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Abstract—The problem of toxic contaminants in ground-
water with groundwater pollution measurement model. The
advection-diffusion equation is used to describe the concerned
model. The theoretical solution of the advection-diffusion
equation is limited only in ideal geometries. Applications
of numerical solutions are influenced in several initial and
boundary conditions when dealing with complex geometries.
In this research, numerical simulations for one-dimensional
groundwater pollution measurement around landfills model
through heterogeneous soil are focused. The forward time center
space and Saulyev finite difference techniques are used to
approximate the solutions. The accuracy of proposed techniques
are to examine by comparing the approximated solutions with
the analytical solution. The purposed technique gives good
agreement approximated solution.

Index Terms—advection, diffusion, semi-infinite domain, fi-
nite difference method, variable coefficient.

I. INTRODUCTION

THERE are several use of the advection-diffusion equa-
tion (ADE), including heat transfer, sediment transport

and water pollutant concentration measurement. In [1], intro-
duced a numerical technique for approximating ADE with
constant coefficient. The developed scheme was based on
a mathematical combine both Siemieniuch and Gradwell
approximation for time and Dehghan’s approximation for
spatial variable. In [2], they have solved ADE with an
explicit approach of finite difference method (EFDM) and
variable coefficients in semi-infinite domain. This equation
can analyze three dispersion problems: (i) solute dispersion
along poised flow through inhomogeneous medium, (ii)
temporarily dependent solute dispersion along uniform flow
through homogeneous medium, and (iii) solute dispersion
along temporarily dependent not poised flow through in-
homogeneous medium. In [3], they have solved the one-
dimensional (1D) ADE with variable coefficients in semi-
infinite media by using EFDM for two dispersion problems:
(i) temporarily dependent dispersion in uniform flow and (ii)
spatially dependent dispersion in non-uniform flow, uniform
pulse-type input condition and initial solute concentration,
that decreasing function of distance were considered. In [4],
the EFDM to obtain the dispersion through a heterogeneous
horizontal semi-infinite medium. The heterogeneous nature
of the medium was discoursed by a position dependency lin-
ear nonhomogeneous expression for velocity with not poised
exponential variation with time. Velocity and dispersion was
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zero at the origin. In [5], an analytical solution to one-
dimensions ADE with several point sources through arbitrary
time-dependent discharging rate is proposed. They reported
that the results had indicated, the proposed analytical solution
could offer an accurate estimation of the contemplation. The
limitations of the proposed solution were valid only for the
constant-parameters condition, and was not computational
performance for problems involving a high temporal or a
high spatial resolution.

The inhomogeneity of the medium causes variation in the
flow velocity, [2], [6]. In [7], studied on the variation of
the increasing nature. In this research, we will propose an
explicit finite difference technique for an advection-diffusion
equation with variable coefficient in a semi-infinite domain.
Due to the low advection groundwater flow, the contaminated
groundwater flow measurement need very long term transi-
tion time. The effective time of prediction will be larger than
a year. The simulation of contaminated groundwater level in
faraway point need to be introduced.

In [8], proposed Multiple BPNN and Genetic Algorithm
(GA) to overcome the limitation of ARIMA/SARIMA, stan-
dalone BPNN and NARX for water level forecasting in a
river are proposed. In [9], the application of PESN to a
water quality evaluation problem are investigated. In [10],
develop the ANN models in water resources engineering in
Sarawak, in particular, in areas where precipitation data were
absent. In [11], the knowledge from the digital communica-
tion theory to analyze a general watermarking problem are
applied. In [12], used the theory of holomorphic functions, in
particular, conformal mappings and the hodograph method to
analytically find the shape of NAPL interfaces, whose very
existence is puzzling.

In this research, the transient contaminated groundwater
dispersion measurement around landfills model will be intro-
duced. The inhomogeneous soil by the bottom topography
will be also concerned in the proposed model. The finite
difference technique to obtain the approximated solutions are
purposed. The accuracy of the purposed numerical methods
is tested by an analytical solution in an ideal case.

II. GOVERNING EQUATION

A. Contaminated groundwater dispersion along unsteady
flow through inhomogeneous soil

The one-dimension advection-diffusion equation (ADE) is
expressed as follows [6],

∂C (x, t)

∂t
=

∂

∂x

(
D (x, t)

∂C (x, t)

∂x

)
− ∂u (x, t)C (x, t)

∂x
,

(1)
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for all (x, t) ∈ Ω such that Ω = [0, L] × [0, T ] ,where are
C (x, t) the dispersing solute concentration, the longitudinal
axis, and time, respectively.

