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A Numerical Study of Atangana-Baleanu and
Caputo-Fabrizio for MHD Flow Problem over a
Vertical Hot Stretching Sheet with Variable
Viscosity and Thermal Conductivity

Dipen Saikia, Utpal Kumar Saha, G. C. Hazarika

Abstract— A numerical investigation has been made to study
the effects of variable viscosity and thermal conductivity over a
vertical hot stretching sheet by using Atangana-Baleanu (AB)
and Caputo-Fabrizio (CF) fractional derivatives. As the
viscosity and thermal conductivity of a fluid are dependent on
temperature, these properties are considered as a variable. We
have also considered radiation and chemical reaction. The
governing partial differential equations along with the
boundary conditions are made dimensionless using suitable
similarity transformations so that physical parameters appear
in the equations and interpretations on these parameters can
be done suitably. The equations so obtained are discritized
using ordinary finite difference scheme and we solved the
discritized equations numerically adopting a method based on
the Gauss-Seidel iteration scheme. Numerical techniques are
used to find the values from AB and CF formulae for fractional
derivatives on time. The effects of various parameters involved
in the problem viz., viscosity parameter, thermal conductivity
parameter, magnetic field parameter, radiation parameter,
Schmidt number, prandlt number, chemical reaction
parameter etc. on velocity, temperature, and concentration
distribution at the plate have been shown graphically. The
coefficient of skin-friction, heat transfer rate, and Sherwood
number are also obtained and presented in tabular form. The
effects of each parameter are prominent. A comparison has
been given on AB and CF methods in tabular form. It is
observed that both the methods agreed well.

Index Terms- AB fractional, CF fractional, free convection,
velocity, MHD fluid, variable viscosity, variable thermal
conductivity.
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I. INTRODUCTION

HE boundary layer flow and heat transfer of a viscous

fluid over flat surfaces have been investigated in several

technological processes such as hot rolling, metal
extrusion, continuous stretching of plastic films and glass
fiber, polymer extrusion, wires drawing and metal spinning.
So the study of two dimensional boundary layer flows over
a stretching sheet has gained much interest. Coupled heat
and mass transfer popularly known as double diffusion, has
so many important applications in the field of science and
engineering, such as chemical catalytic reactor and
processes, underground disposal of nuclear wastes,
migration of moisture through the air contained in fibrous
insulation, spreading of chemical pollutants through water-
saturated soil, diffusion of medicine in blood veins, filtration
etc. Application of the magnetic field to the fluid flow gives
utmost importance in the fields of meteorology,
astrophysics, cosmic fluid dynamics, geophysics, solar
physics etc. Magnetohydrodynamic flow has applications in
the motion of the earth's core also.

Due to the technological importance, studies of free
convection flow of viscous incompressible fluid past a semi-
infinite or infinite vertical plate have been done by many
researchers. Uwanta et al. [14] studied about MHD fluid
flow over a vertical plate with Dufour and Sorret effects.
Kumar et al. [10] and Uddin et al. [13] are investigated the
effects of thermal diffusion and chemical reaction on
unsteady fluid flow over a vertical porous plate with a heat
source. Effects of thermal radiation and chemical reaction
on free convection flow past a moving vertical plate were
analyzed by Hemalatha and Reddy [5]. Soundalgekar [11]
observed the effects of free convection on the flow past an
infinite vertical oscillating plate. Elabashbeshy [4] analyzed
double diffusion of an MHD flow along with a vertical plate
with variable surface tension and concentration. Zubi [15]
studied MHD heat and mass transfer over a permeable
vertical plate with a chemical reaction.

