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Abstract—By modeling the network structure with a graph,
the corresponding data transmission problem can be trans-
formed into a fractional flow problem on the graph. Under
certain specific conditions, the transmission path of data is
required to pass through certain special channels, thus the
corresponding mathematical framework is transformed into
the existence of fractional covered graphs under the special
network graph structure. In this paper, by means of the
necessary and sufficient conditions for fractional (g, f, n′,m)-
critical covered graphs, we obtain some sufficient conditions on
graph parameters of fractional covered graphs. Furthermore,
we point out that these results are tight in terms of some
counterexamples, and the results have potential guiding value
for network designing.

Index Terms—network, graph, fractional factor, fractional
covered graph.

I. INTRODUCTION

THE problem of data transmission has always been the
focus of computer network research (see [1],[2]). From

a mathematical perspective, the stations and channels in the
network are represented by vertices and edges respectively,
then the entire network is a graph [3], [4]. If some channels
are restricted to transmit data only one way, the correspond-
ing graph model is a directed graph; if all channels can
transmit data in both directions, the corresponding graph
model is an undirected graph [5], [6]. The data transmission
problem on the network can be studied by the fractional flow
on the graph, that is, the existence of the fractional factor
[7], [8]. At the moment of resource scheduling, there may be
some changes in the actual network. For example, some sites
cannot be used due to congestion or failure; some channels
cannot be used due to congestion or failure; some channels
can only realize unidirectional resource transmission from a
certain point to a certain point. These specific situations are
actually considered in network resource scheduling. Model
them from the perspective of graph theory and study the
sufficient conditions for resource scheduling within a certain
amount of scheduling resources under a specific network
graph. More contents on networks and fractional factor can
be referred to [9] and [10].

All graphs considered in this paper are finite, loopless, and
without multiple edges. Let G be a graph with the vertex
set V (G) and the edge set E(G). Let n = |V (G)|, i.e.,
the order of graph G. For a vertex x ∈ V (G), the degree
and the neighborhood of x in G are denoted by dG(x)
and NG(x), respectively. Let ∆(G) and δ(G) denote the
maximum degree and the minimum degree of G, respectively.
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For S ⊆ V (G), we denote by G[S] the subgraph of G
induced by S, and let G−S = G[V (G)\S]. For two disjoint
subsets S and T of V (G), we use eG(S, T ) to denote the
number of edges with one end in S and the other in T . The
binding number bind(G) of a graph G is defined as follows:

bind(G) = min{ |NG(X)|
|X|

|∅ 6= X ⊆ V (G), NG(X) 6= V (G)}.

Let σ2(G) = min{dG(u) + dG(v)} for each pair of non-
adjacent vertices u and v of G.

Suppose that g and f are two integer-valued functions on
V (G) such that 0 ≤ g(x) ≤ f(x) for all x ∈ V (G). A
fractional (g, f)-factor is a function h that assigns to each
edge of a graph G a number in [0,1] so that for each vertex x
we have g(x) ≤ dhG(x) ≤ f(x), where dhG(x) =

∑
e∈E(x)

h(e)

is called the fractional degree of x in G. If g(x) = f(x) for
all x ∈ V (G), then a fractional (g, f)-factor is a fractional f -
factor. Moreover, if g(x) = f(x) = k (k ≥ 1 is an integer)
for all x ∈ V (G), then a fractional (g, f)-factor is just a
fractional k-factor. The recent results on fractional factor can
be found in [11] and [12].

A graph G is called a fractional (g, f,m)-covered graph
if for each edge subset H ⊆ E(G) with |H| = m, there
exists a fractional (g, f)-factor h such that h(e) = 1 for all
e ∈ H . A graph G is called a fractional (g, f, n′)-critical
graph if after delated any n′ vertices from G, the resulting
graph still has a fractional (g, f)-factor.

The first author of this paper first introduced the concept
of a fractional (g, f, n′,m)-critical covered graph [13]. A
graph G is called a fractional (g, f, n′,m)-critical covered
graph if after deleting any n′ vertices from G, the result-
ing graph is still a fractional (g, f,m)-covered graph. If
g(x) = a and f(x) = b for all x ∈ V (G), then fractional
(g, f,m)-covered graph, fractional (g, f, n′)-critical graph,
and fractional (g, f, n′,m)-critical covered graph are frac-
tional (a, b,m)-covered graph, fractional (a, b, n′)-critical
graph, and fractional (a, b, n′,m)-critical covered graph,
respectively. If g(x) = f(x) for all x ∈ V (G), then fractional
(g, f,m)-covered graph, fractional (g, f, n′)-critical graph,
and fractional (g, f, n′,m)-critical covered graph are frac-
tional (f,m)-covered graph, fractional (f, n′)-critical graph,
and fractional (f, n′,m)-critical covered graph, respectively.
Furthermore, if g(x) = f(x) = k (k ≥ 1 is an integer) for all
x ∈ V (G), then fractional (g, f,m)-covered graph, fractional
(g, f, n′)-critical graph, and fractional (g, f, n′,m)-critical
covered graph are just fractional (k,m)-covered graph, frac-
tional (k, n′)-critical graph, and fractional (k, n′,m)-critical
covered graph, respectively.

In particular, if m = 1, then fractional (g, f, n′,m)-critical
covered graph, fractional (g, f,m)-covered graph, fraction-
al (a, b, n′,m)-critical covered graph, fractional (a, b,m)-
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covered graph, fractional (f, n′,m)-critical covered graph,
fractional (f,m)-covered graph, fractional (k, n′,m)-critical
covered graph and fractional (k,m)-covered graph are frac-
tional (g, f, n′)-critical covered graph, fractional (g, f)-
covered graph, fractional (a, b, n′)-critical covered graph,
fractional (a, b)-covered graph, fractional (f, n′)-critical cov-
ered graph, fractional f -covered graph, fractional (k, n′)-
critical covered graph and fractional k-covered graph respec-
tively. Several related contributions can be referred to [14],
[15], [16] and [17].

The fractional covered graph describes the feasibility of
transmission when data transmission is required to pass
through certain specific channels. Gao and Wang [13] de-
termined the Necessary and sufficient condition for a graph
G to be fractional (g, f, n′,m)-critical covered.

