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Abstract—This work is devoted to the nonuniform sam-
pling problem in shift-invariant subspaces of mixed Lebesgue
spaces. We first define what multiply generated shift-invariant
subspaces in mixed Lebesgue spacesLp,q

(
Rd+1

)
are. Then

we proposed a fast reconstruction algorithm which allows to
exactly reconstruct the signalsf in the multiply generated shift-
invariant subspaces when the sampling setX = {(xj , yk) :
k, j ∈ J} is sufficiently dense.

Index Terms—Mixed Lebesgue spaces; Nonuniform sam-
pling; Shift-invariant subspace.

I. I NTRODUCTION

M IXED Lebesgue spaces generalize Lebesgue spaces.
It was arised due to considering functions that depend

on independent quantities with different properties[1], [2],
[4], [3]. For instance, a function which relies on time and
spacial variables may attribute mixed Lebesgue spaces. For
a function coming from mixed Lebesgue spaces, one can
discuss the integrability of each variable separately. This is
distinct from Lebesgue spaces which mainly ask the same
level of control over all the variables of a function. The flex-
ibility makes these mixed Lebesgue spaces to have a crucial
role to play in the study of time based partial differential
equations. In this context, we study nonuniform sampling
problem in shift-invariant subspaces of mixed Lebesgue
spaces.

The sampling theorems are one of the most powerful
tools in signal processing and image processing. In 1948,
Shannon formally proposed sampling theorem [5], [6]. Shan-
non sampling theorem shows that for anyf ∈ L2(R) with
suppf̂ ⊆ [−T, T ],

f(x) =
∑

n∈Z

f
( n

2T

) sinπ(2Tx− n)
π(2Tx− n)

=
∑

n∈Z

f
( n

2T

)
sinc(2Tx− n),

where the series converges uniformly on compact sets and
in L2(R), and

f̂(ξ) =
∫

R

f(x)e−2πixξdx, ξ ∈ R.

However, in many realistic situations, the sampling set is only
a nonuniform sampling set. For instance, the transmission
through the internet from satellites only can be viewed as a
nonuniform sampling problem, because there exists the loss
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of data packets in the transmission. In recent years, there
are results concerning nonuniform sampling problem [7], [8],
[9], [10], [11], [12], [13]. Uniform and nonuniform sampling
problems also have been generalized to more general shift-
invariant spaces [14], [15], [16], [17], [18], [19] of the form

V (φ) =

{∑

k∈Z

c(k)φ(x− k) : {c(k) : k ∈ Z} ∈ `2(Z)

}
.

For the sampling problem in shift-invariant subspaces
of mixed Lebesgue spaces, Torres and Ward studied uni-
form sampling problem for band-limited functions in mixed
Lebesgue spaces [20], [21]. Li, Liu and Zhang discussed
the nonuniform sampling problem in principal shift-invariant
spaces of mixed Lebesgue spaces [22]. In this paper, we
discuss nonuniform sampling problem in multiply generated
shift-invariant subspaces of mixed Lebesgue spaces. We first
define what multiply generated shift-invariant subspaces in
mixed Lebesgue spacesLp,q

(
Rd+1

)
are. Then we proposed

a fast reconstruction algorithm which allows to exactly
reconstruct the signalsf in multiply generated shift-invariant
subspaces when the sampling setX = {(xj , yk) : k, j ∈ J}
is sufficiently dense.

The paper is organized as follows. In Section 2, we
present the main concepts of mixed Lebesgue spaces and give
some valuable preliminary results. In section 3, we define
what multiply generated shift-invariant subspaces in mixed
Lebesgue spacesLp,q

(
Rd+1

)
are and prove some properties

of the functions in these shift-invariant subspaces. Section 4
proposes a fast reconstruction algorithm. Finally, concluding
remarks are presented in section 5.

II. D EFINITIONS AND PRELIMINARY RESULTS

We review a few definitions, notations and results of
Lp,q(Rd+1) which will be used throughout this paper.

Definition 2.1 For 1 ≤ p, q < +∞. Lp,q = Lp,q(Rd+1)
consists of all measurable functionsf = f(x, y) defined on
R×Rd satisfying

‖f‖Lp,q =

[∫

R

(∫

Rd

|f(x, y)|qdy

) p
q

dx

] 1
p

< +∞.

The correspondingsequence spaces are defined by

`p,q = `p,q(Zd+1) =
{

c : ‖c‖p
`p,q

=
∑

k1∈Z

(∑
k2∈Zd |c(k1, k2)|q

) p
q < +∞

} .
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Next, we introduce mixed Wiener amalgam spaces
W (Lp,q)(Rd+1) for controling the local behavior of func-
tion.