The effects of heat source/sink in thermal convection are
significant where a higher temperature difference exists
between the surface and the fluid in contact with the surface.
Buoyancy effects on MHD free convection flow in the
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presence of heat source/sink were studied by Baag et al. [3]
and Princely [9]. Effects of chemical reaction on MHD flow
over a moving vertical plate in the presence of heat sources
were analyzed by Tripathy et al. [12]. An unsteady MHD
free convective flow past a vertical plate with thermal
diffusion and heat source was investigated by Ahmed et
al.[1]. Nadeem et al. [8] made comparative study on
generalized Casson fluid model using CF and AB fractional
derivatives with chemical reaction and heat generation and
presented their results graphically. Fractional calculus has
become a burning topic in research due to two
reasons/weaknesses: problem of the singular kernel with
locality and problem of the non-singular kernel with non-
locality. In order to avoid the problem of the singular kernel,
Michele Caputo and Mauro Fabrizio proposed a fractional
derivative by employing an exponential function [7]. Indeed,
the claim of a singular kernel for the fractional derivative
operator is not based on their observations; even they
suggested their fractional derivative operator is appropriate
for various physical problems. Atangana et al. [2] employed
the time-fractional Caputo—Fabrizio derivative on the
advection-diffusion equation for tracing out the fundamental
solutions using the Laplace transform for the fractional
diffusion phenomenon. Lai, Kulacki [6] discussed the effect
of variable viscosity on convective heat and mass transfer
along a vertical surface in standard porous media.

In this paper, we investigate the effects of variable
viscosity and  thermal  conductivity of  viscous
incompressible fluid flow in the presence of a uniform
magnetic field over a moving vertical plate. The governing
partial differential equations along with the boundary
conditions are made dimensionless by using some suitable
non-dimensional ~ parameters.  The  non-dimensional
governing equations with the non-dimensional boundary
conditions are discretized with ordinary finite-difference
kernel solved numerically with the help of AB fractional
derivative and CF fractional derivative method by
developing suitable programming code in MATLAB.
Comparisons of the results obtained by both the methods are
shown in tabular form.

Il. FORMULATION OF THE PROBLEM

Let us consider an unsteady incompressible fluid for
free convective flow which occupies the space above a
moving plate in the XY plane, and the plate is normal to the
Yy axis. Initially, 'ITOOis the temperature and C:O is the
concentration level to the plate whereas plate as well as fluid
is kept at rest. At t =07, the double diffusion from the
plate to the fluid have gained the temperature 'FW and

concentration level near the plate isC,. A uniform

magnetic field with strength B, is applied in the transverse

direction of the flow. The condition of incompressibility is
obviously satisfied for such type of flow. Keeping the usual
Boussinesq approximation in mind, the governing boundary
layer equations are:

Equation of Continuity:

ox oy

Equation of conservation of momentum:
ou _ou _ou ocu
—+U0—+V—=

ot ox oy oy?
gﬂT (T _Too) + gﬂc (6 _630)

O]

Equation of conservation of energy:
= = = = = —\2 72 —

oo (Tl ) 2T 0T (o) T
ot X oy

gy v F) ey
@)
Equation of concentration:
o g€ g DX 0C g
ot X B2 oy
(4)
The initial boundary conditions are:
{<0:0=0T=T,C=C, Wy
f>~0:0=U,cos(@t) T =T, +(T, 'IT)At',
C=C,+(C,-C.)ataty=
{~0:0—-50T—>T,, C—>C_ay—>w
()
where and V are the fluid velocities inX andy

directions respectively, 9 is the kinematic viscosity, o is
the fluid density, £ is the viscosity of the fluid, o is the
electrical conductivity, g is the acceleration due to gravity,

P is the coefficient of volume expansion for heat transfer,

B is the coefficient of volume expansion for mass

transfer, T isthe temperature and 'ITw is the temperature at

free stream of the fluid, C is the concentration and 500 is
the concentration at free stream of the fluid, A is the
thermal conductivity of the fluid, Cp is the specific heat at

constant pressure, {, is the radiative heat flux, D is the
mass diffusivity, U, is the velocity of the plate, C_IW is the
species concentration at the surface of the plate and A is a
constant, J s the electric current density. By Ohm’s law
jza[ﬁ+qx é] g be fluid velocity at a particular

point, B= BOT be the applied magnetic field. Here no

electric field is applied for whichE =0, Ch is the
chemical reaction rate of the species concentration.