Lemma 1: (Gao and Wang [13]) Let G be a graph, g, f be
two non-negative integer-valued functions defined on V (G)
such that g(x) ≤ f(x) for each x ∈ V (G). Let n′,m ∈
N∪{0}. Then G is a fractional (g, f, n′,m)-critical covered
graph if and only if for any S ⊆ V (G) with |S| ≥ n′,

dG−S(T )− g(T ) + f(S) (1)

≥ max
U⊆S,|U |=n′,H⊆E(G−U),|H|=m

{f(U) +
∑
x∈S

dH(x)

−eH(T, S)},

where T = {x : x ∈ V (G) \ S, dG−S(x) ≤ g(x)− 1}.
The sufficient condition can be stated as follows.
Lemma 2: (Gao and Wang [13]) Let G be a graph, g, f be

two non-negative integer-valued functions defined on V (G)
such that g(x) ≤ f(x) for each x ∈ V (G). Let n′,m ∈
N∪{0}. Then G is a fractional (g, f, n′,m)-critical covered
graph if

dG−S(T )− g(T ) + f(S) (2)

≥ max
U⊆S,|U |=n′,H⊆E(G−U),|H|=m

{f(U) +
∑
x∈S

dH(x)

−eH(T, S)},

holds for any disjoint subsets S and T of V (G) with |S| ≥
n′.

The aim of this work is to study the network data transmis-
sion problem in lights of researching the fractional critical
covered graphs, and several sufficient conditions given from
the perspective of various graph parameters.

II. INDEPENDENT SET CONDITIONS FOR FRACTIONAL
CRITICAL COVERED GRAPHS

A. Main results

Our first part results mainly focus on the independent set
conditions for fractional (g, f, n′,m)-critical covered graphs.
The sharpness of the bounds will be presented in Section
III, and the detailed proofs will be presented in the next
subsection.

Theorem 3: Let G be a graph of order n. Let a, b, n′,m,∆
be five integers with i ≥ 2, 2 ≤ a ≤ b − ∆ and
n′,m,∆ ≥ 0. Let g, f be two integer-valued functions
defined on V (G) such that a ≤ g(x) ≤ f(x) −∆ ≤ b −∆

for each x ∈ V (G). If δ(G) ≥ b(b−∆)(i−1)
a+∆ + n′ + m,

n > (a+b)(a+b+2m−1+(i−2)(b−∆))
a+∆ + n′, and

max{dG(x1), dG(x2), · · · , dG(xi)}

≥ (b−∆)n+ (a+ ∆)n′ + 2m

a+ b

for any independent subset {x1, x2, . . . , xi} of V (G), then
G is a fractional (g, f, n′,m)-critical covered graph.

Theorem 4: Let G be a graph of order n. Let a, b, n′,m,∆
be five integers with i ≥ 2, 2 ≤ a ≤ b−∆ and n′,m,∆ ≥ 0.
Let g, f be two integer-valued functions defined on V (G)
such that a ≤ g(x) ≤ f(x)−∆ ≤ b−∆ for each x ∈ V (G).
If δ(G) ≥ b(b−∆)(i−1)

a+∆ +n′+m, n > (a+b)(i(a+b)+2m−2)
a+∆ +

n′, and

|NG(x1) ∪NG(x2) ∪ · · · ∪NG(xi)|

≥ (b−∆)n+ (a+ ∆)n′ + 2m

a+ b

for any independent subset {x1, x2, . . . , xi} of V (G), then
G is a fractional (g, f, n′,m)-critical covered graph.
Set n′ = 0 in Theorem 3 and Theorem 4, then the above
two conclusions become the independent set conditions for
fractional (g, f,m)-covered graphs.

Corollary 5: Let G be a graph of order n. Let a, b,m,∆
be four integers with i ≥ 2, 2 ≤ a ≤ b−∆ and m,∆ ≥ 0. Let
g, f be two integer-valued functions defined on V (G) such
that a ≤ g(x) ≤ f(x) −∆ ≤ b −∆ for each x ∈ V (G). If
δ(G) ≥ b(b−∆)(i−1)

a+∆ +m, n > (a+b)(a+b+2m−1+(i−2)(b−∆))
a+∆ ,

and

max{dG(x1), dG(x2), · · · , dG(xi)} ≥
(b−∆)n+ 2m

a+ b

for any independent subset {x1, x2, . . . , xi} of V (G), then
G is a fractional (g, f,m)-covered graph.

Corollary 6: Let G be a graph of order n. Let a, b,m,∆
be four integers with i ≥ 2, 2 ≤ a ≤ b−∆ and m,∆ ≥ 0. Let
g, f be two integer-valued functions defined on V (G) such
that a ≤ g(x) ≤ f(x) −∆ ≤ b −∆ for each x ∈ V (G). If
δ(G) ≥ b(b−∆)(i−1)

a+∆ +m, n > (a+b)(i(a+b)+2m−2)
a+∆ , and

|NG(x1) ∪NG(x2) ∪ · · · ∪NG(xi)| ≥
(b−∆)n+ 2m

a+ b

for any independent subset {x1, x2, . . . , xi} of V (G), then
G is a fractional (g, f,m)-covered graph.

Furthermore, by setting g(x) = f(x), the corresponding
independent set conditions for fractional (f, n′,m)-critical
covered graphs are analyzed as follows.

Corollary 7: Let G be a graph of order n. Let
a, b, n′,m,∆ be five integers with i ≥ 2, 2 ≤ a ≤ b − ∆
and n′,m,∆ ≥ 0. Let f be an integer-valued functions
defined on V (G) such that a ≤ f(x) − ∆ ≤ b − ∆

for each x ∈ V (G). If δ(G) ≥ b(b−∆)(i−1)
a+∆ + n′ + m,

n > (a+b)(a+b+2m−1+(i−2)(b−∆))
a+∆ + n′, and

max{dG(x1), dG(x2), · · · , dG(xi)}

≥ (b−∆)n+ (a+ ∆)n′ + 2m

a+ b

for any independent subset {x1, x2, . . . , xi} of V (G), then
G is a fractional (f, n′,m)-critical covered graph.

Corollary 8: Let G be a graph of order n. Let
a, b, n′,m,∆ be five integers with i ≥ 2, 2 ≤ a ≤ b − ∆
and n′,m,∆ ≥ 0. Let f be an integer-valued functions
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defined on V (G) such that a ≤ g(x) ≤ f(x) −∆ ≤ b −∆

for each x ∈ V (G). If δ(G) ≥ b(b−∆)(i−1)
a+∆ + n′ + m,

n > (a+b)(i(a+b)+2m−2)
a+∆ + n′, and

|NG(x1) ∪NG(x2) ∪ · · · ∪NG(xi)|

≥ (b−∆)n+ (a+ ∆)n′ + 2m

a+ b

for any independent subset {x1, x2, . . . , xi} of V (G), then
G is a fractional (f, n′,m)-critical covered graph.

Moreover, the corresponding conclusions on ∆ = 0 are
manifested in the following corollaries.