B. Contaminated groundwater dispersion along unsteady
flow through inhomogeneous soil

If the values of D and u assumed as constants, then these
values are named dispersion coefficient and uniform velocity
of the flow field, respectively. In this study preferred to use
Eq.(1) as follows:

∂C (x, t)

∂t
= D0

∂

∂x

(
f1 (x, t)

∂C (x, t)

∂x

)
−u0∂f2 (x, t)C (x, t)

∂x
, (2)

for all (x, t) ∈ [0, L] × [0, T ] , where D0 and u0 are con-
stant values whose dimensions depend upon the expressions
f1 (x, t) and f2 (x, t) and f1 (x, t) and f2 (x, t) are given
function. The analytical solutions of ADE for the previously
mentioned two hydrodynamic dispersion problems were in-
troduced by [6].

C. The initial and boundary conditions

The initial condition is defined by an interpolation
function of measured raw data. The boundary conditions
can be classified into two cases.

1) Potential contaminated groundwater: An initially so-
lute free condition is assumed for both of the problems in
the semi-infinite domain. Meanwhile, a uniform distribution
of nodes is applied at the origin of the domain. The initial
condition, is assumed by

C(x, 0) = f (x) ,∀x ∈ [0, L] , (3)

where f (x) is an initially pollutant concentration function.
2) Contaminated groundwater at two monitoring points:

The boundary conditions, are also assumed by

C(0, t) = g1 (t) ,∀t ∈ [0, T ] , (4)

C(L, t) = g2 (t) ,∀t ∈ [0, T ] , (5)

where g1 (t) and g2 (t) boundary sources of pollutant
concentration on the starting point and the end point of the
radius of considered area, respectively.

3) Contaminated groundwater at the single monitoring
points: The left boundary condition is assumed by the
interpolation function of measured raw data at the considered
landfill. The right boundary condition is assumed by the
averaged rate of change of pollutant concentration around the
right ended point. The boundary conditions, are also assumed
by

C(0, t) = g1 (t) ,∀t ∈ [0, T ] , (6)
∂C(L, t)

∂x
= κ,∀t ∈ [0, T ] , (7)

where g1 (t) and κ boundary sources of pollutant concentra-
tion on the starting point and the rate of change of pollutant
concentration with respect to distance around the ended point
on the considered area, respectively.

III. NUMERICAL TECHNIQUES

We now discretize the domain by dividing the interval
[0, L] into M subintervals such that M∆x = L and the time
interval [0, T ] into N subintervals such that N∆t = T. The
grid points (xi, tn) are defined by xi = i∆x for all i =
0, 1, 2, . . . ,M and tn = n∆t for all n = 0, 1, 2, . . . , N
in which M and N are positive integers. We can then
approximate C (xi, tn) by Cni , value of the difference
approximation of C (x, t) at point x = i∆x and t = n∆t,
where 0 ≤ i ≤ M and 0 ≤ n ≤ N. We will employ the
forward time central space finite difference scheme (FTCS)
into Eq.(2).

A. Forward Time Central Space Finite Difference Scheme

C (xi, tn) ∼= Cni , (8)

∂C

∂t

∣∣∣∣
(xi,tn)

∼=
Cn+1
i − Cni

∆t
, (9)

∂C

∂x

∣∣∣∣
(xi,tn)

∼=
Cni+1 − Cni−1

2∆x
, (10)

∂2C

∂x2

∣∣∣∣
(xi,tn)

∼=
Cni+1 + Cni−1 − 2Cni

(∆x)
2 , (11)

f1 (xi, tn) = fn1 i
, (12)

f2 (xi, tn) = fn2 i
. (13)

Substituting Eqs.(8)-(13) into Eq.(2), we get the finite differ-
ence equation,

Cn+1
i − Cni

∆t
=

(
D0 ·

∂f1

∂x

∣∣∣∣
(xi,tn)

− u0f
n
2 i

)

·
(
Cni+1 − Cni−1

2∆x

)
− u0 ·

∂f2

∂x

∣∣∣∣
(xi,tn)

Cni

+D0f
n
1 i

(
Cni−1 − 2Cni + Cni+1

(∆x)
2

)
, (14)

for all i = 1, 2, 3, . . . ,Mand n = 0, 1, 2, . . . , N −1 Then
the explicit finite difference equation becomes

Cn+1
i =

[
λni −

1

2
γni +

1

2
βni

]
Cni−1 + [1−∆tαni − 2λni ]Cni

+

[
λni +

1

2
γni −

1

2
βni

]
Cni+1, (15)

where αni = u0 ·∂f2∂x
∣∣∣
(xi,tn)

