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Abstract—In this paper, stochastic perturbations into HIV
models with saturated incidence is proposed and discussed.
Some sufficient conditions on the boundedness, extinction, per-
sistence, and stability in distribution are established. Asymptotic
behaviors around equilibria for infection-free and endemic of
deterministic system are obtained. Finally, numerical simula-
tions are carried out to validate our analytical results.

Index Terms—Stochastic HIV model; Brownian motion; Ex-
tinction; Persistence; Stability in distribution.

I. INTRODUCTION

HUMAN immunodeficiency virus (HIV) is one of the
very dangerous viruses that infect the human and cause

acquired immune deficiency syndrome (AIDS). There have
been serious attempts from mathematicians and biologist
to understand the dynamical behaviors of HIV in the hu-
man body by using mathematical models [1-10,16-17,19-
20,24,27]. Mathematical models can be a useful tool for
designing antiviral treatment strategies. It is well known that
when HIV infects the CD4+ T cell, the body’s immune
system is impaired and eventually loses its ability to fight
other diseases. Therefore, the treatment of infected patients
by HIV is of a great importance.

It is well known that HIV has the long incubation and
infectious periods. In the absence of anti-retroviral therapy,
the average time of progression from HIV infection to AIDS
is 9-10 years, and the average survival time after developing
AIDS is just 9.2 months. Moreover, the rate of clinical
disease progression alters widely between individuals from
two weeks up to 20 years. There are many factors which
affect the rate of progression. These factors include the
body’s ability to defend against HIV, poor access to health
care and existence of coexisting infections.

Upon infection with viruses, there are two main classes of
anti-HIV drugs: (i) the reverse transcriptase inhibitors (RTIs)
drugs, which prevent HIV from infecting the target cells; and
(ii) the protease inhibitors (PIs) drugs, which prevent the
infected cells from producing new infectious viruses. With
antiretroviral therapy, treated people can live longer free of
HIV-related symptoms. There is currently no cure for HIV.
The only known methods of prevention are based on avoiding
contact with the virus.
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Following above assumptions, we divide the host popula-
tion into the uninfected CD4+ T cells x1(t), latently infected
CD4+ T cells x2(t), infected CD4+ T cells x3(t) and free
viruses x4(t). To investigate effects among viral endemic
infections, the viral model with the saturated incidence rate
βx1x4

1+mx4
is described by

dx1(t)

dt
= λ− βx1(t)x4(t)

1 +mx4(t)
− δx1(t),

dx2(t)

dt
=

kβx1(t)x4(t)

1 +mx4(t)
− (µ+ α)x2(t),

dx3(t)

dt
=

(1− k)βx1(t)x4(t)

1 +mx4(t)
+ αx2(t)− ax3(t),

dx4(t)

dt
= cx3(t)− γx4(t)−

ηβx1(t)x4(t)

1 +mx4(t)
,

(1)

where λ is the birth rate, β is the transmission coefficient
between uninfected cells and infective virus particles, δ, µ,
a and γ are the natural death rate of the uninfected CD4+ T
cells, latently infected CD4+ T cells, infected CD4+ T cells
and free viruses, respectively. α is the rate of avtivation of
latent cells. k is the fraction of infections leading to latency.
c is the rate of virion emission by infected CD4+ T cells. η
is the fraction of infection rate per uninfected CD4+ T cells.
Throughout this paper, we assume that the parameters are all
positive.

Obviously, model (1) always has the infection-free e-
quilibrium E0 = (λδ , 0, 0, 0). Define the basic reproduc-
tion number for viral infection R0 = βλc(µ+α−kµ)

a(µ+α)(βλη+δγ) .
It is showed if R0 < 1, then E0 is globally asymp-
totically stable. If R0 > 1, then E0 is unstable, and
there is an endemic equilibrium E∗ = (x∗1, x

∗
2, x

∗
3, x

∗
4),

where x∗1 = λm(c(µ+α−kµ)−aη(µ+α))+akδγ(µ+α)
(β+mδ)(c(µ+α−kµ)−aη(µ+α)) , x∗2 =

k(βλc(µ+α−kµ)−a(µ+α)(βλη+δγ))
(c(µ+α−kµ)−aη(µ+α))(β+mδ)(µ+α) , x∗3 =

(µ+α−kµ)x∗
2

ak and

x∗4 = k(βλc(µ+α−kµ)−a(µ+α)(βλη+δγ))
(β+mδ)akγ(µ+α) , which is globally

asymptotically stable.
In fact, epidemic models are inevitably affected by en-

vironmental white noise which is an important component,
because it can provide an additional degree of realism
in compared to their deterministic counterparts. Therefore,
many stochastic models for the epidemic populations have
been developed. Here, we mainly mention three approaches.
The first one is through time Markov chain model to consider
environment noise [19,20]. The second is with parameters
perturbation [15,18,21-23,26-29,31,32,34]. The last impor-
tant issue to model stochastic epidemic model is to robust the
positive equilibria of deterministic models. In this situation,
it is mainly to investigate whether the stochastic model
preserves the asymptotic stability properties of the positive
equilibria of deterministic models [25,30,33].

In this paper, we introduce randomness into the model
(1) by replacing the parameters δ, µ, a and γ by δ → δ +
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σ1dB1(t), µ→ µ+ σ2dB2(t), a→ a+ σ3dB3(t) and γ →
γ+σ4dB4(t) with the second approaches as [11]. Therefore,
in this paper we consider the following stochastic HIV model
with saturated incidence rate

dx1(t) = (λ− βx1(t)x4(t)

1 +mx4(t)
− δx1(t))dt

+σ1x1(t)dB1(t),

dx2(t) = (
kβx1(t)x4(t)

1 +mx4(t)
− (µ+ α)x2(t))dt

+σ2x2(t)dB2(t),

dx3(t) = (
(1− k)βx1(t)x4(t)

1 +mx4(t)
+ αx2(t)− ax3(t))dt

+σ3x3(t)dB3(t),

dx4(t) = (cx3(t)− γx4(t)−
ηβx1(t)x4(t)

1 +mx4(t)
)dt

+σ4x4(t)dB4(t),

(2)
where B1(t), B2(t), B3(t) and B4(t) are independent Brow-
nian motions, σ1, σ2, σ3 and σ4 are their intensities.