Corollary 9: Let G be a graph of order n, and let
a, b, n′,m, and i be non-negative integers such that i ≥ 2,
2 ≤ a ≤ b, n > (a+b)(2m+ib−2)

a + n′ and δ(G) ≥
b2(i−1)

a + m + n′. Let g, f be two integer-valued functions
defined on V (G) such that a ≤ g(x) ≤ f(x) ≤ b for each
x ∈ V (G). If G satisfies

max{dG(x1), dG(x2), · · · , dG(xi)} ≥
b(n+ n′) + 2m

a+ b

for any independent subset {x1, x2, . . . , xi} of V (G), then
G is a fractional (g, f, n′,m)-critical covered graph.

Corollary 10: Let G be a graph of order n. Let a, b, n′,m
be four integers with i ≥ 2, 2 ≤ a ≤ b and n′,m ≥ 0.
Let g, f be two integer-valued functions defined on V (G)
such that a ≤ g(x) ≤ f(x) ≤ b for each x ∈ V (G). If
δ(G) ≥ b2(i−1)

a +m+n′, n > (a+b)(i(a+b)+2m−2)
a +n′, and

|NG(x1) ∪NG(x2) ∪ · · · ∪NG(xi)| ≥
b(n+ n′) + 2m

a+ b

for any independent subset {x1, x2, . . . , xi} of V (G), then
G is a fractional (g, f, n′,m)-critical covered graph.

By setting n′ = 0 in Corollary 15 and 16, we get the
following corollaries on fractional (g, f,m)-covered graphs
without parameter ∆.

Corollary 11: Let G be a graph of order n, and let a, b,m,
and i be non-negative integers such that i ≥ 2, 2 ≤ a ≤ b,
n > (a+b)(2m+ib−2)

a and δ(G) ≥ b2(i−1)
a + m. Let g, f be

two integer-valued functions defined on V (G) such that a ≤
g(x) ≤ f(x) ≤ b for each x ∈ V (G). If G satisfies

max{dG(x1), dG(x2), · · · , dG(xi)} ≥
bn+ 2m

a+ b

for any independent subset {x1, x2, . . . , xi} of V (G), then
G is a fractional (g, f,m)-covered graph.

Corollary 12: Let G be a graph of order n. Let a, b,m
be four integers with i ≥ 2, 2 ≤ a ≤ b and m ≥ 0. Let
g, f be two integer-valued functions defined on V (G) such
that a ≤ g(x) ≤ f(x) ≤ b for each x ∈ V (G). If δ(G) ≥
b2(i−1)

a +m, n > (a+b)(i(a+b)+2m−2)
a , and

|NG(x1) ∪NG(x2) ∪ · · · ∪NG(xi)| ≥
bn+ 2m

a+ b

for any independent subset {x1, x2, . . . , xi} of V (G), then
G is a fractional (g, f,m)-covered graph.

Set f(x) = g(x) for any x ∈ V (G), then we obtain
the results on fractional (f, n′,m)-critical covered graphs
without parameter ∆ from Corollary 15 and 16.

Corollary 13: Let G be a graph of order n, and let
a, b, n′,m, and i be non-negative integers such that i ≥ 2,
2 ≤ a ≤ b, n > (a+b)(2m+ib−2)

a + n′ and δ(G) ≥

b2(i−1)
a +m+n′. Let f be an integer-valued functions defined

on V (G) such that a ≤ f(x) ≤ b for each x ∈ V (G). If G
satisfies

max{dG(x1), dG(x2), · · · , dG(xi)} ≥
b(n+ n′) + 2m

a+ b

for any independent subset {x1, x2, . . . , xi} of V (G), then
G is a fractional (f, n′,m)-critical covered graph.

Corollary 14: Let G be a graph of order n. Let a, b, n′,m
be four integers with i ≥ 2, 2 ≤ a ≤ b and n′,m ≥ 0. Let
f be an integer-valued functions defined on V (G) such that
a ≤ f(x) ≤ b for each x ∈ V (G). If δ(G) ≥ b2(i−1)

a +m+

n′, n > (a+b)(i(a+b)+2m−2)
a + n′, and

|NG(x1) ∪NG(x2) ∪ · · · ∪NG(xi)| ≥
b(n+ n′) + 2m

a+ b

for any independent subset {x1, x2, . . . , xi} of V (G), then
G is a fractional (f, n′,m)-covered graph.

Set g(x) = a and f(x) = b for all x ∈ V (G), we yield the
following results on fractional (a, b, n′,m)-critical covered
graphs.

Corollary 15: Let G be a graph of order n, and let
a, b, n′,m, and i be non-negative integers such that i ≥ 2,
2 ≤ a ≤ b, n > (a+b)(2m+ib−2)

b + n′ and δ(G) ≥
b2(i−1)

b +m+ n′. If G satisfies

max{dG(x1), dG(x2), · · · , dG(xi)} ≥
an+ bn′ + 2m

a+ b

for any independent subset {x1, x2, . . . , xi} of V (G), then
G is a fractional (a, b, n′,m)-critical covered graph.

Corollary 16: Let G be a graph of order n. Let a, b, n′,m
be four integers with i ≥ 2, 2 ≤ a ≤ b and n′,m ≥ 0. If
δ(G) ≥ b2(i−1)

b +m+n′, n > (a+b)(i(a+b)+2m−2)
b +n′, and

|NG(x1) ∪NG(x2) ∪ · · · ∪NG(xi)| ≥
an+ bn′ + 2m

a+ b

for any independent subset {x1, x2, . . . , xi} of V (G), then
G is a fractional (a, b, n′,m)-critical covered graph.

B. Proof of Theorem 3

Assume that G satisfies the conditions of the Theorem 3,
but it’s not a fractional (g, f, n′,m)-critical covered graph.
By Lemma 1 and

∑
x∈S dH(x)−eH(T, S) ≤ 2m, there exist

S ⊆ V (G) satisfying

(a+ ∆)(|S| − n′) + dG−S(T )− (b−∆)|T |
≤ f(S − U) + dG−S(T )− g(T ) ≤ 2m− 1, (3)

where |S| ≥ n′ = |U | and T = {x : x ∈ V (G) \
S, dG−S(x) ≤ g(x)−1}. Obviously, T 6= ∅ and dG−S(x) ≤
g(x)− 1 ≤ b−∆− 1 for any x ∈ T .

Let d1 = min{dG−S(x)|x ∈ T} and select x1 ∈ T with
dG−S(x1) = d1. If z ≥ 2 and T \ (∪z−1

j=1NT [xj ]) 6= ∅, let

dz = min{dG−S(x)|x ∈ T \ (∪z−1
j=1NT [xj ])}

and select xz ∈ T \ (∪z−1
j=1NT [xj ]) with dG−S(xz) = dz .