, γni = ∆tD0

∆x
∂f1
∂x

∣∣∣
(xi,tn)

,

βni =
∆t u0f

n
2 i

∆x and λni =
∆tD0f

n
1 i

(∆x)2
, the explicit finite

difference Eq.(15) can be written in a compact form as,

V ni = λni −
1

2
γni +

1

2
βni , (16)

Gni = 1−∆tαni − 2λni , (17)

Pni = λni +
1

2
γni −

1

2
βni . (18)

Then
Cn+1
i = V ni C

n
i−1 +Gni C

n
i + Pni C

n
i+1. (19)

According to the right boundary condition Eq.(7), if i =
M, substituting the approximate unknown value of the right
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boundary [9], we can let CnM+1 = 2κ∆x + CnM−1 and by
rearranging, we obtain

Cn+1
M = (V nM + PnM )CnM−1 +GnMC

n
M + 2∆x · κPnM . (20)

The forward time central space scheme is conditionally
stable subject to constraints in Eq.(15). The stability require-
ments for the scheme are [13], [14]

λni =
∆tD0f1 (xi, tn)

(∆x)
2 <

1

2
,

βni , γ
n
i , α

n
i < 1,

where λni is the diffusion number (dimensionless) and βni is
the advection number (dimensionless). It can be obtained that
the strictly stability requirements are the main disadvantage
of this scheme.

The finite difference formula Eq.(19) has been de-
rived in [15] that the truncation error for this method is
O
{

(∆x)
2
,∆t

}
B. Saulyev Explicit Finite Difference Scheme

The Saulyev scheme is unconditionally stable [16]. It is
clear that the nonstrictly stability requirement of Saulyev
scheme is the main of advantage and economical to use.
Taking Saulyev technique [16] into Eq.(2), it can be obtained
the following discretization:

C (xi, tn) ∼= Cni , (21)

∂C

∂t

∣∣∣∣
(xi,tn)

∼=
Cn+1
i − Cni

∆t
, (22)

∂C

∂x

∣∣∣∣
(xi,tn)

∼=
Cni+1 − C

n+1
i−1

2∆x
, (23)

∂2C

∂x2

∣∣∣∣
(xi,tn)

∼=
Cni+1 − Cni − C

n+1
i + Cn+1

i−1

(∆x)
2 , (24)

f1 (xi, tn) = fn1 i
, (25)

f2 (xi, tn) = fn2 i
. (26)

Substituting Eqs.(21)-(26) into Eq.(2), we get the finite
difference equation,

Cn+1
i − Cni

∆t
=

(
D0 ·

∂f1

∂x

∣∣∣∣
(xi,tn)

− u0f
n
2 i

)

·

(
Cni+1 − C

n+1
i−1

2∆x

)
− u0 ·

∂f2

∂x

∣∣∣∣
(xi,tn)

Cni

+D0f
n
1 i

(
Cni+1 − Cni − C

n+1
i + Cn+1

i−1

(∆x)
2

)
, (27)

for all i = 1, 2, 3, . . . ,M and n = 0, 1, 2, . . . , N − 1.
Then the explicit finite difference equation becomes

Cn+1
i =

1

1 + λni

[(
λni −

1

2
γni +

1

2
βni

)
Cn+1
i−1

+ (1−∆tαni − λni )Cni +

(
λni +

1

2
γni −

1

2
βni

)
Cni+1

]
(28)

where γni = ∆tD0

∆x
∂f1
∂x

∣∣∣
(xi,tn)

,αni = u0 ·∂f2∂x
∣∣∣
(xi,tn)

,

λni =
∆tD0f

n
1 i

(∆x)2
and βni =

∆t u0f
n
2 i

∆x , the explicit finite
difference Eq.(28) can be written in a compact form as,

Ani =
1

1 + λni
, (29)

Bni = λni −
1

2
γni +

1

2
βni , (30)

Qni = 1−∆tαni − 2λni , (31)

Zni = λni +
1

2
γni −

1

2
βni . (32)

Then

Cn+1
i = Ani

(
Bni C

n+1
i−1 +Qni C

n
i + Zni C

n
i+1

)
. (33)

According to the right boundary condition Eq.(7), if i = M,
substituting the approximate unknown value of the right
boundary [13], we can let CnM+1 = 2κ∆x + CnM−1 and
by rearranging, we obtain