The last two terms of eqn. (2) represent the thermal and
concentration buoyancy effects respectively. In eqgn. (3) the
last two terms denote the heat absorption and thermal
radiation effects respectively. Also, the last term of eqn. (4)
represents the chemical reaction effect.

By the Rosseland approximation, the radiative heat flux is
given by
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g - 25T’ (6)

4 =733 oy
where @ is the mean absorption coefficient and &
Stefan — Boltzmann constant.
Assuming that the temperature differences within the flow

is such that the term T *
function of the temperature, we expand T*

is the

may be expressed as a linear

in Taylor’s

series about'roO as follows:

T =T aT (T T, )+ 6T, 2T =T, F +......
By neglecting the higher order terms beyond 1% degree in

T —T, wehave T — 4T_°T —3T.* ©)

Using equations (6) and (7), eqn. (3) reduces to

(617 _oT _oT J oA aT T
pCp — +U—+V — 7
ot oX oy 53/ 5)/ oy
ou _\ 165T,° o°T*
+,U(ayj "‘Qo( Tw)— 33 872

®)

Let us introduced the below mentioned dimensionless
quantities:

x:UOX, y:U°y, u=" H:I T_w
9, 9, U, T,-T,
_ ~ ~ 2F —
V:L ¢:ﬁ, t:UOt, a)_a)192 ,
UO CW_Coo l9oo UO
9.Ch u,’
, A=—2, 9
&= Uo ) C))

The viscosity and thermal conductivity of the fluid are
assumed to be inverse linear function of temperature [6] as

follows:

1oLy ror) )
i_1 = T 11
T L+ -T,) (11)

where y and & are constants which depend on the thermal
property of the fluid.

T -T,

We define two parameters as 6, = =———=- called
T,-T,

o T -T,

viscosity ~parameter and 6, = T T called thermal

=

Conductivity parameter.
Using these two parameters in (10) and (11), we have the
viscosity and thermal conductivity respectively as

/Lloogr Z — ﬁ’wec
0-6_ 6-6

c

u=- 12)

Using the transformations (9) and (12), the non-dimensional
forms of (2), (3) and (4) are

ou du _du 0. o%u
—+u—+V—=-—"—-
ot OoX ay e_er ay2
Lzﬁé? M _ Mu+Gro+Gr b (13)
(0—-6,) oy oy
(ae o0 aej [4 6, jaze
Pl —+u—+v— |[=| = Kr — — +
ot ox oy 3 0-0, )0y
2 2
LZ[%J —(LJPLEC(G—U] + MEc.u?
-0y ay) \o-6 o
(14)
¢, ,9, ,90__ 6 100 0¢_
ot ox ay (0-6.) scoy oy
o,
S0 - H)ay —&(g+N,)
(15)

The related initial and boundary conditions are reduced to
the form:

t<0:u=0,v=0, =0, ¢=0 Vy
t-0:u=cos(at) v=0, 6=t, g=t aty=0
t-~0:u—>0,v>0,0>0,¢—>0 aty—>w

(16)
2
u, .
where EC = = is the Eckert number,
wp
oB,%9, L
M = > is the Magnetic field parameter,
PY,
T, -T,
So=D—2~—=_ is the Soret number,
9.(C,-C.)

3, . . .
SC:E is the Schmidt number of fluid,
N, =—=—"= s the concentration difference parameter,

Cw - Coc

— — 2
:m is the radiation parameter,
31U,

9,05, (T, T,

Gr = wgﬂT( x °°) is the Grashof Number,
UO
9 C,-C.
Gr, = wgﬂclg ” °°) is the Concentration
0

p8.C,

buoyancy parameter and Pr= is the Prandlt

number.
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A. Atangana-Baleanu Fractional Derivatives

In order to generate the AB fractional model, we
replace governing partial differential equations with respect
to time by the AB fractional operator of the order
0 <o <1, Egns. (13)-(15) become