Thus, it generates a sequence with 0 ≤ d1 ≤ d2 ≤ · · · ≤
dπ ≤ g(x) − 1 ≤ b − ∆ − 1 and an independent set
{x1, x2, . . . , xπ} ⊆ T .

Claim 1: |T | ≥ (i− 1)b+ 1.

IAENG International Journal of Applied Mathematics, 50:3, IJAM_50_3_09

Volume 50, Issue 3: September 2020

 
______________________________________________________________________________________ 



Proof. Suppose |T | ≤ (i− 1)b. Then |S|+ d1 ≥ dG(x1) ≥
δ(G) ≥ b(b−∆)(i−1)

a+∆ + n′ + m. According to (3) and 0 ≤
d1 ≤ b−∆− 1, we get

2m− 1

≥ (a+ ∆)(|S| − n′) + dG−S(T )− (b−∆)|T |
≥ (a+ ∆)(|S| − n′) + d1|T | − (b−∆)|T |
= (a+ ∆)(|S| − n′) + (d1 + ∆− b)|T |

≥ (a+ ∆)(
b(b−∆)(i− 1)

a+ ∆
− d1 +m)

+(d1 + ∆− b)(i− 1)b

≥ 2m.

This produces a contradiction. 2

Since dG−S(x) ≤ b − ∆ − 1 and |T | ≥ (i − 1)b + 1,
we obtain π ≥ i. Hence, we can select an independent set
{x1, x2, . . . , xi} ⊆ T .

In light of independent set neighborhood union condition
described in the theorem, we infer

(b−∆)n+ (a+ ∆)n′ + 2m

a+ b
≤ max{dG(x1), dG(x2), · · · , dG(xi)}
≤ |S|+ di

and

|S| ≥ (b−∆)n+ (a+ ∆)n′ + 2m

a+ b
− di. (4)

Since

|NT [xj ]| − |NT [xj ] ∩ (∪j−1
z=1NT [xz])| ≥ 1,

j = 2, 3, . . . , i− 1

and

| ∪jz=1 NT [xz]| ≤
j∑
z=1

|NT [xz]|

≤
j∑
z=1

(dG−S(xz) + 1)

=

j∑
z=1

(dz + 1), j = 1, 2, . . . , i,

we deduce

f(S − U) + dG−S(T )− g(T )

≥ (a+ ∆)(|S| − n′)− (b−∆)|T |+ d1|NT [x1]|+ · · ·
+d2(|NT [x2]| − |NT [x2] ∩NT [x1]|)
+di−1(|NT [xi−1]| − |NT [xi−1] ∩ (∪i−2

j=1NT [xj ])|)
+di(|T | − | ∪i−1

j=1 NT [xj ])||)

≥ (a+ ∆)(|S| − n′) + (d1 − di)|NT [x1]|+
i−1∑
j=2

dj

+(di + ∆− b)|T | − di
i−1∑
j=2

|NT [xj ]|

= (a+ ∆)(|S| − n′) + (d1 − di)(d1 + 1) +
i−1∑
j=2

dj

+(di + ∆− b)|T | − di
i−1∑
j=2

(dj + 1)

= (a+ ∆)(|S| − n′) + d2
1 +

i−1∑
j=1

dj

+(di + ∆− b)|T | − di
i−1∑
j=1

(dj + 1),

which implies

(n− |S| − |T |)(b−∆− di)
≥ f(S − U) + dG−S(T )− g(T )− 2m+ 1

≥ (a+ ∆)(|S| − n′) + d2
1 +

i−1∑
j=1

dj

+(di + ∆− b)|T | − di
i−1∑
j=1

(dj + 1)− 2m+ 1.

Equivalently,

0 ≤ n(b−∆− di)− (a+ b− di)|S|+ di

i−1∑
j=1

dj

−
i−1∑
j=1

dj + di(i− 1)− d2
1 + (a+ ∆)n′

+2m− 1. (5)

By means of (4), (5), d1 ≤ d2 ≤ · · · ≤ di ≤ b−∆− 1 and
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n > (a+b)(a+b+2m−1+(i−2)(b−∆))
a+∆ + n′, we have

0

≤ n(b−∆− di) + di

i−1∑
j=1

dj −
i−1∑
j=1

dj − (a+ b

−di)(
(b−∆)n+ (a+ ∆)n′ + 2m

a+ b
− di)

+di(i− 1)− d2
1 + (a+ ∆)n′ + 2m− 1

= − (a+ ∆)n

a+ b
di + (a+ b)di − d2

i + di

i−1∑
j=1

dj

−
i−1∑
j=1

dj + di(i− 1)− d2
1

+
(a+ ∆)di
a+ b

n′ + 2mdi − 1

= − (a+ ∆)n

a+ b
di + (did1 − d1 − d2

1)

+(di − 1)
i−1∑
j=2

dj + di(a+ b+ i− 1)− d2
i

+
(a+ ∆)di
a+ b

n′ + 2mdi − 1

≤ − (a+ ∆)n

a+ b
di + (di

di − 1

2
− di − 1

2
− (

di − 1

2
)2)

+(di − 1)

i−1∑
j=2

di + di(a+ b+ i− 1)− d2
i

+
(a+ ∆)di
a+ b

n′ + 2mdi − 1

= − (a+ ∆)n

a+ b
di + (i− 11

4
)d2
i + di(a+ b+

1

2
)

−3

4
+

(a+ ∆)di
a+ b

n′ + 2mdi

< 0

since n > (a+b)(a+b+2m+(a+∆)n′−1+(i−2)(b−∆))
a+∆ , a contra-

diction.
Therefore, the desired theorem is proved. 2

C. Proof of Theorem 4

On the contrary, assume that G satisfies the conditions of
the Theorem 4, but it’s not a fractional (g, f, n′,m)-critical
covered graph. By Lemma 1 and

∑
x∈S dH(x)−eH(T, S) ≤

2m, there exist disjoint subset S ⊆ V (G) satisfying

(a+ ∆)(|S| − n′) + dG−S(T )− (b−∆)|T |
≤ f(S − U) + dG−S(T )− g(T ) ≤ 2m− 1, (6)

where |S| ≥ n′ and T = {x : x ∈ V (G) \ S, dG−S(x) ≤
g(x) − 1}. Obviously, T 6= ∅ and dG−S(x) ≤ g(x) − 1 ≤
b−∆− 1 for any x ∈ T .