Definition 2.2 For 1 ≤ p, q < ∞, if a measurable function
f satisfies

‖f‖p
W (Lp,q) :=

∑
n∈Z supx∈[0,1][∑

l∈Zd supy∈[0,1]d |f(x + n, y + l)|q
]p/q

< ∞,

then we say thatf belongs to the mixed Wiener amalgam
spaceW (Lp,q) = W (Lp,q)(Rd+1).

Let W0 (Lp,q) (1 ≤ p, q < ∞) denote the space of all
continuous functions inW (Lp,q).

For 1 ≤ p < ∞, if a function f satisfies

‖f‖p
W (Lp) :=

∑

k∈Zd+1

ess supx∈[0,1]d+1 |f(x + k)|p < ∞,

then we say thatf belongs to the Wiener amalgam space
W (Lp) = W (Lp)(Rd+1).

For p = ∞, if a measurable functionf satisfies

‖f‖W (L∞) := sup
k∈Zd+1

ess supx∈[0,1]d+1 |f(x + k)| < ∞,

then we say thatf belongs toW (L∞) = W (L∞)(Rd+1).
Obviously,W (Lp) ⊂ W (Lp,p).

Let W0 (Lp) (1 ≤ p ≤ ∞) denote the space of all contin-
uous functions inW (Lp).

Let B be a Banach space.(B)(r) denotesr copiesB ×
· · · × B of B. If C = (c1, c2, · · · , cr)T ∈ (B)(r), then we
define the norm ofC by

‖C‖(B)(r) =




r∑

j=1

‖cj‖2B




1/2

.

For any sequencec ∈ `p (1 ≤ p ≤ +∞) andf ∈ W (L1),
define the semi-discrete convolution ofc andf by

(c ∗sd f)(x) =
∑

k∈Zd+1

c(k)f(x− k).

The following is mixed Lebesgue spaces version of
Hölder’s inequality.

proposition 2.3 [21, Theorem 1.1.3] Assume that1 ≤
p, p′, q, q′ ≤ ∞ satisfy 1

p + 1
p′ = 1 and 1

q + 1
q′ = 1. Then

‖fg‖L1,1 ≤ ‖f‖Lp,q‖g‖Lp′,q′ .

III. T HE SHIFT-INVARIANT SUBSPACES INLp,q

For Φ = (φ1, φ2, · · · , φr)T ∈ W (L1,1)(r), the multiply
generated shift-invariant space in the mixed Legesgue spaces
Lp,q is given by

Vp,q(Φ) =





r∑

j=1

∑

k1∈Z

∑

k2∈Zd

cj(k1, k2)φj(· − k1, · − k2) :

cj =
{
cj(k1, k2) : k1 ∈ Z, k2 ∈ Zd

} ∈ `p,q
}

.

It is easy to see that the three sum pointwisely converges
almost everywhere. In fact, for any1 ≤ j ≤ r, cj =

{
cj(k1, k2) : k1 ∈ Z, k2 ∈ Zd

} ∈ `p,q derivescj ∈ `∞. This
combinesΦ = (φ1, φ2, · · · , φr)T ∈ W (L1,1)(r) gives

∑r
j=1

∑
k1∈Z

∑
k2∈Zd |cj(k1, k2)φj(x− k1, y − k2)|

≤ ∑r
j=1 ‖cj‖∞

∑
k1∈Z

∑
k2∈Zd |φj(x− k1, y − k2)|

≤ ∑r
j=1 ‖cj‖∞‖φj‖W (L1,1)

≤
(∑r

j=1 ‖cj‖2∞
)1/2 (∑r

j=1 ‖φj‖2W (L1,1)

)1/2

=
(∑r

j=1 ‖cj‖2∞
)1/2

‖Φ‖W (L1,1)(r) < ∞ (a.e.).

The following theorem gives that the multiply generated
shift-invariant space is well-defined inLp,q.

Theorem 3.1 Assume that1 ≤ p, q < ∞ and Φ =
(φ1, φ2, · · · , φr)T ∈ W (L1,1)(r). Then for any C =
(c1, c2, · · · , cr)T ∈ (`p,q)(r), the function

f =
r∑

j=1

∑

k1∈Z

∑

k2∈Zd

cj(k1, k2)φj(· − k1, · − k2)

belongs toLp,q and

‖f‖Lp,q ≤ ‖C‖(`p,q)(r) ‖Φ‖W (L1,1)(r) .