AB(a“u(y,t)j:_ua_u_va_u_ 0. o
ot” ox 8y 0-0, oy?
0 zﬁa—u—Mu+Gr9+Grm¢
(H—Hr) ayay
(17)
AB[@”’Q(y,t)J SRV 1(4Kr b J
ate ox oy Pr\3 6-0,
%0 1 6, ( j J (aj
o0, 1 B M
oy> Pr(6-6,) oy
(18)
AB(—aaﬂy’t)J:—u%—v%+—6’r .
ot” ox (.9—49)2
10004 6 ¢
scoy oy Sc0-0) oy O ay”‘”’t(¢ Ne)
(19)

o“u(y,t) . .
where, ———— is the AB fractional operator of order &
defined as
o“u(y,t) ( a(z- t)j
AB u t)E | ———=
( ~ J j (y.OE,| —

(20)

is the Mittage —
o 1+ am

Where Ea( )= i

Leffler function.

B. Caputo- Fabrizio Fractional Derivatives

In order to generate the CF fractional model, we replace
governing partial differential equations with respect to time
by the CF fractional operator of the order 0 < £ <1, Eqns.
(13)-(15) become

B 2
CE o”u(y,t) =_ua_u_ ou 6, o°u
ot” OX ay Co- 6, oy*?
LZ%G—U—MU+GrH+Gr 17
(©-6,) oy oy

(21)

OX oy Pr

4 0. Yoo 1 6, (80Y
“Kr— AT S
3 0-6, )oy* Pr(e-6.)\ oy

2
(8 e @) MEC,
0-0. oy Pr

Y]
cr(2000) 20,20t

(22)
CF [‘W(y t>j__u%_v%+L.
at” ox oy (49—49,)2
10004 _ 0, ¢
Scoy oy sc0-0) oy ay +EP-N.)
(23)
B
where, 62'[—(/):,0 is the CF fractional operator of order [
defined as
olu(y.))_ 1 o - p(z-1)
CF[ Py j ﬁ}[u (y,t)Exp( 15
(24)

C. Numerical Solution

Solutions of equations (17) — (20) or (21) — (24) are
obtained by using ordinary finite difference scheme.
Discritization is performed using the following formulae:

@_U _ ui+l,j,k _ui,j,k

ot At

5_U _ Ui jsak — Uik

OX AX

ou Ui — Uik

oy Ay

ou Uik — Ui

& AX

0 _ i1~ P

oy Ay

O%U Ui jker —2Ui i T Ui jus
8y2 - Ay2 !
0%0 0 ixa—20, 54 +0 14
8y2 - Ay2 !
0% _ G ixa =20 ik TPk otc
oy Ay?

The fractional derivatives given by (20) or (24) are
calculated using numerical integration. Finally the set of
equation (17) — (19) or (21) — (23) together with boundary
condition (16) completely discritized and the discritized
equations are solved by using an iterative method based on
Gauss- seidel scheme.

The boundary condition corresponding to (16) becomes
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t<0:u;;,=0,v;;,=0,6,,=0,4,,=0
Vi, J,k
t-0:u,, =cos(at) v,,,=0,6,,, =t ¢, =t
since K =1when y=0
t=0:iu;y >0,vi;y 20,6,y >04,y >0

since y — oo means K — N

D. Important Physical Parameters

Three important physical parameters for the present
problem are
(a) Coefficient of skin friction:

The viscous drag at the plate per unit area in the
direction of the plate velocity is given by the Newton’s
law of viscosity in the form

_ 2
T ey
y=0 y=0

oy 8, oy

The non-dimensional skin-friction at the plate in the
direction of the free stream is given by,

e

___ 6 ou) __
0-0,'%y) , t-6 Ay

(b) Nusselt number:
The Nusselt number measures the rate of heat transfer
at the plate. The heat flux q from the plate to the fluid is

given by the Fourier’s law of heat conduction in the form

oT
q= —/1—_J
& )0

The coefficient of rate of heat transfer from the plate to
the fluid in terms of Nusselt Number is given by

Nu = q_ —
pUOCp(TW _Too)