Let d1 = min{dG−S(x)|x ∈ T} and select x1 ∈ T with
dG−S(x1) = d1. If z ≥ 2 and T \ (∪z−1

j=1NT [xj ]) 6= ∅, let

dz = min{dG−S(x)|x ∈ T \ (∪z−1
j=1NT [xj ])}

and select xz ∈ T \ (∪z−1
j=1NT [xj ]) with dG−S(xz) = dz .

Thus, it generates a sequence with 0 ≤ d1 ≤ d2 ≤ · · · ≤
dπ ≤ g(x) − 1 ≤ b − ∆ − 1 and an independent set
{x1, x2, . . . , xπ} ⊆ T . Using the trick as depicted in the

proofing of Theorem 3, we infer |T | ≥ (i − 1)b + 1.
Since dG−S(x) ≤ b − ∆ − 1 and |T | ≥ (i − 1)b + 1,
we obtain π ≥ i. Hence, we can select an independent set
{x1, x2, . . . , xi} ⊆ T .

In light of independent set neighborhood union condition
described in the theorem, we infer

(b−∆)n+ (a+ ∆)n′ + 2m

a+ b
≤ |NG(x1) ∪NG(x2) ∪ · · · ∪NG(xi)|

≤ |S|+
i∑

j=1

dj

and

|S| ≥ (b−∆)n+ (a+ ∆)n′ + 2m

a+ b
−

i∑
j=1

dj . (7)

Using the same fashion, we have

0 ≤ n(b−∆− di)− (a+ b− di)|S|

+di

i−1∑
j=1

dj −
i−1∑
j=1

dj + di(i− 1)

−d2
1 + (a+ ∆)n′ + 2m− 1. (8)

By means of (7), (8), d1 ≤ d2 ≤ · · · ≤ di ≤ b−∆− 1 and
n > (a+b)(i(a+b)+2m−2)

a+∆ + n′, we have

0

≤ n(b−∆− di) + di

i−1∑
j=1

dj −
i−1∑
j=1

dj − (a+ b

−di)(
(b−∆)n+ (a+ ∆)n′ + 2m

a+ b
−

i∑
j=1

dj)

+di(i− 1)− d2
1 + (a+ ∆)n′ + 2m− 1

= − (a+ ∆)n

a+ b
di + (a+ b)

i∑
j=1

dj − di
i∑

j=1

dj

+di

i−1∑
j=1

dj −
i−1∑
j=1

dj + di(i− 1)− d2
1

+di
(a+ ∆)n′

a+ b
+ 2mdi − 1

= − (a+ ∆)n

a+ b
di + ((a+ b− 1)d1 − d2

1)

+(a+ b− 1)
i−1∑
j=2

dj + di(a+ b+ i− 1)

−d2
i + di

(a+ ∆)n′

a+ b
+ 2mdi − 1

≤ − (a+ ∆)n

a+ b
di + (a+ b− 1)di

+(a+ b− 1)
i−1∑
j=2

di + di(a+ b+ i− 1)

−d2
i + di

(a+ ∆)n′

a+ b
+ 2mdi − 1

= − (a+ ∆)n

a+ b
di + i(a+ b)di − d2

i

+di
(a+ ∆)n′

a+ b
+ 2mdi − 1

< 0,
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since n > (a+b)(i(a+b)+2m−2)
a+∆ + n′, a contradiction.

Therefore, the desired theorem is proved. 2

III. SHARPNESS

The aim of this section is to present that the independent
set results in Theorem 3-4 are tight when m is small, i.e.,
m < a+b

2 .
Theorem 3 and Theorem 4 are best possible, in

some extent, on the conditions. Actually, we can
construct some graphs such that the independent
set degree condition in Theorem 3 can’t be
replaced by max{dG(x1), dG(x2), · · · , dG(xi)} ≥
(b−∆)n+(a+∆)n′+2m

a+b − 1, and the independent set
neighborhood union condition in Theorem 4 can’t be
replaced by |NG(x1) ∪ NG(x2) ∪ · · · ∪ NG(xi)| ≥
(b−∆)n+(a+∆)n′+2m

a+b − 1.
Let b = a + ∆, G1 = Kiat+n′ be a complete graph,

G2 = ibtK1 be a graph consisting of ibt+1 isolated vertices,
and G = G1 ∨ G2, where t is sufficiently large. Then n =
|G1| + |G2| = i(a + b)t + n′, and for any independent set
{x1, x2, . . . , xi} ⊆ V (G2), we get

(b−∆)n+ (a+ ∆)n′ + 2m

a+ b
> max{dG(x1), dG(x2), · · · , dG(xi)}

= iat+ n′ >
(b−∆)n+ (a+ ∆)n′ + 2m

a+ b
− 1,

(b−∆)n+ (a+ ∆)n′ + 2m

a+ b
> |NG(x1) ∪NG(x2) ∪ · · · ∪NG(xi)|

= iat+ n′ >
(b−∆)n+ (a+ ∆)n′ + 2m

a+ b
− 1.

Let S = V (G1), T = V (G2), g(x) = a and f(x) = b =
a+∆ for any x ∈ V (G). Then f(S\U)−g(T )+dG−S(T )−
(
∑
x∈S dH(x)− eH(T, S)) = biat−aibt− 2m = −2m < 0

for any U ⊆ S and |U | = n′. Hence, G is not a fractional
(g, f, n′,m)-critical covered graph according to Lemma 1.

A. More remarks

If we allow a = 1 in theorems, it is found that the minimal
degree condition should be strengthened in order to meet
the same independent set conditions. Specifically, using the
proofing processers, we can obtain the following result.

Theorem 17: Let G be a graph of order n. Let
a, b, n′,m,∆ be five integers with i ≥ 2, 1 ≤ a ≤ b − ∆
and n′,m,∆ ≥ 0. Let g, f be two integer-valued functions
defined on V (G) such that a ≤ g(x) ≤ f(x) −∆ ≤ b −∆

for each x ∈ V (G). If δ(G) ≥ b(b−∆)(i−1)
a+∆ + n′ + 2m,

n > (a+b)(a+b+2m−1+(i−2)(b−∆))
a+∆ + n′, and

max{dG(x1), dG(x2), · · · , dG(xi)}

≥ (b−∆)n+ (a+ ∆)n′ + 2m

a+ b

for any independent subset {x1, x2, . . . , xi} of V (G), then
G is a fractional (g, f, n′,m)-critical covered graph.