In order to prove Theorem 3.1, we need the following
proposition.

Proposition 3.2 [22] Assume that1 ≤ p, q < ∞ and
φ ∈ W (L1,1). Then for anyc ∈ `p,q, the functionf =∑

k1∈Z

∑
k2∈Zd c(k1, k2)φ(· − k1, · − k2) belongs toLp,q

and
‖f‖Lp,q ≤ ‖c‖`p,q ‖φ‖W (L1,1) .

Now, we give proof of Theorem 3.1.
[Proof of Theorem 3.1] Since‖·‖Lp,q is a norm, we have

‖f‖Lp,q =
∥∥∥∥

r∑

j=1

∑

k1∈Z

∑

k2∈Zd

cj(k1, k2)

φj (· − k1, · − k2)
∥∥∥∥

Lp,q

≤
r∑

j=1

∥∥∥∥
∑

k1∈Z

∑

k2∈Zd

cj(k1, k2)

φj (· − k1, · − k2)
∥∥∥∥

Lp,q

. (1)

From Proposition 3.2, for any1 ≤ j ≤ r∥∥∑
k1∈Z

∑
k2∈Zd cj(k1, k2)φj(· − k1, · − k2)

∥∥
Lp,q

≤ ‖cj‖`p,q ‖φj‖W (L1,1) .
(2)

Therefore, from (1) and (2), we obain

‖f‖Lp,q ≤
r∑

j=1

‖cj‖`p,q ‖φj‖W (L1,1)

≤



r∑

j=1

‖cj‖2`p,q




1/2 


r∑

j=1

‖φj‖2W (L1,1)




1/2

≤ ‖C‖(`p,q)(r) ‖Φ‖W (L1,1)(r) .

In order to obtain the main result in this section, we need
to introduce the following two propositions.

Proposition 3.3[24, Theorem 3.3] Assume thatφ ∈
W

(
L1,1

)
. Thenφ satisfies

∑

k∈Zd+1

∣∣∣φ̂ (ξ + 2πk)
∣∣∣
2

> 0, ξ ∈ Rd+1,
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if and only if there exists a function g =∑
k1∈Z

∑
k2∈Zd d(k1, k2)φ(· − k1, · − k2) such that

〈φ (· − α) , g〉 = δ0,α.

Hered = {d(k1, k2) : k1 ∈ Z, k2 ∈ Zd} ∈ `1.
Proposition 3.4 [22, Lemma 3.3] The functiong in

Proposition 3.3 belongs toW (L1,1).
Now, we give the main result in this section which

shows the norm equivalence of‖C‖(`p,q)(r) , ‖f‖Lp,q and
‖f‖W (Lp,q). As usual, for quantitiesX and Y , X ≈ Y
denotes that there exist constantsc1 andc2 such thatc1X ≤
Y ≤ c2X, and X ¹ Y denotes that there exist constantc
such thatX ≤ cY .

Theorem 3.5 For 1 < p, q < ∞. Assume thatΦ =
(φ1, φ2, · · · , φr)T ∈ W (L1)(r) satisfies

A ≤ [Φ̂, Φ̂](ξ), ξ ∈ Rd+1,

where A > 0 and [Φ̂, Φ̂](ξ) =(∑
k∈Zd+1 φ̂j(ξ + 2kπ)φ̂j′(ξ + 2kπ)

)
1≤j≤r,1≤j′≤r

.

Then for any C = (c1, c2, · · · , cr)T ∈ (`p,q)(r) and
f =

∑r
j=1

∑
k1∈Z

∑
k2∈Zd cj(k1, k2)φj(· − k1, · − k2), one

has
‖C‖(`p,q)(r) ≈ ‖f‖Lp,q ≈ ‖f‖W (Lp,q).

Proof: Firstly, we prove‖C‖(`p,q)(r) ≈ ‖f‖Lp,q .
From Theorem 3.1, we get

‖f‖Lp,q ¹ ‖C‖(`p,q)(r) .

Thus we only need to obtain‖C‖(`p,q)(r) ¹ ‖f‖Lp,q . Since
for any ξ ∈ Rd+1, A ≤ [Φ̂, Φ̂](ξ), we get

∑

k∈Zd+1

∣∣∣φ̂j (ξ + 2πk)
∣∣∣
2

> 0, ξ ∈ Rd+1, 1 ≤ j ≤ r.