_ 6, 30 _ 8, (042t
0-0,0y) , t-60.\ Ay

(c) Sherwood number:
The mass flux q, from the plate to the fluid is given

by the Fick’s law in the form
_ Dg] --D M %J
& ). % ),

The Sherwood number measures the rate of mass transfer

On =

at the plate and is given by Sh = "
u,lC, -C

—_i% __i ¢i,j,2_t
~ Scoy y;o_ Scl Ay

I11.  RESULT AND DISCUSSION

The non dimensional discretized governing equations
together with the non-dimensional boundary conditions have
been solved with the help of AB and CF fractional
derivative method by developing suitable programming
code in MATLAB using the method described in section C.
This analysis has been done to study the effects of various

parameters such as @, , 6., Kr,Sc, Ec,Pr,M,a and S,
&,ScC etc. on velocity(U ), temperature (€) and species

concentration(¢@) profiles in presence of time. The

numerical results have been presented graphically in figures
(1) to (14). In the following discussion, the initial values of

the parameters are considered as 6, =—7, 6, =—7,
=03, =03 M=05,Gr,=0.1 Gr=0.1,
Kr =0.05Ec=0.1, Pr=0.71, Sc =0.22and

& =0.01 unless otherwise stated.

Fig 1: Effects of & and /3 on velocity profile

12

Fig 2: Effects of & and ﬂ on temperature profile
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Fig 3: Effects of & and ﬁ on concentration profile

M=1.15,2

08 1

12
y
Fig 4: Effects of M on velocity Profile
%J‘v.
i
08 1 12

Fig 5: Effects of M on temperature Profile

0 0.1 02 03 04 05 06 07 08
y

Fig 6: Effects of M on concentration Profile

09

6.=-10,-8, 6

0 02 04 06 08 1 12
y
Fig 7: Effects of 9r on velocity profile
1.2
‘4
\
i
\
08 1 12

Fig 8: Effects of er on temperature profile
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0,=-10,-8, 6
\

. 09 1 0.7 08 09 1
¥ Yy
Fig 9: Effects of 49, on concentration profile Fig 12: Effects of 00 on concentration profile
1
L 08 1 12 0 0.1 02 03 04 05 06 07 08 09 1
y Yy
Fig 10: Effects of 90 on velocity profile Fig 13: Effects of SCon velocity profile
1.4 1.2
8, =-10,-8, -6 \
b \‘
) \,\
\
08 1 12 0 0.1 0.2 0.3 04 05 06 0.7 08 09 1
y Yy
Fig 11: Effects of Hc on temperature profile Fig 14: Effects of Sc temperature profile
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\
Sc=0.1,02, 03

0.8

0.4 §

0.2

0

0

Fig 15: Effects of SC concentration profile

Pr=.01,.02, .03

0.8 1 12

Fig 16: Effects of Pr temperature profile

Kr=.01,.03, .05

Fig 17: Effects of Kr temperature profile

The solutions have been found for different values of
Physical parameters such as the AB fractional operator (&)

and CF fractional operator ( ), magnetic parameter(M )
viscosity variation parameter (,), thermal conductivity
parameter (6.), Schmidt number (Sc), Prandit (Pr),

Radiation parameter (Kr)on velocity, temperature and

species concentration of fluid and are expressed graphically
in Figl to Figl7.

Fig. 1- Fig.3 demonstrate the velocity, temperature and
concentration profile for various values of the AB fractional

operator (¢ ) and CF fractional operator ( /7). It is observed
in all the three figures that the velocity, temperature and
concentration U,0 and ¢ respectively increases for

increasing values of & and /3.

In Fig.4, it is seen that with the increasing value of the
Hartmann number M , velocity decreases. The presence of
magnetic field in the normal direction of the flow in an
electrically conducting fluid produces Lorentz force which
opposes the flow. To overcome this opposing force, some
extra work should be done which is transformed to heat
energy. Hence temperature increases (Fig.5). With the
increase of M species concentration also increases (Fig.6).

