
error in different nodes and verify the convergence of our
scheme. This problem contains a fourth-order derivative,
which also can be approximated by the Eq. (2)-(5). we fix
time increment τ = 0.000001 in the computation. when h is
reduced by a factor of 2, the maximum error of u is reduced
by a factor of 26, which is confirmed by the data in the
Table II. In addition, Table II presents the maximum error
of CFDS6 and computational time for different distributed
points. The maximum absolute error is 6.3842× 10−6 when
N = 11, which shows that CFDS6 can still successfully
produce very accurate solution via significantly coarse grid.
Figure 3-4 plots the numerical solution of SP2 with N = 41
,which indicates that the spatial error is rapidly smaller and
almost negligible.

TABLE II
THE CONVERGENCE ORDER AND MAXIMUM ERROR FOR SP2 AT t = 1

Nodes 11× 11 21× 21 41× 41

CFDS6-OSM
Max(error) 6.3482e-06 1.0096e-07 1.5374e-09

Time(s) 0.992494 1.591310 2.906707
Order - 5.9745 6.0371
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Fig. 3. The CFDS6(N = 41) solution at t = 0.25, 0.5, 0.75, 1.0 for SP2.
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Fig. 4. The CFDS6(N = 41) error at t = 0.25, 0.5, 0.75, 1.0 for SP2.

Example 3: We consider the following 2D FK

equation(SP3)
ut −∆u+ f(u) = g(x, y, t), (x, y) ∈ Ω, 0 < t ≤ 1,
u(x, y, 0) = sin(x) sin(y), (x, y) ∈ Ω = [0, 1]× [0, 1],
u(0, y, t) = u(2π, y, t) = 0, y ∈ [0, 1], 0 < t ≤ 1,
u(x, 0, t) = u(x, 2π, t) = 0, x ∈ [0, 1], 0 < t ≤ 1.

The exact solution of SP3 is u(x, y, t) = e−t sin(x) sin(y)
and g(x, y, t) = (e−t sin(x) sin(y))3. Time increment τ is
fixed as 0.0001. This problem is a 2D problem, thus the OSM
is needed for the computation. The implementation of OSM
has been specifically modeled in Algorithm 1. The first step
of it is that split it into four sub-problems by the Eq. (14)-
(17). The second step is that each sub-problem can be solved
by the CFDS6-OSM effectively. By making use of POD, the
R-CFDS6-OSM is used to improve the efficiency of CFDS6-
OSM. Table III gives the maximum error of CFDS6-OSM
and computational time while Table IV gives the maximum
error of R-CFDS6-OSM and computational time for different
distributed points, which shows that the spatial errors of them
are rapidly smaller and almost negligible and R-CFDS6-
OSM saves a lot of computational time under same nodes. In
addition, we fix τ = 0.0001 and hx = hy = h,then reduce
h each time. It can be clearly seen that in Table III and
Table IV the CFDS6-OSM and R-CFDS6-OSM are six-order
accurate in space, since the maximum error for u is reduced
by a factor about 26 each time. Moreover, the images in
Figure 5-6 and Figure 7-8 are almost identical at t = 1. The
difference in Figure 9 has confirmed that the R-CFDS6-OSM
with fewer unknowns compared with CFDS6-OSM holds the
significant information for solving the 2D FK equation.

TABLE III
THE CONVERGENCE ORDER AND MAXIMUM ERROR OF CFDS6-OSM

FOR SP3 AT t = 1

Nodes 11× 11 21× 21 41× 41

CFDS6-OSM
Max(error) 1.2756e-05 2.1649e-07 3.3664e-09

Time(s) 0.527388 3.089644 88.453205
Order - 5.8807 6.0069

TABLE IV
THE CONVERGENCE ORDER AND MAXIMUM ERROR OF R-CFDS6-OSM

FOR SP3 AT t = 1

Nodes 11× 11 21× 21 41× 41

R-CFDS6-OSM
Max(error) 1.2756e-05 2.1649e-07 3.3675e-09

Time(s) 0.392539 0.641083 1.553634
Order - 5.8807 6.0064
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Fig. 5. The CFDS6-OSM(Nx = Ny = 41) solution at t = 1 for SP3.
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Fig. 6. The CFDS6-OSM(Nx = Ny = 41) error at t = 1 for SP3.
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Fig. 7. The R-CFDS6-OSM(Nx = Ny = 41) solution at t = 1 for SP3.