Theorem 18: Let G be a graph of order n. Let
a, b, n′,m,∆ be five integers with i ≥ 2, 1 ≤ a ≤ b − ∆
and n′,m,∆ ≥ 0. Let g, f be two integer-valued functions
defined on V (G) such that a ≤ g(x) ≤ f(x) −∆ ≤ b −∆

for each x ∈ V (G). If δ(G) ≥ b(b−∆)(i−1)
a+∆ + n′ + 2m,

n > (a+b)(i(a+b)+2m−2)+(a+∆)n′

a+∆ , and

|NG(x1) ∪NG(x2) ∪ · · · ∪NG(xi)|

≥ (b−∆)n+ (a+ ∆)n′ + 2m

a+ b

for any independent subset {x1, x2, . . . , xi} of V (G), then
G is a fractional (g, f, n′,m)-critical covered graph.

Like discussed before, we can get various corollaries
corresponding to different settings, and we didn’t list here
one by one. Again, using the counterexample presented in
Subsection III, we can checked that the bound independent
set conditions manifested above sharp as well.

IV. OTHER DEGREE CONDITIONS FOR FRACTIONAL
(g, f, n′,m)-CRITICAL COVERED GRAPHS

In this section, we present several degree conditions for
fractional (g, f, n′,m)-critical covered graphs. The proof of
these results are similar as these presented in Gao et al. [18],
and thus we didn’t give the detailed proofs.

Theorem 19: Assume G is a graph with n vertices, and
set b, a, n′,m, and ∆ as non-negative integers meeting b −
∆ ≥ a ≥ 2 and n > (b+a+2m−2)(b+a)

∆+a + n′. Functions g, f
are integer-valued on its vertex set and b − ∆ ≥ f(x) −
∆ ≥ g(x) ≥ a for every vertex x. Then G is fractional
(g, f, n′,m)-critical covered if δ(G) ≥ (b−∆)n+(∆+a)n′+2m

b+a .
Theorem 20: Assume G is a graph with n vertices, and set

b, a, n′,m, and ∆ as non-negative integers meeting b−∆ ≥
a ≥ 2, δ(G) ≥ m+n′+ b(b−∆)

∆+a and n > (b+a+2m−1)(a+b)
∆+a +

n′. Functions g, f as integer-valued on its vertex set and meet
b − ∆ ≥ f(x) − ∆ ≥ g(x) ≥ a for every vertex x in G.
Then G is fractional (g, f, n′,m)-critical covered if for any
xy 6= E(G), we have

max{dG(x), dG(y)} ≥ (b−∆)n+ (∆ + a)n′ + 2m

b+ a
.

Theorem 21: Assume G is a graph with n vertices, and set
b, a, n′,m, and ∆ as non-negative integers meeting b−∆ ≥
a ≥ 2, δ(G) ≥ b(b−∆)

∆+a +m+n′ and n > (b+a+2m−2)(a+b)
∆+a +

n′. Functions g, f are integer-valued defined on the vertex
set so that b −∆ ≥ f(x) −∆ ≥ g(x) ≥ a for every vertex
x in G. Then G is fractional (g, f, n′,m)-critical covered if
σ2(G) ≥ 2(n(b−∆)+n′(∆+a))+2m

b+a .
Set f(x) = g(x) for all x ∈ V (G), then from above three

theorems, we get the following conclusions on fractional
(f, n′,m)-critical covered graphs.

Corollary 22: Assume G is a graph with n vertices, and
set b, a, n′,m, and ∆ as non-negative integers meeting b −
∆ ≥ a ≥ 2 and n > (b+a+2m−2)(b+a)

∆+a + n′. Functions f
is integer-valued on its vertex set and b − ∆ ≥ f(x) ≥ a
for every vertex x. Then G is fractional (f, n′,m)-critical
covered if δ(G) ≥ (b−∆)n+(∆+a)n′+2m

b+a .
Corollary 23: Assume G is a graph with n vertices,

and set b, a, n′,m, and ∆ as non-negative integers meet-
ing b − ∆ ≥ a ≥ 2, δ(G) ≥ m + n′ + b(b−∆)

∆+a and
n > (b+a+2m−1)(a+b)

∆+a +n′. Functions f is integer-valued on
its vertex set and meet b−∆ ≥ f(x) ≥ a for every vertex x
in G. Then G is fractional (f, n′,m)-critical covered if for
any xy 6= E(G), we have

max{dG(x), dG(y)} ≥ (b−∆)n+ (∆ + a)n′ + 2m

b+ a
.
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Corollary 24: Assume G is a graph with n vertices,
and set b, a, n′,m, and ∆ as non-negative integers meet-
ing b − ∆ ≥ a ≥ 2, δ(G) ≥ b(b−∆)

∆+a + m + n′ and
n > (b+a+2m−2)(a+b)

∆+a + n′. Functions f is integer-valued
defined on the vertex set so that b − ∆ ≥ f(x) ≥ a for
every vertex x in G. Then G is fractional (f, n′,m)-critical
covered if σ2(G) ≥ 2(n(b−∆)+n′(∆+a))+2m

b+a .
Also, the results for fractional (g, f,m)-covered graphs

can be deduced by setting in above three theorems.
Corollary 25: Assume G is a graph with n vertices, and

set b, a,m, and ∆ as non-negative integers meeting b−∆ ≥
a ≥ 2 and n > (b+a+2m−2)(b+a)

∆+a . Functions g, f are integer-
valued on its vertex set and b−∆ ≥ f(x)−∆ ≥ g(x) ≥ a
for every vertex x. Then G is fractional (g, f,m)-covered if
δ(G) ≥ (b−∆)n+2m

b+a .
Corollary 26: Assume G is a graph with n vertices, and

set b, a,m, and ∆ as non-negative integers meeting b−∆ ≥
a ≥ 2, δ(G) ≥ m + b(b−∆)

∆+a and n > (b+a+2m−1)(a+b)
∆+a .

Functions g, f as integer-valued on its vertex set and meet
b−∆ ≥ f(x)−∆ ≥ g(x) ≥ a for every vertex x in G. Then
G is fractional (g, f,m)-covered if for any xy 6= E(G), we
have

max{dG(x), dG(y)} ≥ (b−∆)n+ 2m

b+ a
.

Corollary 27: Assume G is a graph with n vertices, and
set b, a,m, and ∆ as non-negative integers meeting b−∆ ≥
a ≥ 2, δ(G) ≥ b(b−∆)

∆+a + m and n > (b+a+2m−2)(a+b)
∆+a .

Functions g, f are integer-valued defined on the vertex set
so that b − ∆ ≥ f(x) − ∆ ≥ g(x) ≥ a for every vertex
x in G. Then G is fractional (g, f,m)-covered if σ2(G) ≥
2n(b−∆)+4m

b+a .
In particular, we have the following conclusion for a

complete graph.
Theorem 28: Assume G is a complete graph with n

vertices, and b,∆, a, n′,m as non-negative integers meet-
ing b − ∆ ≥ a ≥ 2 and n > (b+a+2m−2)(b+a)

a+∆ + n′.
Functions g, f are integer-valued on its vertex set satisfy
b − ∆ ≥ f(x) − ∆ ≥ g(x) ≥ a for every vertex x in G.
Then G is fractional (g, f, n′,m)-critical covered.