Cn+1
M = AnM

(
BnMC

n+1
M−1 +QnMC

n
M + ZnMC

n
M−1

+2∆x · κZnM ) . (34)

Using Taylor series expansions on the approximation, [17]
has shown that the truncation error is
O
{

(∆x)
2

+ (∆t)
2

+ (∆t/∆x)
2
}

or O
{

2, 2, (1/1)
2
}

IV. THE ACCURACY OF THE PROPOSED NUMERICAL
TECHNIQUE

The variation in velocity is assumed as small order to
insure that it can satisfy the essential conditions for velocity
parameter in the ADE. Additionally, as the second assump-
tion, dispersion parameter is considered proportional to the
square of the velocity [18]. Thus, for Eq.(2), the expressions
of f1 (x, t) and f2 (x, t) are assumed by [6]:

f1 (x, t) = (1 + ax)
2
, (35)

f2 (x, t) = 1 + ax, (36)

where a is a parameter that accounts for the inhomogeneity
of the domain with dimension (length)−1 In [6] , they have
introduced an analytical solution that satisfies the specific
f1 (x, t) and f2 (x, t) as in Eq.(35) and Eq.(36) ,

C =
c0
2

[
(1 + ax)

−1
erfc

(
ln (1 + ax)

2a
√
D0T

− β
√
t

)
+(1 + ax)

δ
erfc

(
ln (1 + ax)

2a
√
D0T

+ β
√
t

)]
, (37)

where β =
√

ω2
0

4a2D0
+ au0 = u0+aD0

2
√
D0

,δ = u0

aD0

and ω0 =
(
au0 − a2D0

)
.

V. NUMERICAL EXPERIMENTS AND RESULTS

A. Simulation 1.1 : Two monitoring contaminated ground-
water points; forward time central space finite difference
scheme technique for an ideal contaminated groundwater
dispersion measurement.

Assuming that the chemical dispersion through inhomo-
geneous soil the diffusion coefficient and flow velocity field
are averaged to be D0 = 0.71 (km2/year) and u0 = 0.6
(km/year), respectively. The parameter that accounts for the
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inhomogeneity of the soil is assumed by a = 1.0 (km−1)
and f1 (x, t) = (1 + x)

2 and f2 (x, t) = 1+x. The boundary
conditions and the initial condition are assumed by Eq.(37).
By employing the FTCS finite difference technique Eq.(19),
we get the approximated chemical concentrations along 1
km from the point source in 0.7 year. The results are shown
in Tables I-III when time increment (∆t) are varied and
λ = ∆t

/
(∆x)

2 is divided by a half. The surface plot of
approximated solutions is illustrated in Fig 1.

TABLE I
THE APPROXIMATED CHEMICAL CONCENTRATION IN A

HETEROGENEOUS SOIL

(∆x = 0.05 (km ) , ∆t = 0.0005 (year), λ = 0.2)

t/x 0.1 0.2 0.3 0.4 0.5

0.2 0.83862 0.70228 0.58759 0.49144 0.41106

0.5 0.88114 0.78073 0.69509 0.62143 0.55765

0.7 0.89079 0.79881 0.72039 0.65285 0.59416

t/x 0.6 0.7 0.8 0.9 1.0

0.2 0.34398 0.28806 0.24146 0.20263 0.17027

0.5 0.50210 0.45347 0.41069 0.37291 0.33942

0.7 0.54281 0.49757 0.45749 0.42181 0.38990

TABLE II
THE APPROXIMATED CHEMICAL CONCENTRATION IN A

HETEROGENEOUS SOIL

(∆x = 0.05 (km ) , ∆t = 0.00025 (year), λ = 0.1)

t/x 0.1 0.2 0.3 0.4 0.5

0.2 0.83856 0.70217 0.58745 0.49130 0.41092

0.5 0.88113 0.78073 0.69508 0.62142 0.55764

0.7 0.89079 0.79881 0.72039 0.65284 0.59416

t/x 0.6 0.7 0.8 0.9 1.0

0.2 0.34386 0.28796 0.24139 0.20260 0.17027

0.5 0.50209 0.45346 0.41068 0.37291 0.33942

0.7 0.54280 0.49756 0.45749 0.42181 0.38990

TABLE III
THE APPROXIMATED CHEMICAL CONCENTRATION IN A

HETEROGENEOUS SOIL

(∆x = 0.05 (km ) , ∆t = 0.000125 (year), λ = 0.05)

t/x 0.1 0.2 0.3 0.4 0.5

0.2 0.83853 0.70212 0.58738 0.49122 0.41085

0.5 0.88113 0.78072 0.69507 0.62141 0.55763

0.7 0.89079 0.79881 0.72038 0.65284 0.59416

t/x 0.6 0.7 0.8 0.9 1.0

0.2 0.34380 0.28791 0.24136 0.20258 0.17027

0.5 0.50209 0.45345 0.41068 0.37291 0.33942

0.7 0.54280 0.49756 0.45749 0.42181 0.38990

Fig. 1. The surface plot of computed chemical concentrations C̃ (x, t) for
all (x, t) ∈ [0, 1]× [0, 1] .