The organization of this paper is as follows. In Section 2,
we prove the positivity of the solution for model (2) which
is essential in stochastic viral model. In Section 3, we drive
the conditions which lead the disease to die out. In Section
4, we investigate that the solution of model (2) is stable
in distribution under the condition R0 < 1. In Section 5,
we discuss the almost sure persistence of CD4+ T cells. In
the next two Sections, we obtain asymptotic behavior around
the disease-free equilibrium E0 and the endemic equilibrium
E∗ of the deterministic model (1), respectively. In Section 8,
numerical simulations are carried out to illustrate the main
theoretical results. A brief discussion is given in the end to
conclude this work.

Throughout this paper, unless otherwise specified, let
(Ω,F , P ) be a complete probability space with a filtration
{Ft}t≥0 satisfying the usual conditions (i.e., it is right
continuous and F0 contains all Prob-null sets). Let B(t)
be the one-dimensional Brownian motion defined on this
probability space. Also, let R4

+ = {x ∈ R4 | xi(t) >
0 for all 1 ≤ i ≤ 4} and x(t) = (x1(t), x2(t), x3(t), x4(t)).

II. EXISTENCE OF UNIQUE GLOBAL POSITIVE SOLUTION

To investigate the dynamical behavior of model (2), the
most important concern is whether the solution is of global
existence. The following Theorem shows that the solution of
model (2) is global and positive.
Theorem 1 For any initial value x0 ∈ R4

+, then model (2)
has a unique solution (x1(t), x2(t), x3(t), x4(t)) defined on
t ∈ [0,∞) and the solution will remain inR4

+ with probability
one.
Proof: Since the coefficients of model (2) are local-
ly Lipschitz continuous, then for any given initial value
(x1(0), x2(0), x3(0), x4(0)) ∈ R4

+, model (2) has a unique
local solution (x1(t), x2(t), x3(t), x4(t)) defined on t ∈
[0, τe), where τe is the explosion time [12]. To show this solu-
tion is global, we need to show that τe = ∞ a.s. Let m0 ≥ 0
be sufficiently large so that (x1(0), x2(0), x3(0), x4(0)) all
lie within the interval [ 1

m0
,m0]. For each integer m ≥ m0,

define the stopping time

τm = inf{t ∈ [0, τe) | min{x1(t), x2(t), x3(t), x4(t)}

≤ 1

m
or max{x1(t), x2(t), x3(t), x4(t)} ≥ m},

where throughout this paper, we set inf ∅ = ∞ (as usual
∅ denotes the empty set). Clearly, τm is increasing as
m → ∞. Set τ∞ = limm→∞ τm, whence τ∞ ≤ τe a.s.
If we can show that τ∞ = ∞ a.s., then τe = ∞ and
(x1(t), x2(t), x3(t), x4(t)) ∈ R4

+ a.s. for all t ≥ 0. In other
words, to complete the proof, we need to show that τ∞ = ∞
a.s. If this statement is false, then there is a pair of constants
T > 0 and ε ∈ (0, 1) such that

P{τ∞ ≤ T} > ϵ. (3)

Hence there is an integer m1 ≥ m0 such that P{τm ≤ T} ≥
ϵ for all m ≥ m1.

Define a C2-function V (t) : R4
+ → R+ by V (t) =∑4

i=1(xi + 1− log xi).
The non-negativity of this function can be seen from u+1−
log u ≥ 0, ∀u > 0. Using Itô’s formula, we get

dV (x(t)) = {λ− δx1(t)−
λ

x1(t)
+ δ +

βx4(t)

1 +mx4(t)

−µx2(t)−
kβx4(t)

(1 +mx4(t))x2(t)
+ µ+ α

−ax3(t)−
(1− k)βx1(t)x4(t)

(1 +mx4(t))x3(t)
− αx2(t)

x3(t)

+a+ cx3(t)− γx4(t)−
ηβx1(t)x4(t)

1 +mx4(t)

−cx3(t)
x4(t)

+ γ +
ηβx1(t)

1 +mx4(t)
+

1

2
(σ2

1 + σ2
2

+σ2
3 + σ2

4)}dt+ σ1(x1(t)− 1)dB1(t)

+σ2(x2(t)− 1)dB2(t) + σ3(x3(t)

−1)dB3(t) + σ4(x4(t)− 1)dB4(t).

Hence

dV (x(t)) ≤ [λ+ δ + µ+ α+ a+ γ +
1

2
(σ2

1 + σ2
2 + σ2

3

+σ2
4) + ηβx1(t) + αx2(t) + cx3(t)

+βx4(t)]dt+ σ1(x1(t)− 1)dB1(t)

+σ2(x2(t)− 1)dB2(t) + σ3(x3(t)

−1)dB3(t) + σ4(x4(t)− 1)dB4(t).

Let c1 = λ + δ + µ + α + a + γ + 1
2 (σ

2
1 + σ2

2 + σ2
3 + σ2

4)
and c2 = 2ηβ + 2α+ 2c+ 2β.

Since xi ≤ 2(xi + 1− log xi), we have

ηβx1(t) + αx2(t) + cx3(t) + βx4(t) ≤ c2V (x(t)).

Hence,

dV (x(t)) ≤ c3(1 + V (x(t)))dt+ σ1(x1(t)− 1)dB1(t)

+σ2(x2(t)− 1)dB2(t) + σ3(x3(t)

−1)dB3(t) + σ4(x4(t)− 1)dB4(t),
(4)

where c3 = max{c1, c2}.

Integrating both sides of (4) from 0 to τm ∧ T and then
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taking the expectations

E[V (x(τm ∧ T ))]

≤ E

∫ τm∧T

0

(c3(1 + V (x(t)))) dt+ V (x0)

≤ V (x0) + c3T + c3

∫ T

0

(EV (x(τm ∧ T ))) dt.