The effects of viscosity parameter @, on velocity,
temperature and species concentration distribution are
plotted in Fig.7, Fig.8 and Fig.9. In Fig.7 displays that
dimensionless velocity U decreases with the increase of &, .
It happens with the increase of the viscosity parameter the
thickness of the velocity boundary layer decreases.
Physically, this is due to a Iargeré’r, implies higher
temperature difference between the fluid and the surface.
Fig.8 shows that temperature profile & rises with the increase

of @, . The species concentration ¢ decreases for increasing

value off, (Fig.9). Fig.10 depicts the distribution of
velocity with the variation of the thermal conductivity
parameter @, . Velocity increases and temperature decreases

with the increasing value of Hc (Fig.11) which implies
decreasing of viscosity and so velocity increases. With the
increase of €, concentration of species increases (Fig.12).

Fig.13 and Fig.14 displays the variation of velocity and
concentration profile for various values of Schmidt number
Sc . Velocity decreases with the increasing value of SC
(Fig.13). The species concentration decreases with the
increasing value of SC. With the increase of Sc, the
concentration boundary layer becomes thinner due to which
the concentration gradient increases. As a result, the species
concentration decreases (Fig.14). In Fig.16 it is seen that
temperature is decreases with the increasing value of Prandlt

number (Pr). In Fig.17 shows that temperature is increases

with the increasing value of radiation parameter (Kr) .

A. Comparision of AB and CF Fractional Derivative
Methods for Various Values of the Parameters

Here we compare between AB and CF fractional
derivative for various values of the parameters taking
y =0.35. From the following tables it is observed that the
values of the velocity, temperature and concentration
profiles for various parameters are almost the same for both
the the methods- AB and CF fractional derivative but the
values of CF is slidly greater than the values of AB. From
Table I, I1, 111, IV,V and VI it is observed that the values of
CF is slightly greather than the values of AB for velicity (u)
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and temperature (0) but for concentarion (¢) the values of
CF is slightly less than the values of AB.

TABLE | : EFFECT OF a or f ON u, 8 AND ¢

alB t v o ¢
AB CF AB CF AB CF
0.4 0.019534 0.019535 0.008676 0.008679 0.008187 0.008187
0.2 0.8 0.014359 0.014379 0.017176 0.017187 0.016858 0.016858
12 0.006799 0.006814 0.025699 0.025725 0.025567 0.025567
0.4 0.052086 0.052137 0.023211 0.023209 0.021670 0.021661
04 0.8 0.038286 0.038396 0.045909 0.045924 0.045092 0.045058
1.2 0.018185 0.018308 0.068283 0.068496 0.068904 0.068898
0.4 0.087558 0.087666 0.039193 0.039159 0.035939 0.035912
0.6 0.8 0.064684 0.064981 0.077228 0.077186 0.075289 0.075170
12 0.031495 0.031982 0.114996 0.115771 0.113639 0.113596
TABLE II: EFFECT OF M ON u, 8 AND ¢
M t " o ¢
AB CF AB CF AB CF
0.4 0.086655 0.086714 0.008627 0.008630 0.008188 0.008188
1 0.8 0.063689 0.063825 0.017174 0.017186 0.016861 0.016861
12 0.030350 0.030513 0.025694 0.025724 0.025575 0.025575
0.4 0.051863 0.051903 0.023206 0.023205 0.021677 0.021670
15 0.8 0.038132 0.038212 0.045898 0.045908 0.045108 0.045084
12 0.018112 0.018194 0.068306 0.068449 0.068943 0.068941
04 0.0194990 0.019513 0.039151 0.039138 0.035998 0.035986
2 0.8 0.014356 0.014378 0.077106 0.077092 0.075552 0.075515
12 0.006797 0.006814 0.114287 0.114567 0.116222 0.116218
TABLE I1l: EFFECT OF 6. ON u, 6 AND ¢
6, t ¢ o ¢
AB CF AB CF AB CF
04 0.019499 0.019513 0.039072 0.039059 0.008192 0.008192
-10 0.8 0.014356 0.014378 0.076795 0.076782 0.016877 0.016877
12 0.006797 0.006814 0.113611 0.113892 0.025611 0.025611
0.4 0.052089 0.052129 0.023185 0.023183 0.021731 0.021724
-8 0.8 0.038299 0.038380 0.045814 0.045824 0.045321 0.045297
1.2 0.018191 0.018274 0.068122 0.068265 0.069412 0.069410
04 0.087573 0.087632 0.008625 0.008628 0.036197 0.036185
-6 0.8 0.064367 0.064504 0.017167 0.017180 0.076339 0.076302
12 0.030674 0.030839 0.025679 0.025709 0.117941 0.117939
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TABLE IV:EFFECT OF 6, ON u, 8 AND ¢