B. Simulation 1.2 : Two monitoring contaminated ground-
water points; Saulyev Explicit Finite Difference Scheme
technique for an ideal contaminated groundwater dispersion
measurement.

Assuming that the chemical dispersion through inhomo-
geneous soil the diffusion coefficient and flow velocity field
are averaged to be D0 = 0.71 (km2/year) and u0 = 0.6
(km/year), respectively. The parameter that accounts for the
inhomogeneity of the soil is assumed by a = 1.0 (km−1) and
f1 (x, t) = (1 + x)

2 and f2 (x, t) = 1+x. The boundary con-
ditions and the initial condition are assumed by Eq.(37). By
employing the Saulyev finite difference technique Eq.(33),
we get the approximated chemical concentrations along 1
km from the point source in 0.7 year. The results are shown
in Tables IV-VI when time increment (∆t) are varied and
λ = ∆t

/
(∆x)

2 is divided by a half. The surface plot of
approximated solutions is illustrated in Fig 2.

TABLE IV
THE APPROXIMATED CHEMICAL CONCENTRATION IN A

HETEROGENEOUS SOIL

(∆x = 0.05 (km ) , ∆t = 0.0005 (year), λ = 0.2)

t/x 0.1 0.2 0.3 0.4 0.5
0.2 0.83801 0.70138 0.58663 0.49057 0.41034
0.5 0.88084 0.78024 0.69449 0.62080 0.55704
0.7 0.89063 0.79854 0.72006 0.65249 0.59382
t/x 0.6 0.7 0.8 0.9 1.0
0.2 0.34344 0.28769 0.24124 0.20253 0.17027
0.5 0.50156 0.45303 0.41038 0.37275 0.33942
0.7 0.54250 0.49732 0.45731 0.42172 0.38990

TABLE V
THE APPROXIMATED CHEMICAL CONCENTRATION IN A

HETEROGENEOUS SOIL

(∆x = 0.05 (km ) , ∆t = 0.00025 (year), λ = 0.1)

t/x 0.1 0.2 0.3 0.4 0.5
0.2 0.83825 0.70172 0.58697 0.49086 0.41056
0.5 0.88098 0.78048 0.69478 0.62110 0.55734
0.7 0.89071 0.79868 0.72022 0.65266 0.59399
t/x 0.6 0.7 0.8 0.9 1.0
0.2 0.34359 0.28777 0.24128 0.20255 0.17027
0.5 0.50182 0.45324 0.41053 0.37283 0.33942
0.7 0.54265 0.49744 0.45740 0.42176 0.38990
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TABLE VI
THE APPROXIMATED CHEMICAL CONCENTRATION IN A

HETEROGENEOUS SOIL

(∆x = 0.05 (km ) , ∆t = 0.000125 (year), λ = 0.05)

t/x 0.1 0.2 0.3 0.4 0.5

0.2 0.83837 0.70189 0.58714 0.49100 0.41067

0.5 0.88106 0.78060 0.69492 0.62125 0.55748

0.7 0.89075 0.79874 0.72030 0.65275 0.59407

t/x 0.6 0.7 0.8 0.9 1.0

0.2 0.34366 0.28782 0.24130 0.20256 0.17027

0.5 0.50195 0.45334 0.41060 0.37287 0.33942

0.7 0.54272 0.49750 0.45744 0.42179 0.38990

Fig. 2. The surface plot of computed chemical concentrations C̃ (x, t) for
all (x, t) ∈ [0, 1]× [0, 1] .
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Analytical solution
Saulyev solution
FTCS solution

t=0.5

t=0.2

t=0.7

Fig. 3. The comparison of FTCS scheme and the Saulyev scheme and the
analytical solution when t = 0.2 , 0.5 and 0.7