(5)

By the Gronwall inequality, we have E[V (x(τm ∧ T ))] ≤
c4, where c4 = (V (x0) + c3T )e

c3T . Set Ωm = {τm ≤ T}
for m ≥ m1, and by (3), P (Ωm) ≥ ϵ. Note that for every
ω ∈ Ωm, there is some i(1 ≤ i ≤ 4) such that xi (τm, ω)
equals either m or 1

m , then

V (x(τm, ω)) ≥ ( 1
m + 1− log 1

m ) ∧ (m+ 1− logm).
(6)

It then follows from (5) and (6) that

c4 ≥ E[1Ωm(ω)V (x(τm, ω))]
≥ ε([ 1m + 1− log 1

m ] ∧ [m+ 1− logm]),

where 1Ωm(ω) is the indicator function of Ωm. Letting m→
∞, which leads to the contradiction ∞ > c4 = ∞. So, we
have τ∞ = ∞ a.s. This completes the proof.

III. EXTINCTION

In this section, we investigate the sufficient condition for
the extinction of the disease.

Considering the matrix

A =

 M P −(γ + µ)η
P Q N

−(γ + µ)η N −2γ − σ2
4

 ,

where

M = −(σ2
2 + 2µ)η2, N = c− (a+ γ)η,

P = cη − (a+ µ)η2, Q = 2ηc− (2a+ σ2
3)η

2.

Theorem 2 Let (x1(t), x2(t), x3(t), x4(t)) be the solution of
model (2) with initial value x0(t) ∈ R4

+. If
• (a) (cη−(a+µ)η2)2 < (2µ+σ2

2)η
2[(2a+σ2

3)η
2−2cη];

• (b) |A| < 0,
then x2(t), x3(t) and x4(t) tend to zero exponentially
with probability one.

Proof: From model (2), we have

d(η(x2(t) + x3(t)) + x4(t))

= (−µηx2(t) + (c− aη)x3(t)− γx4(t))dt

+σ2ηx2(t)dB2(t) + σ3ηx3(t)dB3(t)

+σ4x4(t)dB4(t).

Let V (x) = log(η(x2(t) + x3(t)) + x4(t)), using Itô’s
formula, we have

dV (x)

=
1

2(η(x2(t) + x3(t)) + x4(t))2
[2(η(x2(t) + x3(t))

+x4(t))(−µηx2(t) + (c− aη)x3(t)− γx4(t))

−σ2
2η

2x22(t)− σ2
3η

2x23(t)− σ2
4x

2
4(t)]dt

+
1

η(x2(t) + x3(t)) + x4(t)
(σ2ηx2(t)dB2(t)

+σ3ηx3(t)dB3(t) + σ4x4(t)dB4(t))

=
1

2(η(x2(t) + x3(t)) + x4(t))2

×
(
x2(t) x3(t) x4(t)

)
A

 x2(t)

x3(t)

x4(t)

 dt

+
1

η(x2(t) + x3(t)) + x4(t)
(σ2ηx2(t)dB2(t)

+σ3ηx3(t)dB3(t) + σ4x4(t)dB4(t)).

Under assumption (a) and (b), we obtain the matrix A
negative-definite. Assume that λmax is the largest eigenvalue,
then

dV (x) ≤ − | λmax | 1

2(η(x2(t) + x3(t)) + x4(t))2
(x22(t)

+x23(t) + x24(t))dt

+
1

η(x2(t) + x3(t)) + x4(t)
(σ2ηx2(t)dB2(t)

+σ3ηx3(t)dB3(t) + σ4x4(t)dB4(t)).

Since (x2(t) + x3(t) + x4(t))
2 ≤ 2(x22(t) + x23(t) + x24(t)),

we get

d(log(η(x2(t) + x3(t)) + x4(t)))

≤ −1

4
| λmax | dt+ σ2ηx2(t)

η(x2(t) + x3(t)) + x4(t)
dB2(t)

+
σ3ηx3(t)

η(x2(t) + x3(t)) + x4(t)
dB3(t)

+
σ4x4(t)

η(x2(t) + x3(t)) + x4(t)
dB4(t).

Integrating the above inequality and using lim sup
t→∞

1
t |

Bi(t) |= 0, for i = 2, 3, 4. So, lim sup
t→∞

1
t log(η(x2(t) +

x3(t)) + x4(t)) ≤ −1
4 |λmax| < 0 a.s.. Hence, x2(t) →

0, x3(t) → 0 and x4(t) → 0 a.s. as t → ∞. This completes
the proof.

IV. STABILITY IN DISTRIBUTION

In this section, we now concentrate on x1(t). We shall
eventually show that x1(t) is stable in distribution in the
sense that it stabilities around the mean value λ

δ . To do this
we introduce a new stochastic process Z(t) which is defined
by its initial condition Z(0) = x1(0) and the stochastic
differential equation

dZ(t) = (λ− δZ(t))dt+ σ1Z(t)dB1(t). (7)

Lemma 1([13]) Consider a diffusion dX(t) = BX(t)dt +
σ(X(t))dB(t), where B is a k × k matrix, σ(·) is a Lips-
chitzian (k × l)-matrix-valued function on Rk and {W (t) :
t ≥ 0} is a standard l-dimensional Brownian motion. Let
a(x, y) = (σ(x) − σ(y))(σ(x) − σ(y))′. If there exists a
symmetric positive definite matrix C and a positive constant
γ such that

2C(x− y)B(x− y)− 2C(x− y)a(x, y)C(x− y)

(x− y)C(x− y)
+tr(a(x, y)C)

≤ −γ | x− y |2, x ̸= y,

then the diffusion is a stable in distribution.
Theorem 3 Under the conditions of Theorem 1, then
limt→∞(Z(t) − x1(t)) = 0 in probability, a.e., Z(t)→wυ,

as t→ ∞,
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where→w means the convergence in distribution and υ is
a probability measure in R1

+ such that
∫∞
0
xυ(dx) = λ

δ .
In particularly, υ has density (Aσ2

1x
2p(x))−1, where A is a

normal constant, p(x) = e(−
2λ
δ )x

2δ

σ2
1 e

2λ

σ2
1x , x > 0.

Proof: By comparison theorem, we see that x1(t) ≤ Z(t),
where Z(t) is the global solution of equation (7) with initial
value Z(0) = x1(0).

Firstly, we show (7) is stable in distribution and ergodic.
Let Y (t) = Z(t)− λ

δ , then Y (t) satisfies

dY (t) = −δY (t)dt+ σ1(Y (t) +
λ

δ
)dB1(t). (8)

Since Lemma 1, when C = 1 implies that the diffusion
process Y (t) is stable in distribution as t → ∞, so does
Z(t).