We have the following corollaries on fractional (f, n′,m)-
critical covered complete graph and fractional (g, f,m)-
covered complete graph.

Corollary 29: Assume G is a complete graph with n
vertices, and b,∆, a, n′,m as non-negative integers meeting
b−∆ ≥ a ≥ 2 and n > (b+a+2m−2)(b+a)

a+∆ +n′. Functions f is
integer-valued on its vertex set satisfy b−∆ ≥ f(x) ≥ a for
every vertex x in G. Then G is fractional (f, n′,m)-critical
covered.

Corollary 30: Assume G is a complete graph with n
vertices, and b,∆, a,m as non-negative integers meeting
b−∆ ≥ a ≥ 2 and n > (b+a+2m−2)(b+a)

a+∆ . Functions g, f are
integer-valued on its vertex set satisfy b−∆ ≥ f(x)−∆ ≥
g(x) ≥ a for every vertex x in G. Then G is fractional
(g, f,m)-covered.

A. Specific case in setting (g, f) = (a, b)

We infer a likely conclusion for a graph without non-
adjacent vertices.

Theorem 31: Assume G is a complete graph having n
vertices, and b, n′, a,m,∆ are non-negative integers meeting

n > (b+a−2+2m)(b+a)
∆+a + n′ where b −∆ ≥ a ≥ 2. Then G

is fractional (a, b, n′,m)-critical covered.
We arrive the corollary below by setting n′ = 0 in above

theorem, which is a sufficient condition for a fractional
(a, b,m)-covered complete graph.

Corollary 32: Assume complete graph G having n ver-
tices, and b, a,m,∆ are non-negative integers meeting n >
(b+a−2+2m)(b+a)

∆+a where b−∆ ≥ a ≥ 2. Then G is fractional
(a, b,m)-covered.

Theorem 33: Assume G is a graph with n vertices, and set
b, a, n′,m, and ∆ as non-negative integers meeting b−∆ ≥
a ≥ 2 and n > (b+a−2+2m)(b+a)

∆+a + n′. Then G is fractional
(a, b, n′,m)-critical covered if δ(G) ≥ (a+∆)n′+(b−∆)n+2m

b+a .
Theorem 34: Assume G is a graph with n vertices, and set

b, a, n′,m, and ∆ as non-negative integers meeting b−∆ ≥
a ≥ 2, δ(G) ≥ b(b−∆)

∆+a +m+n′ and n > (b+a−2+2m)(b+a)
∆+a +

n′. Then G is fractional (a, b, n′,m)-critical covered if for
any xy 6= E(G), we have

max{dG(x), dG(y)} ≥ (∆ + a)n′ + (b−∆)n+ 2m

b+ a
.

Theorem 35: Assume G is a graph with n vertices, and
set b, a, n′,m, and ∆ as non-negative integers meeting
b − ∆ ≥ a ≥ 2, δ(G) ≥ b(b−∆)

∆+a + m + n′ and n >
(b+a−2+2m)(b+a)

∆+a + n′. Then G is fractional (a, b, n′,m)-
critical covered if σ2(G) ≥ 2(n′(∆+a)+n(b−∆))+4m

b+a .
Setting n′ = 0 and we get the following corollaries on

fractional (a, b,m)-covered graphs from above three theo-
rems.

Corollary 36: Assume G is a graph with n vertices,
and set b, a,m, and ∆ as non-negative integers meeting
b − ∆ ≥ a ≥ 2 and n > (b+a−2+2m)(b+a)

∆+a . Then G is
fractional (a, b,m)-covered if δ(G) ≥ (b−∆)n+2m

b+a .
Corollary 37: Assume G is a graph with n vertices, and

set b, a,m, and ∆ as non-negative integers meeting b−∆ ≥
a ≥ 2, δ(G) ≥ b(b−∆)

∆+a +m and n > (b+a−2+2m)(b+a)
∆+a . Then

G is fractional (a, b,m)-covered if for any xy 6= E(G), we
have

max{dG(x), dG(y)} ≥ (b−∆)n+ 2m

b+ a
.

Corollary 38: Assume G is a graph with n vertices, and
set b, a,m, and ∆ as non-negative integers meeting b−∆ ≥
a ≥ 2, δ(G) ≥ b(b−∆)

∆+a +m and n > (b+a−2+2m)(b+a)
∆+a . Then

G is fractional (a, b,m)-covered if σ2(G) ≥ 2n(b−∆)+4m
b+a .

It’s not hard to check that all these degree bounds are tight
if m < a+b

2 .

V. RESULTS ON FRACTIONAL (k, n′,m)-CRITICAL
COVERED GRAPHS

Fractional k-factor is a special case of fractional (g, f)-
factor when g(x) = f(x) = k for each x ∈ V (G). Using
the trick similar as presented above, we obtain the following
conclusions.

Theorem 39: Let k ≥ 2 and n′,m ≥ 0 be three integers,
and let G be a graph with n ≥ 8k + n′ + 4m − 7 and
δ(G) ≥ k + n′ +m. If

|NG(x) ∪NG(y)| ≥ n+ n′

2
+
m

k
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for each pair of non-adjacent vertices x, y of G, then G is a
fractional (k, n′,m)-critical covered graph.

Set n′ = 0 in Theorem 39, then it becomes the following
necessary condition on fractional (k,m)-covered graph.

Corollary 40: Let k ≥ 2 and m ≥ 0 be two integers, and
let G be a graph with n ≥ 8k+ 4m− 7 and δ(G) ≥ k+m.
If

|NG(x) ∪NG(y)| ≥ n

2
+
m

k

for each pair of non-adjacent vertices x, y of G, then G is a
fractional (k,m)-covered graph.

Theorem 41: Let G be a graph of order n. Let k, i, n′,m
be four integers with i ≥ 2, k ≥ 2 and n′,m ≥ 0. If δ(G) ≥
k(i− 1) + n′ +m, n > 2k(i− 2) + 4k + n′ + 4m− 2, and

max{dG(x1), dG(x2), · · · , dG(xi)} ≥
n+ n′

2
+
m

k

for any independent subset {x1, x2, . . . , xi} of V (G), then
G is a fractional (k, n′,m)-critical covered graph.