o t = ¢
r AB CF AB CF AB CF
0.4 0.086886 0.086946 0.008627 0.008630 0.035797 0.035785
-10 0.8 0.063406 0.063542 0.017173 0.017186 0.074782 0.074745
12 0.030044 0.030207 0.025693 0025723 0.114595 0.114592
0.4 0.051837 0.051877 0.023203 0.023201 0.021612 0.021604
-8 0.8 0.037944 0.038024 0.045895 0.045905 0.044853 0.044830
12 0.017955 0.018037 0.068305 0.068448 0.068399 0.068397
0.4 0.019465 0.019479 0.039142 0.039128 0.008180 0.008180
-6 0.8 0.014307 0.014329 0.077095 0.077081 0.016832 0.016832
12 0.006764 0.006781 0.114282 0.114563 0.025513 0.025512
TABLE V: EFFECT OF Sc ON u,6 AND ¢
u
3¢ t AB CF AB CF AB : CF
0.4 0.087576  0.087636 0.008627 0008630 0008260  0.036788
0.1 08 0.064363  0.064500 0.017174 0017186 0016851  0.075551
12 0.030659  0.030823 0.025694 0025724 0025439  0.114781
0.4 0.052090  0.052131 0.023206 0023205 0022081  0.022078
0.2 0.8 0.038298  0.038378 0.045898 0045008 0045090  0.045081
12 0.018186  0.018268 0.068306 0068449 0068186  0.068186
0.4 0.019499  0.019513 0.039153 0039139 0036795  0.008260
0.3 0.8 0014356  0.014378 0.077107 0077094 0075573  0.016851
12 0.006796  0.006813 0.114287 0114568  0.114783  0.025439
TABLE VI: EFFECT OF Kr AND Pr ON 6
Kr t AB ” CF br t AB - CF
0.4 0.008627 0.008630 0.4 0.025650 0.025694
0.01 0.8 0017174 0017186 001 0.8 0.017167 0.017185
12 0.025694 0.025724 12 0.008643 0.008647
0.4 0023201 0.023200 0.4 0.068050 0.068258
0.03 0.8 0.045898 0045908 (02 0.8 0.045898 0.045913
12 0.068456 0.068917 12 0.023326 0.023329
0.4 0.039133 0.039140 0.4 0.113733 0.114133
0.05 0.8 0077102 0077190 003 0.8 0.077152 0.077163
12 0114323 0.114502 12 0.039446 0.039487

B. Comparison of AB and CF method for Coefficient of
skin friction, Nusselt number and Sherwood number

We are considering the values of the AB operator (&)
and the CF operator (/) as 0.25 and 0.5. For these two

values C,,Nu and Sh are calculated by both the AB and

CF method for various values of the involved parameters.
The variation of Coefficient of skin- friction (C, ), Nusselt

number (NU) and Sherwood number (Sh) at the plate

y=0 andtimet=0.35 againstd,, M and 6, are

demonstrated from Table VI to Table IX. In table VII, it is
seen that coefficient of Skin- friction (C, ) increases but

Nu and Sh are decreases for the increasing the values of
6, . In table VIII, it is seen that C, increases but NU and

Sh are decreases for the increasing the values of 6, . In
table 1X, it is seen that C, increases but NU and Sh are
of M .