To prove the ergodicity of Z(t), we define
p(z) = exp(−2

∫ z

1
λ−δy
σ2
1y

2 dy). By computation,

p(z) = exp (− 2λ
σ2
1
)z

2δ

σ2
1 exp( 2λ

σ2
1z
), and it is noted that

for each integer n ≥ 1, there exist positive constants C1(n),
C2(n) and M(n) such thatp(z) ≥ C1(n)z

2δ

σ2
1
−n
, as 0 < z < 1

M(n) ,

p(z) ≥ C2(n)z
2δ

σ2
1 , as z > M(n).

(9)

Therefore, with (9) we see∫∞
1
p(z) dz = ∞,

∫ 1

0
p(z) dz = ∞,∫∞

0
1

σ2
1p(z)z

2 dz <∞.

So Z(t) is ergodic (Theorem 1.16 in [14]), and with respect
to the Lebesgue measure its invariant measure υ has density
(Aσ2

1z
2p(z))−1, where A is a normal constant.

Now, we show that f(t) = EZp(t) is uniformly bounded
for some p > 1 determined later. Applying Itô’s formula to
Zp, we have dZp(t) = (λpZp−1 − δpZp +

p(p−1)σ2
1Z

p

2 )dt+
pσ1Z

pdB1(t). Taking expectation of equation above, and
using a

1
p b

p−1
p ≤ a

p + b(p−1)
p , a, b > 0, then f ′(t) ≤ λp +

p[p−1
p − (δ − σ2

1(p−1)
2 )]f(t). Choosing p > 1 close enough

to 1 such that p−1
p − (δ− σ2

1(p−1)
2 ) < 0, then supt≥0EZ

p =

supt≥0 f(t) <∞, implying that
∫∞
0
zpυ(dz) <∞.

By the ergodic theorem, we have

p{ lim
T→∞

1

T

∫ T

0

Z(t) dt =

∫ ∞

0

zυ(dz)} = 1, (10)

for all z ∈ R1
+, with Jensen’s inequality yields

E[
1

T

∫ T

0

Z(t) dt]p ≤ E
1

T

∫ T

0

Zp(t) dt ≤ sup
t≥0

EZp(t) <∞.

Therefore, { 1
T

∫ T

0
Z(t) dt, T ≥ 0} is uniformly integrable.

Together with (10), so we have

E
1

T

∫ T

0

Z(t) dt→
∫ ∞

0

zυ(dz). (11)

Taking expectation of (7), we have EZ(t)
t = λ −

δ
tE

∫ t

0
Z(s) ds. Let t → ∞, taking (11) into account, so

yields
∫∞
0
zυ(dz) = λ

δ .
At last, we concentrate on x1(t). We shall show that

x1(t) is stable in distribution. To do this, we introduce a
new stochastic process xϵ(t) which is defined by its initial

condition x1(0) = xϵ(0) and the stochastic differential
equation

dxϵ(t) = (λ− (δ + ε)xϵ(t))dt+ σ1xϵ(t)dB1(t).

First we prove that lim inf
t→∞

(x1(t)− xϵ(t)) ≥ 0, a.s.

Therefore, we consider

d(x1(t)− xϵ(t))

= [−(δ + ε)(x1(t)− xϵ(t)) + (ε− βx4(t)

1 +mx4(t)
)x1(t)]dt

+σ1(x1(t)− xϵ(t))dB1(t).

The solution is given by

x1(t)− xϵ(t) = ψ(t)

∫ t

0

ψ−1(s)(ε− βx4(s)

1 +mx4(s)
)x1(s) ds,

where ψ(t) = exp{−(δ + ε + 1
2σ

2
1)t + σ1B1(t)}. Due to

Theorem 2, it has been shown x4(t) → 0 a.s. as t→ ∞. For
almost all ω ∈ Ω,∃T = T (ω) such that x4(t) < ϵ

β−mϵ , ∀t ≥
T. Hence for all ω ∈ Ω, if t > T, then

x1(t)− xϵ(t)

= ψ(t)(

∫ T

0

ψ−1(s)(ε− βx4(t)

1 +mx4(t)
)x1(t) ds

+

∫ t

T

ψ−1(s)(ε− βx4(t)

1 +mx4(t)
)x1(t) ds).

Hence x1(t) − xϵ(t) ≥ ψ(t)κ(T ), where κ(T ) =∫ T

0
ψ−1(s)(ε − βx4(s)

1+mx4(s)
)x1(s) ds. So, | κ(T ) |< ∞ and

ψ(t) → 0 a.s.

Therefore,

lim inf
t→∞

(x1(t)− xϵ(t)) ≥ 0, a.s.

Next, we consider

d(Z(t)− xϵ(t))

= [−δZ(t) + (δ + ε)xϵ(t)]dt+ σ1(Z(t)− xϵ(t))dB1(t).

Taking expectation of above equation, we see

E | Z(T )− xϵ(T ) |

= E

∫ T

0

[εxϵ(t)− δ(Z(t)− xϵ(t))]dt

≤ E

∫ T

0

[εZ(t)− δ | Z(t)− xϵ(t) |]dt,

where the last inequality is using the fact that Z(t) ≥ xϵ(t).
Hence, we have

E | Z(T )− xϵ(T ) |≤
ϵ sup
u≥0

EZ(u)

δ
(1− exp(−δT )).

This implies,

lim inf
ϵ→0

lim
T→∞

E | Z(T )− xϵ(T ) |= 0. (12)

Combining (12) and the fact that x1(t) ≤ Z(t), we get

lim
t→∞

(x1(t)− Z(t)) = 0 in probability.

Since Z(t) converges weakly to distribution ν, so does x1(t)
as t→ ∞.
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V. PERSISTENCE

In this section, we can further have the almost sure
persistence of the total CD4+ T cells of model (2).

Set X(t) = x1(t) + x2(t) + x3(t).
Theorem 4 If λ > 0, then for any given initial
(x1(0), x2(0), x3(0), x4(0)) the solution of model (2) obeys
0 < lim inf

t→∞
X(t) ≤ lim sup

t→∞
X(t) < +∞.