From Proposition 3.3 and Proposition 3.4, for eachφj (1 ≤
j ≤ r), there is a functiongj ∈ W (L1,1) such that

〈φj (· − α) , gj〉 = δ0,α.

Therefore, for any1 ≤ j ≤ r, k1 ∈ Z andk2 ∈ Zd

cj(k1, k2) =
∫

R

∫

Rd

f(x, y)gj (x− k1, y − k2)dxdy.

Let B = (b1, b2, · · · , br)T ∈
(
`p′,q′

)(r)

with 1
p + 1

p′ = 1 and
1
q + 1

q′ = 1. Thus we have

|〈C, B〉| =
∣∣∣∑r

j=1

∑
k1∈Z,k2∈Zd cj(k1, k2)bj(k1, k2)

∣∣∣
=

∣∣∣∣
∑r

j=1

∑
k1∈Z,k2∈Zd bj(k1, k2)

∫
R

∫
Rd f(x, y)gj (x− k1, y − k2)dxdy

∣∣∣∣
=

∣∣∣∣
∫

R

∫
Rd f(x, y)

∑r
j=1

∑
k1∈Z,k2∈Zd

bj(k1, k2)gj (x− k1, y − k2)dxdy

∣∣∣∣.

From Proposition 2.3 and Theorem 3.1, we have

|〈C, B〉| ≤ ‖f‖Lp,q

∥∥∥∥
∑r

j=1

∑
k1∈Z,k2∈Zd bj(k1, k2)

gj (x− k1, y − k2)
∥∥∥∥

Lp′,q′

≤ ‖f‖Lp,q ‖B‖(`p′,q′)(r) ‖G‖W (L1,1)(r) .

HereG = (g1, g2, · · · , gr)T ∈ W (L1,1)(r). Therewith

‖C‖(`p,q)(r) ≤ ‖f‖Lp,q ‖G‖W (L1,1)(r) , (3)

namely ‖C‖(`p,q)(r) ¹ ‖f‖Lp,q . Hence, we get
‖C‖(`p,q)(r) ≈ ‖f‖Lp,q .

Next, we prove‖f‖Lp,q ≈ ‖f‖W (Lp,q).
From the proof of [22, Theorem 3.4],‖f‖Lp,q ¹

‖f‖W (Lp,q) is a well known fact.
Conversely, by Proposition 3.2,‖C‖(`p,q)(r) ≈ ‖f‖Lp,q

and the triangle inequality of norm

‖f‖W (Lp,q)

=
∥∥∥∥
∑r

j=1

∑
k1∈Z

∑
k2∈Zd cj(k1, k2)

φj(· − k1, · − k2)
∥∥∥∥

W (Lp,q)

≤ ∑r
j=1

∥∥∥∥
∑

k1∈Z

∑
k2∈Zd cj(k1, k2)

φj(· − k1, · − k2)
∥∥∥∥

W (Lp,q)

¹ ∑r
j=1

∥∥∥∥
∑

k1∈Z

∑
k2∈Zd cj(k1, k2)

φj(· − k1, · − k2)
∥∥∥∥

Lp,q

≤ ∑r
j=1 ‖cj‖`p,q‖φj‖W (L1,1)

≤
(∑r

j=1 ‖cj‖2`p,q

)1/2 (∑r
j=1 ‖φj‖2W (L1,1)

)1/2

≤ ‖C‖(`p,q)(r) ‖Φ‖W (L1,1)(r)

¹ ‖C‖(`p,q)(r) ¹ ‖f‖Lp,q .

Therefore, we have‖f‖Lp,q ≈ ‖f‖W (Lp,q). This completes
the proof.

IV. NONUNIFORM SAMPLING IN SHIFT-INVARIANT

SUBSPACES

In this section, we mainly discuss nonuniform sampling in
multiply generated shift-invariant spaces. The main result of
this section is a fast reconstruction algorithm which allows to
exactly reconstruct the signalsf in multiply generated shift-
invariant subspaces when the sampling setX = {(xj , yk) :
k, j ∈ J} is sufficiently dense.

Before giving the main result of this section, we first give
some definitions.

In order to separate sampling points, we give the following
definition.