TABLE VII
THE COMPARISON THE MAXIMUM ROOT MEAN SQUARE ERROR OF FTCS

SOLUTIONS AND SAULYEV SOLUTIONS

λ ∆x ∆t FTCS Saulyev
RSMEmax RSMEmax

0.025 0.050 6.2500×10−5 1.2361×10−2 1.5604×10−2

0.025 1.5625×10−5 8.5507×10−3 1.0739×10−2

0.050 0.050 1.2500×10−4 8.9331×10−3 1.5631×10−2

0.025 3.1250×10−5 6.2175×10−3 1.0755×10−2

0.100 0.050 2.5000×10−4 2.5368×10−3 1.5170×10−2

0.025 6.2500×10−5 1.9303×10−3 1.0466×10−2

0.200 0.050 5.0000×10−4 1.5331×10−2 1.5476×10−2

0.025 1.2500×10−4 1.0200×10−2 1.0649×10−2

0.400 0.050 1.0000×10−3 Unstable 1.4332×10−2

0.025 2.5000×10−4 Unstable 9.4084×10−3

0.800 0.050 2.0000×10−3 Unstable 2.4844×10−2

0.025 5.0000×10−4 Unstable 1.5746×10−2

C. Simulation 2 : The single monitoring contaminated
groundwater when there is no rate of change of pollutant
concentration around the ended-point; Saulyev Explicit Fi-
nite Difference Scheme technique for an ideal contaminated
groundwater dispersion measurement.

Assuming that the chemical dispersion through inhomo-
geneous soil the diffusion coefficient and flow velocity field
are averaged to be D0 = 0.71 (km2/year) and u0 = 0.6
(km/year), respectively. The parameter that accounts for the
inhomogeneity of the soil is assumed by a = 1.0 (km−1)
and f1 (x, t) = (1 + x)

2 and f2 (x, t) = 1 + x. The
boundary conditions and the initial condition are assumed
C(0, t) = 1, ∂C(1,t)

∂x = 0, for all t ∈ [0, 1] and C(x, 0) = 0,
for all x ∈ [0, 1] , respectively. By employing the Saulyev
finite difference technique Eq.(33) and Eq.(34) , we get the
approximated chemical concentrations along 1 km from the
point source in 0.7 year. The results are shown in Table VIII,
where λ = ∆t

/
(∆x)

2. The surface plot of approximated
solutions is illustrated in Fig 4.

TABLE VIII
THE APPROXIMATED CHEMICAL CONCENTRATION IN A

HETEROGENEOUS SOIL

(∆x = 0.05 (km ) , ∆t = 0.000125 (year), λ = 0.05)

t/x 0.1 0.2 0.3 0.4 0.5

0.2 0.84921 0.72410 0.62234 0.54142 0.47886

0.5 0.92416 0.86342 0.81526 0.77767 0.74899

0.7 0.94083 0.89443 0.85824 0.83034 0.80926

t/x 0.6 0.7 0.8 0.9 1.0

0.2 0.43232 0.39967 0.37899 0.36860 0.36700

0.5 0.72786 0.71313 0.70384 0.69918 0.69846

0.7 0.79384 0.78314 0.77642 0.77305 0.77254

Fig. 4. The surface plot of computed chemical concentrations C̃ (x, t) for
all (x, t) ∈ [0, 1]× [0, 1] .

D. Simulation 3 : The single monitoring contaminated
groundwater point when there is groundwater pollution flow-
ing into the ended-point; Saulyev Explicit Finite Difference
Scheme technique for an ideal contaminated groundwater
dispersion measurement.

Assuming that the chemical dispersion through inhomo-
geneous soil the diffusion coefficient and flow velocity field
are averaged to be D0 = 0.71 (km2/year) and u0 = 0.6
(km/year), respectively. The parameter that accounts for the
inhomogeneity of the soil is assumed by a = 1.0 (km−1)
and f1 (x, t) = (1 + x)

2 and f2 (x, t) = 1+x. The boundary
conditions and the initial condition are assumed C(0, t) = 1,
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∂C(1,t)
∂x = 0.015, for all t ∈ [0, 1] and C(x, 0) = 0,

for all x ∈ [0, 1] , respectively. By employing the Saulyev
finite difference technique Eq.(33) and Eq.(34) , we get the
approximated chemical concentrations along 1 km from the
point source in 0.7 year. The results are shown in Table IX,
where λ = ∆t

/
(∆x)

2. The surface plot of approximated
solutions is illustrated in Fig 5.

TABLE IX
THE APPROXIMATED CHEMICAL CONCENTRATION IN A

HETEROGENEOUS SOIL

(∆x = 0.05 (km ) , ∆t = 0.000125 (year), λ = 0.05)

t/x 0.1 0.2 0.3 0.4 0.5

0.2 0.84922 0.72413 0.62238 0.54148 0.47894

0.5 0.92419 0.86347 0.81534 0.77777 0.74912

0.7 0.94087 0.89449 0.85832 0.83045 0.80940

t/x 0.6 0.7 0.8 0.9 1.0

0.2 0.43242 0.39978 0.37913 0.36875 0.36717

0.5 0.72801 0.71330 0.70403 0.69939 0.69869

0.7 0.79400 0.78332 0.77662 0.77328 0.77278

Fig. 5. The surface plot of computed chemical concentrations C̃ (x, t) for
all (x, t) ∈ [0, 1]× [0, 1] .