Proof: It follows from that

dX(t) = (λ− δx1(t)− µx2(t)− ax3(t))dt

+σ1x1(t)dB1(t) + σ2x2(t)dB2(t)

+σ3x3(t)dB3(t)
= [λ− δX(t) + (δ − µ)x2(t) + (δ − a)x3(t)]dt

+σ1x1(t)dB1(t) + σ2x2(t)dB2(t)

+σ3x3(t)dB3(t).

Define a function V (X(t)) = 1
X(t) and by the Itô’s formula,

we have

dV (X(t)) = − 1

X2(t)
dX(t) +

1

X3(t)
(dX(t))2

= − 1

X2(t)
(λ− δX(t) + (δ − µ)x2(t)

+(δ − a)x3(t))dt+
1

X3(t)
(σ2

1x
2
1(t)

+σ2
2x

2
2(t) + σ2

3x
2
3(t))dt

− 1

X2(t)
(σ1x1(t)dB1(t) + σ2x2(t)dB2(t)

+σ3x3(t)dB3(t)).

Since x1(t)
X(t) ≤ 1, x2(t)

X(t) ≤ 1 and x3(t)
X(t) ≤ 1, then

d 1
X(t)e

t ≤ [− λ

X2(t)
+
a+ µ− δ

X(t)
+
σ2
1 + σ2

2 + σ2
3

X(t)

+
1

X(t)
]etdt− et

X2(t)
(σ1x1(t)dB1(t)

+σ2x2(t)dB2(t) + σ3x3(t)dB3(t)).

It is easy to obtain

1
X(t) ≤

1

X(0)
e−t + e−t

∫ t

0

euH(X(t)) du

−e−t[

∫ t

0

eu

X2(u)
σ1x1(u)dB1(u)

+

∫ t

0

eu

X2(u)
σ2x2(u)dB2(u)

+

∫ t

0

eu

X2(u)
σ3x3(u)dB3(u)].

Obviously, if λ > 0, then we have H(X(t)) ≤ M1 for all
X(t) > 0.

In fact, we only need to prove the next two equations

P (lim inf
t→∞

X(ω, t) = 0) = 0 (13)

and
P (lim sup

t→∞
X(ω, t) = +∞) = 0. (14)

We now begin to prove assertion (13). If it is not true,
then there is a sufficiently small ϵ ∈ (0, 1) such that

P (Ω1) > ϵ, (15)

where Ω1 = {ω | lim inf
t→∞

X(ω, t) = 0}. Define the stopping

time

τk = inf{t ≥ 0 | X(ω, t) ≤ 1

k
, ω ∈ Ω1}, k ∈ Z+.

According to the definition, τk is increasing and τk → ∞
as k → ∞. It then follows that

E(
1

X(τk)
1Ω1)

≤ E(
1

X(0)
e−τk + e−τk

∫ τk

0

euH(X(t)) du)

≤ 1

X(0)
+M1.

(16)

However,

E(
1

X(τk)
1Ω1) ≥ kE(1Ω1) ≥ kϵ.

Letting k → ∞, leads to yield E( 1
X(τk)

1Ω1) ≥ kE(1Ω1) ≥
kϵ→ ∞, as k → ∞.

But this contradicts (16). We therefore have the desired
assertion (13), namely,

lim inf
t→∞

X(ω, t) > 0 a.s.

On the other hand, it follows

X(t) = X(0)e−µt + e−µt

∫ t

0

e−µu[λ− δX(t)

+(δ − µ)x2(t) + (δ − a)x3(t)] du

+e−µt

∫ t

0

e−µuσ1x1(u)dB1(u)

+e−µt

∫ t

0

e−µuσ2x2(u)dB2(u)

+e−µt

∫ t

0

e−µuσ3x3(u)dB3(u).

If it is not true, then there is a sufficiently small δ ∈ (0, 1)
such that

P (Ω2) > δ, (17)

where Ω2 = {ω | lim sup
t→∞

X(ω, t) = +∞}. Define the

stopping time

τk = inf{t ≥ 0 | X(ω, t) ≥ k, ω ∈ Ω1}, k ∈ Z+.

Integrating both sides and taking the expectations, we obtain

E(X(τk)) ≤ E(X(0))e−τkδ + e−τkδ

∫ τk

0

euδ[λ

+(δ − µ)x2(u) + (δ − a)x3(u)] du

≤ X(0) +M2.

(18)

Obviously, if λ > 0, then we have λ+(δ−µ)x2(t)+(δ−
a)x3(t) ≤M2 for all x2(t) > 0 and x3(t) > 0.
However, E(X(τk)1Ω2) ≥ kE(1Ω2) ≥ kδ → ∞, as k →
∞.

But this contradicts (18). Therefore, we have the desired
assertion (14), namely,

lim sup
t→∞

X(ω, t) < +∞ a.s.

This completes the proof.
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VI. ASYMPTOTIC BEHAVIOR AROUND E0 OF
DETERMINISTIC MODEL (1)

As mentioned in model (1), if R0 < 1, then model (1) has
a globally asymptotically stable disease-free equilibrium E0,
which means the disease will die out with the advancement
of time. Noting that E0 is not an equilibrium of stochastic
model (2), it is natural to ask whether the disease will go to
extinction in the population. In this section we mainly use
the way of estimating the oscillation around E0 to reflect
how the solution of model (2) spirals closely around E0. We
have the following Theorem.
Theorem 5 Let (x1(t), x2(t), x3(t), x4(t)) be the solution of
model (2) with initial value x(0) ∈ R4

+. IfR0 < 1, δ > 2σ2
1+

a+µ
2 , µ >

σ2
2(1+η2)+η(c−aη)+δ

2η2+1 , a >
σ2
3(1+η2)+c+3cη+δ

1+η+3η2 , γ >
1
2σ

2
4 +

c−aη
2 , then

lim sup
t→∞

1

t
E

∫ t

0

[(δ − 2σ2
1 −

a+ µ

2
)(x1 −

λ

δ
)2

+(µη2 − 1

2
σ2
2η

2 − η(c− aη)

2
− δ − µ

2
− 1

2
σ2
2)x

2
2

+(−3η(c− aη)

2
− c− aη

2
− 1

2
σ2
3η

2 − δ − a

2
− 1

2
σ2
3)x

2
3

+(γ − 1

2
σ2
4 −

c− aη

2
)x24]dt ≤ 2σ2

1(
λ

δ
)2.