Definition 4.1 If a set X = {(xk, yj) : k, j ∈ J} ⊂
Rd+1 satisfiesinf(k,j)6=(k′,j′) |(xk, yj) − (xk′ , yj′)| = δ1 >
0 and infk 6=k′ |xk − xk′ | = δ2 > 0, then we say that the
set X is strongly-separated. Here|(xk, yj) − (xk′ , yj′)| =√

(xk − xk′)2 + (yj − yj′)2 andJ is a countable index set.
A bounded uniform partition of unity{βj,k}j,k∈J associ-

ated to a strongly-separated sampling setX = {(xj , yk) :
j, k ∈ J} is a set of functions satisfying

1) 0 ≤ βj,k ≤ 1,∀ j, k ∈ J,
2) suppβj,k ⊂ Bγ(xj , yk),
3)

∑
j∈J

∑
k∈J βj,k = 1.

Here Bγ(xj , yk) is the open ball with center(xj , yk) and
radiusγ.

If f ∈ W0(Lp,q), we define

QXf =
∑

j∈J

∑

k∈J

f(xj , yk)βj,k
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for the quasi-interpolant of the sequencecj,k = f(xj , yk).
In order to describe the structure of the sampling setX,

we give the following definition.
Definition 4.2 If a set X = {(xj , yk) : k, j ∈ J, xk ∈

R, yj ∈ Rd} satisfies

Rd+1 = ∪j,kBγ(xj , yk) for everyγ > γ0,

then we have the setX is γ0-dense inRd+1. HereBγ(xj , yk)
is the open ball with center(xj , yk) and radiusγ, andJ is
a countable index set.

The following is the main result of this section. It gives a
fast iterative algorithm to reconstructf ∈ Vp,q(Φ) from its
samples{f(xj , yk) : j, k ∈ J}.

Theorem 4.3 Assume thatΦ = (φ1, φ2, · · · , φr)T ∈
W0(L1)(r) and P is a bounded projection fromLp,q onto
Vp,q(Φ). Then there is a densityγ > 0 (γ = γ(p, q, P ))
such that anyf ∈ Vp,q(Φ) can be reconstructed from its
samples{f(xj , yk) : (xj , yk) ∈ X} on any γ-dense set
X = {(xj , yk) : j, k ∈ J} by the following iterative
algorithm:

{
f1 = PQXf

fn+1 = PQX(f − fn) + fn.
(4)

The iteratesfn converges tof in Lp,q norms and uniformly.
Furthermore, the convergence is geometric, namely,

‖f − fn‖Lp,q ≤ Mαn

for someα = α(γ) < 1 andM < ∞.

Before proving Theorem 4.3, we introduce some useful
results.

Let f be a continuous function. The oscillation (or
modulus of continuity) off is given by oscδ(f)(x) =
sup|y|≤δ |f(x + y) − f(x)|. Let F = (f1, f2, · · · , fr)T

be a continuous vector function. The oscillation (or mod-
ulus of continuity) of F is given by oscδ(F )(x) =
(oscδ(f1), oscδ(f2), · · · , oscδ(fr))T .

Proposition 4.4 [22, Lemma 4.3] Ifφ ∈ W0(L1), then
oscδ(φ) ∈ W0(L1).

The following is the vector version of Proposition 4.4.
Lemma 4.5 If Φ = (φ1, φ2, · · · , φr)T ∈ W0(L1)(r), then

oscδ(Φ) ∈ W0(L1)(r).
Proof: In view of proposition 4.4, for any1 ≤ j ≤ r,

we have oscδ(φj) ∈ W0(L1). Therefore

‖oscδ(Φ)‖W0(L1)(r) =




r∑

j=1

‖oscδ(φj)‖2W0(L1)




1/2

≤ √
r max

1≤j≤r
‖oscδ(φj)‖W0(L1) < ∞.

Namely,we have oscδ(Φ) ∈ W0(L1)(r).
Proposition 4.6 [22, Lemma 4.4] Ifφ ∈ W0(L1), then

limδ→0 ‖oscδ(φ)‖W (L1) = 0.
The following lemma is a generalization of Proposition

4.6.
Lemma 4.7 If Φ = (φ1, φ2, · · · , φr)T ∈ W0(L1)(r), then

limδ→0 ‖oscδ(Φ)‖W (L1)(r) = 0.

Proof: According to proposition 4.6, for any1 ≤ j ≤ r,
we obtainlimδ→0 ‖oscδ(φj)‖W (L1) = 0. So,

limδ→0 ‖oscδ(Φ)‖W0(L1)(r)

= lim
δ→0




r∑

j=1

‖oscδ(φj)‖2W0(L1)




1/2

=


 lim

δ→0

r∑

j=1

‖oscδ(φj)‖2W0(L1)




1/2

=




r∑

j=1

lim
δ→0

‖oscδ(φj)‖2W0(L1)




1/2

=




r∑

j=1

0




1/2

= 0.