E. Simulation 4 : The single monitoring contaminated
groundwater point when there is groundwater pollution flow-
ing outward at ended-point; Saulyev Explicit Finite Differ-
ence Scheme technique for an ideal contaminated ground-
water dispersion measurement.

Assuming that the chemical dispersion through inhomo-
geneous soil the diffusion coefficient and flow velocity field
are averaged to be D0 = 0.71 (km2/year) and u0 = 0.6
(km/year), respectively. The parameter that accounts for the
inhomogeneity of the soil is assumed by a = 1.0 (km−1)
and f1 (x, t) = (1 + x)

2 and f2 (x, t) = 1+x. The boundary
conditions and the initial condition are assumed C(0, t) = 1,
∂C(1,t)
∂x = −0.015, for all t ∈ [0, 1] and C(x, 0) = 0,

for all x ∈ [0, 1] , respectively. By employing the Saulyev
finite difference technique Eq.(33) and Eq.(34) , we get the
approximated chemical concentrations along 1 km from the
point source in 0.7 year. The results are shown in Table X,
where λ = ∆t

/
(∆x)

2. The surface plot of approximated
solutions is illustrated in Fig 6.

TABLE X
THE APPROXIMATED CHEMICAL CONCENTRATION IN A

HETEROGENEOUS SOIL

(∆x = 0.05 (km ) , ∆t = 0.000125 (year), λ = 0.05)

t/x 0.1 0.2 0.3 0.4 0.5

0.2 0.84919 0.72407 0.62229 0.54136 0.47878

0.5 0.92413 0.86336 0.81518 0.77757 0.74886

0.7 0.94080 0.89437 0.85815 0.83023 0.80912

t/x 0.6 0.7 0.8 0.9 1.0

0.2 0.43223 0.39956 0.37886 0.36845 0.36683

0.5 0.72771 0.71296 0.70365 0.69897 0.69823

0.7 0.79368 0.78296 0.77621 0.77283 0.77229

Fig. 6. The surface plot of computed chemical concentrations C̃ (x, t) for
all (x, t) ∈ [0, 1]× [0, 1] .
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Fig. 7. The comparison of Saulyev solutions of simulation 2 , simulation
3 and simulation 4 when t = 0.7

F. Simulation 5 : The single monitoring contaminated
groundwater point when there is no rate of change of
pollutant concentration around the ended-point in a high
mixed soil topography; Saulyev Explicit Finite Difference
Scheme technique for an ideal contaminated groundwater
dispersion measurement.

Assuming that the chemical dispersion through high
mixed inhomogeneous soil f1 (x, t) = sin(x)(1 + x)

2
, and

f2 (x, t) = sin(x) (1 + x) . The diffusion coefficient and flow
velocity field are averaged to be D0 = 0.71 (km2/year)
and u0 = 0.6 (km/year), respectively. The parameter that
accounts for the inhomogeneity of the soil is assumed by
a = 1.0 (km−1). The boundary conditions and the initial
condition are assumed C(0, t) = 1, ∂C(1,t)

∂x = 0, for all
t ∈ [0, 1] . and C(x, 0) = 0, for all x ∈ [0, 1] , respectively.
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By employing the Saulyev finite difference technique Eq.(33)
and Eq.(34), we get the approximated chemical concentra-
tions along 1 km from the point source in 0.7 year. The
results are shown in Table XI, where λ = ∆t

/
(∆x)

2. The
surface plot of approximated solutions is illustrated in Fig 8.

TABLE XI
THE APPROXIMATED CHEMICAL CONCENTRATION IN A

HETEROGENEOUS SOIL

(∆x = 0.05 (km ) , ∆t = 0.000125 (year), λ = 0.05)

t/x 0.1 0.2 0.3 0.4 0.5

0.2 0.13435 0.03968 0.01457 0.00609 0.0028

0.5 0.23427 0.11088 0.06247 0.03896 0.026294

0.7 0.26724 0.14103 0.08805 0.06073 0.04527

t/x 0.6 0.7 0.8 0.9 1.0

0.2 0.00139 0.00075 0.00044 0.00031 0.00027

0.5 0.01909 0.01493 0.01261 0.01147 0.01115

0.7 0.03614 0.03072 0.02763 0.02610 0.02566

Fig. 8. The surface plot of computed chemical concentrations C̃ (x, t) for
all (x, t) ∈ [0, 1]× [0, 1] .