Proof: Define the function V (t) as follows

V (t) = V1(t) + V2(t) + V3(t),

where V1(t) =
(x1−λ

δ )2

2 , V2(t) =
(x1−λ

δ +x2+x3)
2

2 , V3(t) =
(η(x2+x3)+x4)

2

2 .

Applying Itô’s formula, we can obtain

LV1(x) = (x1 −
λ

δ
)(λ− βx1x4

1 +mx4
− δx1) +

1

2
σ2
1x

2
1

= −δ(x1 −
λ

δ
)2 −

β(x1 − λ
δ )

2x4

1 +mx4

−
βλ(x1 − λ

δ )x4

δ(1 +mx4)
+
σ2
1x

2
1

2

≤ −δ(x1 −
λ

δ
)2 +

σ2
1x

2
1

2
,

LV2(x) = (x1 −
λ

δ
+ x2 + x3)(λ− δx1 − µx2 − ax3)

+
1

2
σ2
1x

2
1 +

1

2
σ2
2x

2
2 +

1

2
σ2
3x

2
3

= −δ(x1 −
λ

δ
)2 − (δ + µ)x2(x1 −

λ

δ
)

−(a+ µ)x2x3 − (a+ δ)x3(x1 −
λ

δ
)

−µx22 − ax23 +
1

2
σ2
1x

2
1 +

1

2
σ2
2x

2
2 +

1

2
σ2
3x

2
3

≤ (
a+ µ

2
+ σ2

1)(x1 −
λ

δ
)2 + (

δ − µ

2
+

1

2
σ2
2)x

2
2

+(
δ − a

2
+

1

2
σ2
3)x

2
3 + σ2

1(
λ

δ
)2,

LV3(x) = (η(x2 + x3) + x4)(−µηx2 + (c− aη)x3

−γx4) +
1

2
σ2
2η

2x22 +
1

2
σ2
3η

2x23 +
1

2
σ2
4x

2
4

≤ −µη2x22 + η(c− aη)x2x3 + η(c− aη)x23

+(c− aη)x4x3 − γx24

+
1

2
σ2
2η

2x22 +
1

2
σ2
3η

2x23 +
1

2
σ2
4x

2
4

≤ −µη2x22 +
η(c− aη)

2
x22 +

η(c− aη)

2
x23

+η(c− aη)x23 +
c− aη

2
x24 +

c− aη

2
x23 − γx24

+
1

2
σ2
2η

2x22 +
1

2
σ2
3η

2x23 +
1

2
σ2
4x

2
4

= (−µη2 + η(c− aη)

2
+

1

2
σ2
2η

2)x22

+(
c− aη

2
+

3η(c− aη)

2
+

1

2
σ2
3η

2)x23

+(
c− aη

2
− γ +

1

2
σ2
4)x

2
4.

By computing, we have

LV (x) ≤ (−δ + 2σ2
1 +

a+ µ

2
)(x1 −

λ

δ
)2 + (−µη2

+
1

2
σ2
2η

2 +
η(c− aη)

2
+
δ − µ

2

+
1

2
σ2
2)x

2
2 + (

3η(c− aη)

2
+
c− aη

2
+

1

2
σ2
3η

2

+
δ − a

2
+

1

2
σ2
3)x

2
3

+(−γ +
1

2
σ2
4 +

c− aη

2
)x24]dt+ 2σ2

1(
λ

δ
)2.

Taking expectation above, yields

EV (t)− V (0)

= E

∫ t

0

LV (r) dr

≤ (−δ + 2σ2
1 +

a+ µ

2
)E

∫ t

0

(x1(r)−
λ

δ
)2 dr

+(−µη2 + 1

2
σ2
2η

2 +
η(c− aη)

2
+
δ − µ

2

+
1

2
σ2
2)E

∫ t

0

x22(r) dr + (
3η(c− aη)

2
+
c− aη

2

+
1

2
σ2
3η

2 +
δ − a

2
+

1

2
σ2
3)E

∫ t

0

x23(r) dr

+(−γ +
1

2
σ2
4 +

c− aη

2
)E

∫ t

0

x24(r) dr + 2σ2
1(
λ

δ
)2t.

Hence,

lim sup
t→∞

1

t
E

∫ t

0

[(δ − 2σ2
1 −

a+ µ

2
)(x1 −

λ

δ
)2

+(µη2 − 1

2
σ2
2η

2 − η(c− aη)

2
− δ − µ

2
− 1

2
σ2
2)x

2
2

+(−3η(c− aη)

2
− c− aη

2
− 1

2
σ2
3η

2 − δ − a

2
− 1

2
σ2
3)x

2
3

+(γ − 1

2
σ2
4 −

c− aη

2
)x24]dt ≤ 2σ2

1(
λ

δ
)2.

This completes the proof.

VII. ASYMPTOTIC BEHAVIOR AROUND E∗ OF
DETERMINISTIC MODEL (1)

In studying virus infection model, we are interested in two
problems. One is the occurring of extinction, which has been
shown in the above part, another is the persistent presence
in a population. In the deterministic models, the second
problem is solved by showing that the endemic equilibrium
of corresponding model is a global attractor or is globally
asymptotic stable. But, there is none of endemic equilibrium
in model (2). We obtain a unique stationary distribution of
model (2) instead of the endemic equilibrium (see [34]).
Furthermore, since model (2) is the perturbed model, model
(1) has an endemic equilibrium E∗, it seems reasonable to
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consider the disease will prevail if the solution of model (2)
has the ergodic property. Before giving the main Theorem,
we first give a lemma (see [35]).

Let X(t) be a regular temporally homogeneous Markov
process in El ⊂ Rl described by the stochastic differential
equation

dX(t) = b(X)dt+
k∑

r=1

frdBr(t),

and the diffusion matrix is defined as follows:

A(x) = (aij(x)), aij(x) =

k∑
r=1

f ir(x)f
j
r (x).

Lemma 2 We assume that there exists a bounded domainU ⊂
El with regular boundary, having the following properties:

(B.1) It suffices to prove V is uniformly elliptical in U ,
where V u = b(x)νx+[tr(A(x))uxx]/2, i.e. there is a positive
number M such that

k∑
i,j=1

ai,jξiξj ≥M | ξ |2

(see [33] and Rayleigh’s principle in [36]).