decreases for the increasing the values
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TABLES FOR NUMERICAL VALUES OF Cf , Nu ano Sh

TABLE VII: VARIATION OF PHYSICAL QUANTITIES WITH THERMAL CONDUCTIVITY PARAMETER FOR
0, =-10,M =.5, S, =5,K, =.01

C Nu Sh
a/B O AB CF AB CF AB CF
12 -14.380461 -14.379962 2.876189 2.879594 5.922515 5.905266
25 -10 -10.431785 -9.719499 2.057259 1.893972 4.455403 4.877412
-8 -8.52968 -8.010561 1.665563 154772 3.748706 4.056809
6 -7.347156 -6.921358 1.416665 1.321974 3.309653 3.564089
12 -6.516398 -6.148493 1.297239 1214924 3.031169 3.241514
s 0 -5.888037 -5.561046 1.168106 1.095565 2.816664 3.003347
' -8 -5.389216 -5.093224 1.063685 0.998631 2.646667 2.815835
6 -4.979286 -4.707939 0.972888 0.913938 2507186 2.66312
TABLE VIII: VARIATION OF PHYSICAL QUANTITIES WITH MAGNETIC FIELD PARAMETER FOR
6, = —10,6, = —10, S, =5, K, = .01
c Nu Sh
a/f M AB CF AB CF AB CF
03 -14.371963 -14.371464 2.876188 2.879593 5.922519 5.905269
25 04 -10.422982 -9.711021 2.069326 1.905571 4.461536 4.881495
05 -8.525322 -8.006635 1.689689 1571011 3.762675 4.06727
06 -7.350862 -6.925328 1.457594 1.360612 3.334035 3.583069
03 -6.504223 -6.136033 1.294805 121245 3.043622 3.254078
s 04 -5.874657 -5.54823 1.173643 1101037 2.826903 3.012431
: 05 -5.381041 -5.085716 1.078538 1013185 2.658466 2.825455
06 -4.980536 -4.709631 1.001124 0.941463 2523318 2675773
TABLE IX: VARIATION OF PHYSICAL QUANTITIES WITH VISCOSITY PARAMETER FOR
6,=-10,M =.5, Sy =5,K, =.01
Cf Nu Sh
a/p 0,
AB CF AB CF AB CF
12 -14.482981 -14.482481 2.876101 2.879506 5.957634 5.94033
25 -10 -10.464855 -0.747952 2.069283 1.904258 4.461086 4.884307
8 -8.50729 -7.987997 1.689836 1570678 3.731955 4.037108
6 -7.250114 -6.827735 1.458046 1361271 3.26419 3511475
12 -6.637243 -6.273966 1.294816 1213616 3.067395 3.275105
. -10 -5.971478 -5.638657 1.173634 1.099497 2.830117 3.019577
-8 -5.431367 5.131772 1.078626 1.012163 2638866 2.808491
6 -4.961446 -4.689 1.001423 0.941184 2.471469 2.624914

IV. CONCLUSION

This investigation presents a numerical solution to study
the effects of variable viscosity and thermal conductivity on
MHD flow over a hot stretching sheet. Based on above
study we may conclude that:

Velocity, temperature and species concentration are
increases with the increasing value of AB fractional
parameter and CF fractional parameter. Increasing value of
Magnetic field parameter decreases the value of velocity but
increases the values of temperature and species
concentration. When the viscosity parameter increases, the
velocity and the species concentration decreases whereas
temperature increases. With the increasing thermal

conductivity parameter, the velocity and the species
concentration increases but the temperature decreases.
Velocity and species concentration decrease with the
increasing value of the Schmidt number.The Coefficient of
skin friction increases due to viscosity, thermal conductivity
and magnetic field.The rate of heat and mass transfer
decreases due to viscosity, thermal conductivity and
magnetic field.

The values of the velocity, temperature and concentration
profiles for various parameters are almost the same for both
the the methods- AB and CF fractional derivative. As
gamma function is present inside the exponential function in
AB fractional derivative method, so the result obtained by it
is more accurate over the CF fractional derivative method.
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