In orderto prove Theorem 4.3, we need the following two
lemmas.

Lemma 4.8 Assume thatΦ = (φ1, φ2, · · · , φr)T ∈
W0(L1)(r) and f ∈ Vp,q(Φ). Then the oscillation (or
modulus of continuity) oscδ(f) belongs toLp,q. Moreover
for all ε > 0, there existsδ0 > 0 such that

‖oscδ(f)‖Lp,q ≤ ε‖f‖Lp,q

uniformly for all 0 < δ < δ0 andf ∈ Vp,q(Φ).
Proof: Letting f =

∑r
j=1

∑
k∈Zd+1 cj(k)φj(· − k) ∈

V p,q(Φ), then

oscδ(f)(x) = sup
|y|≤δ

|f(x + y)− f(x)|

≤
r∑

j=1

sup
|y|≤δ

∑

k∈Zd+1

|cj(k)|

| φj(x + y − k)− φj(x− k)|

≤
r∑

j=1

∑

k∈Zd+1

|cj(k)|

sup |y|≤δ|φj(x− k + y)− φj(x− k)|

=
r∑

j=1

∑

k∈Zd+1

|cj(k)|oscδ(φj)(x− k)

=
r∑

j=1

[|cj | ∗sd oscδ(φj)](x).

Here |cj | = {|cj(k)| : k ∈ Zd+1}. In view of Theorem 3.1,
Theorem 3.5 and Lemma 4.5, there existsM > 0 such that

‖oscδ(f)‖Lp,q ≤
∥∥∥∥∥∥

r∑

j=1

|cj | ∗sd oscδ(φj)

∥∥∥∥∥∥
Lp,q

≤ ‖|C|‖(`p,q)(r)‖oscδ(Φ)‖W (L1,1)(r)

= ‖C‖(`p,q)(r)‖oscδ(Φ)‖W (L1,1)(r)

≤ M‖f‖Lp,q‖oscδ(Φ)‖W (L1,1)(r) . (5)

HereC = (c1, c2, · · · , cr)T and |C| = (|c1|, |c2|, · · · , |cr|)T .
By Lemma 4.7, for anyε > 0, there existsδ0 > 0 such that

‖oscδ(Φ)‖W (L1)(r) <
ε

M
, ∀ 0 < δ ≤ δ0.

This combines (5) yields‖oscδ(f)‖Lp,q ≤ ε‖f‖Lp,q .
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Lemma 4.9 Let Φ = (φ1, φ2, · · · , φr)T ∈ W0(L1)(r) and
P be any bounded projection fromLp,q onto Vp,q(Φ). Then
there isγ0 = γ0(p, q, P ) such that the operatorI−PQX is a
contraction onVp,q(Φ) for every strongly-separatedγ-dense
setX with γ ≤ γ0.

Proof: Let f ∈ Vp,q(Φ), we have

‖f − PQXf‖Lp,q = ‖Pf − PQXf‖Lp,q

≤ ‖P‖op‖f −QXf‖Lp,q

≤ ‖P‖op‖oscγf‖Lp,q

≤ ε‖P‖op‖f‖Lp,q ,

where the last inequality holds according to Lemma 4.8. We
can choose aγ0 such that for anyγ < γ0, ε‖P‖op < 1.
Therefore, we get a contraction.

We are now ready to prove the main result in this section.
Proof of Theorem 4.3: For convenience, leten = f −

fn be the error aftern iterations. From (4),

en+1 = f − fn+1

= f − fn − PQX(f − fn)
= (I − PQX)en.

From Lemma 4.9, we can choose a smallγ satisfies that
‖I − PQX‖op = α < 1. Then we obtain

‖en+1‖Lp,q ≤ α‖en‖Lp,q ≤ αn‖e0‖Lp,q .

Where ‖en‖Lp,q → 0, when n → ∞. This completes the
proof.

V. CONCLUSION

In this paper, we discuss nonuniform sampling problem
in shift-invariant subspaces of mixed Lebesgue spaces. We
first define that multiply generated shift-invariant subspaces
in mixed Lebesgue spacesLp,q

(
Rd+1

)
. Then we proposed

a fast reconstruction algorithm. When the sampling set
X = {(xj , yk) : k, j ∈ J} is sufficiently dense, this fast
reconstruction algorithm allows to exactly reconstruct the
signalsf in the multiply generated shift-invariant subspaces.
Studying nonuniform sampling problem in multiply gen-
erated vector shift-invariant subspaces of mixed Lebesgue
spaces is the goal of future work.
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