(B.2) It is sufficient to show that there exists some neigh-
borhood U and a non-negative C2-function such that LV is
negative at every point x ∈ El\U like in [37].

Then, the Markov processX(t) has a stationary distribution
ν(.) with density in El such that for any Borel set B ⊂ El,
lim
t→∞

P (t, x,B) = ν(B), and

Px{ lim
T→∞

1

T

∫ T

0

f(X(t)) dt} =

∫
El

f(x)ν(dx)} = 1,

for all x ∈ El and f(x) being a function integrable with
respect to the measure ν.
Theorem 6 Let (x1(t), x2(t), x3(t), x4(t)) be the solution
of model (2) with initial value x(0) ∈ Γ. If R0 > 1
and 0 < ρ < min(k1x

∗
1
2, k2x

∗
2
2, k3x

∗
3
2, k4x

∗
4
2), then there

is a unique stationary distribution ν for model (2) and the
ergodicity holds. Here (x∗1, x

∗
2, x

∗
3, x

∗
4) is the unique endemic

equilibrium of model (1), where

k1 = δ − σ2
1 > 0,

k2 = µ(1 + η)− η(c−aη)
2 − σ2

2(η
2 + 1) > 0,

k3 = a− 3η(c−aη)
2 − c−aη

2 − σ2
3(η

2 + 1) > 0,

k4 = γ − σ2
4 −

c−aη
2 > 0,

ρ = σ2
1x

∗
1
2 + σ2

2(1 + η2)x∗2
2 + σ2

3(1 + η2)x∗3
2 + σ2

4x
∗
4
2.

Especially, we have

lim sup
t→∞

1
tE

∫ t

0
[k1(x1 − x∗1)

2 + k2(x2 − x∗2)
2

+k3(x3 − x∗3)
2 + k4(x4 − x∗4)

2]dr ≤ ρ.

Proof: As R0 > 1, there is the unique endemic equilibrium
E∗(x∗1, x

∗
2, x

∗
3, x

∗
4) such that

λ = δx∗1 +
βx∗

1x
∗
4

1+mx∗
4
,

kβx∗
1x

∗
4

1+mx∗
4
= (α+ u)x∗2,

(1−k)βx∗
1x

∗
4

1+mx∗
4

= ax∗3 − αx∗2,
ηβx∗

1x
∗
4

1+mx∗
4
= cx∗3 − γx∗4.

Define the function V (t) as follows

V (t) = V1(t) + V2(t),

where

V1(t) =
(x1+x2+x3−x∗

1−x∗
2−x∗

3)
2

2 ,

V2(t) =
(ηx2+ηx3+x4−ηx∗

2−ηx∗
3−x∗

4)
2

2 .

Applying Itô’s formula, we can obtain

LV1(x) = (x1 + x2 + x3 − x∗1 − x∗2 − x∗3)
×(λ− δx1 − µx2 − ax3)

+
1

2
σ2
1x

2
1 +

1

2
σ2
2x

2
2 +

1

2
σ2
3x

2
3

< −δ(x1 − x∗1)
2 − µ(x2 − x∗2)

2 − a(x3 − x∗3)
2

+
1

2
σ2
1x

2
1 +

1

2
σ2
2x

2
2 +

1

2
σ2
3x

2
3,

LV2(x) = (η(x2 − x∗2) + η(x3 − x∗3) + (x4 − x∗4))
×(−µη(x2 − x∗2) + (c− aη)(x3 − x∗3)

−γ(x4 − x∗4)) +
1

2
σ2
2η

2x22 +
1

2
σ2
3η

2x23

+
1

2
σ2
4x

2
4

≤ (−µη + η(c− aη)

2
+ σ2

2η
2)(x2 − x∗2)

2

+(
3η(c− aη)

2
+
c− aη

2
+ σ2

3η
2)(x3 − x∗3)

2

+(
c− aη

2
− γ + σ2

4)(x4 − x∗4)
2

+σ2
2η

2x∗2
2 + σ2

3η
2x∗3

2 + σ2
4x

∗
4
2.

By computing,

LV (x) ≤ −(δ − σ2
1)(x1 − x∗1)

2 − (µ(1 + η)

−η(c− aη)

2
− σ2

2(η
2 + 1))(x2 − x∗2)

2

−(a− 3η(c− aη)

2
− c− aη

2
− σ2

3(η
2 + 1))

×(x3 − x∗3)
2 − (γ − σ2

4 −
c− aη

2
)(x4 − x∗4)

2

+σ2
1x

∗
1
2 + σ2

2(1 + η2)x∗2
2 + σ2

3(1 + η2)x∗3
2

+σ2
4x

∗
4
2

= −k1(x1 − x∗1)
2 − k2(x2 − x∗2)

2

−k3(x3 − x∗3)
2 − k4(x4 − x∗4)

2 + ρ.

Taking the expectation of above equation, we see

EV (t)− V (0)

= E

∫ t

0

LV (r) dr

≤ −k1E
∫ t

0

(x1 − x∗1)
2 dr − k2E

∫ t

0

(x2 − x∗2)
2 dr

−k3E
∫ t

0

(x3 − x∗3)
2 dr

−k4E
∫ t

0

(x4 − x∗4)
2 dr + ρt.

Hence,

lim sup
t→∞

1
tE

∫ t

0
[k1(x1 − x∗1)

2 + k2(x2 − x∗2)
2

+k3(x3 − x∗3)
2 + k4(x4 − x∗4)

2]dr ≤ ρ.

Noting that 0 < ρ < min{k1x∗1
2, k2x

∗
2
2, k3x

∗
3
2, k4x

∗
4
2}, then

the ellipsoid

−k1(x1 − x∗1)
2 − k2(x2 − x∗2)

2 − k3(x3 − x∗3)
2

−k4(x4 − x∗4)
2 + ρ = 0
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lies entirely in R4
+. We can take U to be any neighbor-

hood of the ellipsoid such that Ū ⊆ El = R4
+, so for

x ∈ U\El, LV (t) ≤ −C (C is a positive constant), which
implies condition (B.2) is satisfied.