Example 4: We consider the following 2D EFK
equation(SP4)


ut + γ∆2u−∆u+ f(u) = 0, (x, y) ∈ Ω, 0 < t ≤ 1,
u(x, y, 0) = sin(x) sin(y), (x, y) ∈ Ω = [0, 1]× [0, 1],
u(0, y, t) = u(2π, y, t) = 0, y ∈ [0, 1], 0 < t ≤ 1,
u(x, 0, t) = u(x, 2π, t) = 0, x ∈ [0, 1], 0 < t ≤ 1.

Similar with Example 2, the numerical solution when
Nx = Ny = 81 in CFDS6 can be taken as the exact solution
u approximately. We let γ = 1 and τ = 0.000001. This
problem is much complicated than other examples, since it
not only contains the mixed derivatives, but also has the
fourth-order derivatives. The implementation of OSM has
been analogously modeled in Algorithm 1. Firstly, we split
it into four subproblems by the Eq. (14)-(17), then each
subproblems can be solved, which indicates the effective of
the OSM. The maximum absolute error in different nodes
and the convergence of CFDS6-OSM and R-CFDS6-OSM
are reported in Table V and Table VI respectively, where
the expected six-order has been achieved. By comparing the
computational time of R-CFDS6-OSM and CFDS6-OSM,
it can be found the obvious advantages of the R-CFDS6-
OSM. The numerical results are drawn in Figure 10-11 and
Figure 12-13, which demonstrates that both of them have
high accuracy with rapidly smaller and almost negligible. In
additional, we also plot the difference between two schemes
in Figure 14, which shows the R-CFDS6-OSM can maintain
the important information.
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Fig. 8. The R-CFDS6-OSM(Nx = Ny = 41) error at t = 1 for SP3.

0

5

10

0

5

10
0

0.5

1

1.5

x 10
−12

xy

d
if

fe
re

n
ce

Fig. 9. The difference between R-CFDS6-OSM and CFDS6-OSM(Nx =
Ny = 41) at t = 1 for SP3.

TABLE V
THE CONVERGENCE ORDER AND MAXIMUM ERROR OF CFDS6-OSM

FOR SP4 AT t = 1

Nodes 11× 11 21× 21 41× 41

CFDS6-OSM
Max(error) 5.3521e-07 9.0071e-09 1.3738e-10

Time(s) 215.175615 1049.261344 4358.631622
Order - 5.8929 6.0348

TABLE VI
THE CONVERGENCE ORDER AND MAXIMUM ERROR OF R-CFDS6-OSM

FOR SP4 AT t = 1

Nodes 11× 11 21× 21 41× 41

R-CFDS6-OSM
Max(error) 5.3521e-07 8.9989e-09 1.3953e-10

Time(s) 92.714222 183.291991 343.417270
Order - 5.8942 6.0111
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Fig. 10. The CFDS6-OSM(Nx = Ny = 21) solution at t = 1 for SP4.
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Fig. 11. The CFDS6-OSM(Nx = Ny = 21) error at t = 1 for SP4.
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Fig. 12. The R-CFDS6-OSM(Nx = Ny = 21) solution at t = 1 for SP4.
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Fig. 13. The R-CFDS6-OSM(Nx = Ny = 21) error at t = 1 for SP4.
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Fig. 14. The difference between R-CFDS6-OSM and CFDS6-OSM(Nx =
Ny = 21) at t = 1 for SP4.

VI. CONCLUSION

In this article, we have established the R-CFDS6-OSM
for the numerical solution of two-dimensional EFK equation.
We first decompose the two-dimensional EFK equation into
a series of one-dimensional equation by the OSM, which
is easy to be solved compared with the ADI. For the one-
dimensional problems, the CFDS6 is used to solve it and the
derivatives are approximated by the Eq. (2)-(5), then the RK4
method is used for solving the resulting system of ODEs.
Lastly, the POD technique is employed to improve the com-
putational efficiency of CFDS6 so that the R-CFDS6-OSM
maintains all the superiority of CFDS6-OSM. The efficiency
and reliability of our methods are demonstrated by the four
numerical examples, which indicates the proposed method
can appreciably improve the accuracy of numerical solution
and save the time required for computation. In additional,
OSM is an feasible way to deal with complicated problem
containing mixed derivatives and the detailed algorithm is
furnished. The implementation of R-CFDS6-OSM is very
easy to program for the nonlinear equations. Therefore, the
combination of R-CFDS6 based on POD and OSM can solve
the two-dimensional EFK equation very successfully.
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