Theorem 42: Let G be a graph of order n. Let k, i, n′,m
be four integers with i ≥ 2, k ≥ 2 and n′,m ≥ 0. If δ(G) ≥
k(i− 1) + n′ +m, n > 4ki+ n′ + 4m− 4, and

|NG(x1) ∪NG(x2) ∪ · · · ∪NG(xi)| ≥
n+ n′

2
+
m

k

for any independent subset {x1, x2, . . . , xi} of V (G), then
G is a fractional (k, n′,m)-critical covered graph.

Set n′ = 0 in Theorem 41 and 42, then it becomes the
following necessary condition on fractional (k,m)-covered
graph.

Corollary 43: Let G be a graph of order n. Let k, i,m
be three integers with i ≥ 2, k ≥ 2 and m ≥ 0. If δ(G) ≥
k(i− 1) +m, n > 2k(i− 2) + 4k + 4m− 2, and

max{dG(x1), dG(x2), · · · , dG(xi)} ≥
n

2
+
m

k

for any independent subset {x1, x2, . . . , xi} of V (G), then
G is a fractional (k,m)-covered graph.

Corollary 44: Let G be a graph of order n. Let k, i,m
be four integers with i ≥ 2, k ≥ 2 and m ≥ 0. If δ(G) ≥
k(i− 1) +m, n > 4ki+ 4m− 4, and

|NG(x1) ∪NG(x2) ∪ · · · ∪NG(xi)| ≥
n

2
+
m

k

for any independent subset {x1, x2, . . . , xi} of V (G), then
G is a fractional (k,m)-covered graph.

If we allow k = 1 in Theorem 41 and 42, then the
minimum degree condition should be more stronger. We state
the revised results as follows.

Theorem 45: Let G be a graph of order n. Let k, i, n′,m
be four integers with i ≥ 2, k ≥ 1 and n′,m ≥ 0. If δ(G) ≥
k(i− 1) + n′+ 2m, n > 2k(i− 2) + 4k+ n′+ 4m− 2, and

max{dG(x1), dG(x2), · · · , dG(xi)} ≥
n+ n′

2
+
m

k

for any independent subset {x1, x2, . . . , xi} of V (G), then
G is a fractional (k, n′,m)-critical covered graph.

Theorem 46: Let G be a graph of order n. Let k, i, n′,m
be four integers with i ≥ 2, k ≥ 1 and n′,m ≥ 0. If δ(G) ≥
k(i− 1) + n′ + 2m, n > 4ki+ n′ + 4m− 4, and

|NG(x1) ∪NG(x2) ∪ · · · ∪NG(xi)| ≥
n+ n′

2
+
m

k

for any independent subset {x1, x2, . . . , xi} of V (G), then
G is a fractional (k, n′,m)-critical covered graph.

Set n′ = 0 in Theorem 45 and 46, then it becomes the
following necessary condition on fractional (k,m)-covered
graph.

Corollary 47: Let G be a graph of order n. Let k, i,m
be three integers with i ≥ 2, k ≥ 1 and m ≥ 0. If δ(G) ≥
k(i− 1) + 2m, n > 2k(i− 2) + 4k + 4m− 2, and

max{dG(x1), dG(x2), · · · , dG(xi)} ≥
n

2
+
m

k

for any independent subset {x1, x2, . . . , xi} of V (G), then
G is a fractional (k,m)-covered graph.

Corollary 48: Let G be a graph of order n. Let k, i,m
be four integers with i ≥ 2, k ≥ 1 and m ≥ 0. If δ(G) ≥
k(i− 1) + 2m, n > 4ki+ 4m− 4, and

|NG(x1) ∪NG(x2) ∪ · · · ∪NG(xi)| ≥
n

2
+
m

k

for any independent subset {x1, x2, . . . , xi} of V (G), then
G is a fractional (k,m)-covered graph.

Theorem 49: Let k ≥ 2, n′ ≥ 0 and m ≥ 0 be three
integers. Let G be a graph of order n with n ≥ 4k + 4m+
n′−5. If δ(G) ≥ n+n′

2 +m
k , then G is a fractional (k, n′,m)-

critical covered graph.
Theorem 50: Let k ≥ 2, n′ ≥ 0 and m ≥ 0 be three

integers. Let G be a graph of order n with n ≥ 4k + 4m+
n′ − 3, δ(G) ≥ k + n′ +m. If

max{dG(u), dG(v)} ≥ n+ n′

2
+
m

k

for each pair of non-adjacent vertices u and v in G, then G
is a fractional (k, n′,m)-critical covered graph.

Theorem 51: Let k ≥ 2, n′ ≥ 0 and m ≥ 0 be three
integers. Let G be a graph of order n with n ≥ 4k + 4m+
n′ − 5, δ(G) ≥ k + n′ +m. If σ2(G) ≥ n+ n′ + 2m

k , then
G is a fractional (k, n′,m)-critical covered graph.

Set n′ = 0 in Theorem 49, 50 and 51, then it becomes the
following necessary condition on fractional (k,m)-covered
graph.

Corollary 52: Let k ≥ 2 and m ≥ 0 be three integers.
Let G be a graph of order n with n ≥ 4k + 4m − 5. If
δ(G) ≥ n

2 + m
k , then G is a fractional (k,m)-covered graph.

Corollary 53: Let k ≥ 2 and m ≥ 0 be three integers. Let
G be a graph of order n with n ≥ 4k+4m−3, δ(G) ≥ k+m.
If

max{dG(u), dG(v)} ≥ n

2
+
m

k

for each pair of non-adjacent vertices u and v in G, then G
is a fractional (k,m)-covered graph.

Corollary 54: Let k ≥ 2 and m ≥ 0 be three integers. Let
G be a graph of order n with n ≥ 4k+4m−5, δ(G) ≥ k+m.
If σ2(G) ≥ n + 2m

k , then G is a fractional (k,m)-covered
graph.

It is valuable to point out that all these results are tight
for m < k via some counterexamples.

VI. CONCLUSION AND DISCUSSION

At the same time, the scheduling of network resources is
related to the structure of the network graph and the capacity
of channel transmission resources in the network. Calculating
the feasibility of the entire network resource scheduling at
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the same time from the perspective of modern graph theory
and obtaining sufficient conditions for resource scheduling
within a certain amount of scheduling resources can provide
a theoretical basis for network design and actual scheduling
algorithm design.

In this paper, we mainly obtain several sufficient condition-
s for fractional critical covered graphs in different settings
in terms of the necessary and sufficient condition which are
presented in Lemma 1. Furthermore, we show that these
bounds are sharp show if m is small enough. Unfortunately,
we didn’t know what is the tight bounds of these graph
parameters for fractional critical covered graphs if m is a
large number. Hence, we raise the following open problem
as the end of this article.

Problem 1: What are the sharp bounds of various degree
conditions of fractional critical covered graphs for a general
m?
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