On the other hand, we can write model (2) as the form of
model,

d


x1(t)
x2(t)
x3(t)
x4(t)



=


λ− βx1x4

1+mx4
− δx1

kβx1x4

1+mx4
− µx2 − αx2

(1−k)βx1x4

1+mx4
− ax3 + αx2

Nax3 − γx4 − βx1x4

1+mx4

 dt

+


σ1x1(t)

0
0
0

 dB1(t) +


0

σ2x2(t)
0
0

 dB2(t)

+


0
0

σ3x3(t)
0

 dB3(t) +


0
0
0

σ4x4(t)

 dB4(t).

Here the diffusion matrix is

A =


σ2
1x

∗
1
2 0 0 0

0 σ2
2x

∗
2
2 0 0

0 0 σ2
3x

∗
3
2 0

0 0 0 σ2
4x

∗
4
2

 .

There is a M = min{σ2
1x1

2, σ2
2x1

2, σ2
3x1

2, σ2
4x1

2}, such
that for all (x1, x2, x3, x4) ∈ Ū and ξ ∈ R4

+,

k∑
i,j=1

ai,jξiξj = σ2
1x1

2ξ21 + σ2
2x2

2ξ22 + σ2
3x3

2ξ23

+σ2
4x4

2ξ24
≥ min{σ2

1x1
2, σ2

2x2
2, σ2

3x3
2, σ2

4x4
2} | ξ |2

= M | ξ |2,

which shows that condition (B.1) is also satisfied. Therefore,
we can conclude that stochastic model (2) has a stationary
distribution ν(.). This completes the proof.

VIII. NUMERICAL SIMULATIONS

In this section, we use the Milstein method (see, e.g.,
[39]) to substantiate our main results. Consider the following
discretization equations

x1k+1
= x1k + (λ− βx1kx4k

1 +mx4k
− δx1k)∆t

−x1k(σ1ξ1,k
√
∆t+ 1

2σ
2
1(ξ

2
1,k − 1)∆t),

x2k+1
= x2k + (

k1βx1kx4k
1 +mx4k

− µx2k − αx2k)∆t

−x2k(σ2ξ2,k
√
∆t+ 1

2σ
2
2(ξ

2
2,k − 1)∆t),

x3k+1
= x3k + (

(1− k1)βx1kx4k
1 +mx4k

+ αx2k − ax3k)∆t

−x3k(σ3ξ3,k
√
∆t+ 1

2σ
2
3(ξ

2
3,k − 1)∆t),

x4k+1
= x4k + (cx4k − γx4k)−

ηβx1kx4k
1 +mx4k

∆t

−x4k(σ4ξ4,k
√
∆t+ 1

2σ
2
4(ξ

2
4,k − 1)∆t),

where ∆t is time increment ξ1,k, ξ2,k, ξ3,k and ξ4,k(k =
0, 1, 2, 3 · · · ) are N(0,1)-distributed independent random
variables. In the figures, the red lines and the blue lines
represent solutions of deterministic model (1) and stochastic
model (2) respectively.

In Fig. 1, we choose the parameters λ = 108, β =
10−9, δ = 0.1, k = 0.2, m = 0.0001, µ = 0.2, α =
0.5, a = 0.5, c = 5, γ = 10, η = 0.8, σ1 =
0.53, σ2 = 0.67, σ3 = 0.42, σ4 = 0.34. In Fig. 2,
the only difference β = 10−8, c = 50, parameter values
chosen above are consistent with the conditions required for
the population densities fluctuate around the deterministic
steady-state values (see Theorem 5,6). In Fig. 3 and Fig. 4,
we represent the histograms of the values of the uninfected
cells, the latently infected cells, the infected cells and the
free virus of model (1) and model (2).
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Fig.1. The solutions of model (1) and model (2) with R0 < 1.

The uninfected cells, the latently infected cells, the infected cells
and the free virus of model (1) and model (2) are represented by
figure (a), figure (b), figure (c), figure (d), respectively.
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Fig.2. The solutions of model (1) and model (2) with R0 > 1.

The uninfected cells, the latently infected cells, the infected cells
and the free virus of model (1) and model (2) are represented by
figure (a), figure (b), figure (c), figure (d), respectively.
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Fig.3. The density distribution of model (1) and model (2) with
R0 < 1. The uninfected cells, the latently infected cells, the infected
cells and the free virus of model (1) and model (2) are represented
by figure (a), figure (b), figure (c), figure (d), respectively.
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Fig.4. The density distribution of model (1) and model (2) with

R0 > 1. The uninfected cells, the latently infected cells, the infected
cells and the free virus of model (1) and model (2) are represented
by figure (a), figure (b), figure (c), figure (d), respectively.

IX. DISCUSSION

In the real world, the population may suffer the occur-
rence of a catastrophe, e.g., earthquakes, hurricanes, volcanic
eruption or tsunami, etc. However, the deterministic infection
dynamical models may be difficult to explain the above
phenomena. In this paper, we have considered the dynamics
of stochastic HIV model and analyzed to study the effect
of environmental white noise on the dynamics of model (2).
By means of the theory of stochastic differential equations,
Itô’s formula, the method of Lyapunov functions and certain
long-run-average limits to examined the solutions of the
model from virous perspective and derived some sufficient
conditions on the boundedness, extinction, persistence of
the solutions and asymptotic behavior around equilibria for
infection-free and endemic of deterministic model (1).

The deterministic HIV infection model, for example, the
model (1) assumes that the parameters of the death rate
and transmission rate in the model are all deterministic
and the model irrespective of the environmental fluctuations
and changes. Hence, model (1) has some limitations in
mathematical modeling of epidemic models, besides model
(1) is quite difficult to fit data perfectly and to predict the
future dynamics of the model accurately. May [38] pointed
out the fact that due to environmental noise, the birth rate,
carrying capacity, death rate and other parameters involved in
the model exhibit random fluctuation to a greater or lesser
extent. In this paper, we incorporate white noise in model
(1) and consider that the population lives in an environment
subjected to random fluctuations which affect mainly death
rate.

We have an interesting topics deserving further investiga-
tion, such as the persistence, extinction, and global attrac-
tively of a stochastic HIV epidemic model with delays. We
leave this topics for our future work.
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