G. Simulation 6 : The single monitoring contaminated
groundwater point when there is no rate of change of pollu-
tant concentration around the ended-point; Saulyev Explicit
Finite Difference Scheme technique for an ideal contami-
nated groundwater dispersion measurement with long run
simulation.

Assuming that the chemical dispersion through inhomo-
geneous soil the diffusion coefficient and flow velocity field
are averaged to be D0 = 0.71 (km2/year) and u0 = 0.6
(km/year), respectively. The parameter that accounts for the
inhomogeneity of the soil is assumed by a = 1.0 (km−1) and
f1 (x, t) = (1 + x)

2
, and f2 (x, t) = (1 + x) . The boundary

conditions and the initial condition are assumed C(0, t) = 1,
∂C(3,t)
∂x = 0, for all t ∈ [0, 16.67] . and C(x, 0) = 0,

for all x ∈ [0, 3] , respectively. By employing the Saulyev
finite difference technique Eq.(33) and Eq.(34), we get the
approximated chemical concentrations along 1 km from the
point source in 0.7 year. The results are shown in Table XII,
where λ = ∆t

/
(∆x)

2. The surface plot of approximated
solutions is illustrated in Fig 9.

TABLE XII
THE APPROXIMATED CHEMICAL CONCENTRATION IN A

HETEROGENEOUS SOIL

(∆x = 0.05 (km ) , ∆t = 0.000125 (year), λ = 0.05)

t/x 0.1 0.2 0.3 0.4 0.5

0.2 0.76944 0.62509 0.52613 0.45404 0.39931

0.5 0.76952 0.62536 0.52672 0.45508 0.40091

0.7 0.76952 0.62536 0.52673 0.45508 0.40091

t/x 0.6 0.7 0.8 0.9 1.0

0.2 0.35679 0.32373 0.29912 0.28337 0.27849

0.5 0.35900 0.3266 0.30250 0.28713 0.28238

0.7 0.35900 0.32657 0.30250 0.28714 0.28238

Fig. 9. The surface plot of computed chemical concentrations C̃ (x, t) for
all (x, t) ∈ [0, 3]× [0, 16.67] .

VI. DISCUSSION

In simulation 1.1, the approximated FTCS solutions are
good agreement when λ is divided by a half in 3 cases
as show in Tables I-III. In simulation 1.2, if the Saulyev
method is employ to approximate the groundwater pollutant
concentration, it turn out that the solutions are closed to the
FTCS solutions as show in Tables IV-VI. The comparison of
both approximation techniques are illustrated in Fig 3. Both
method give accurately approximated groundwater pollutant
concentration but the FTCS gives unstable solutions when
greater than 0.4 as show in Table VII. Although, The
proposed Saulyev method still gives accurately groundwater
pollutant concentration that is free from illustrated grid
spacing. In simulations 2-4, the problems of the single
monitoring contaminated groundwater point when there
is no rate of change, there is positive rate of change and
there is negative rate of change of pollutant concentration
a the ended point are simulated as show in Tables VIII-X
and Fig 4-6 we can see that the groundwater pollutant
concentration in simulation 3 is higher than simulation 2
and 4, respectively as show Fig 7. In simulation 5, the
realistic heterogeneous soil function are experimented such
as f1 and f2, we can get the approximated groundwater
pollutant concentration by using the proposed Saulyev
method as show in Table XI and Fig 8. In the last
simulation, the long-term situation is experimented. The
considered domain is large as the realistic area, 3 km. The
simulation time is long as prediction requirement, 16.67 year.
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VII. CONCLUSION

The numerical simulations to a one-dimensional ground-
water pollution measurement model through heterogeneous
soil are simulated. The numerical solutions for approximating
the chemical concentration in heterogeneous medium are
proposed. The forward time center space method and Saulyev
finite difference technique are used to approximate the so-
lution of the several simulations. The proposed finite differ-
ence technique gives good agreement approximated solutions
under different conditions. We can see that the computed
solutions are applicable to the real-world problems.
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