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Abstract— A numerical investigation has been made to study 

the effects of variable viscosity and thermal conductivity over a 

vertical hot stretching sheet by using Atangana-Baleanu (AB) 

and Caputo-Fabrizio (CF) fractional derivatives. As the 

viscosity and thermal conductivity of a fluid are dependent on 

temperature, these properties are considered as a variable. We 

have also considered radiation and chemical reaction. The 

governing partial differential equations along with the 

boundary conditions are made dimensionless using suitable 

similarity transformations so that physical parameters appear 

in the equations and interpretations on these parameters can 

be done suitably. The equations so obtained are discritized 

using ordinary finite difference scheme and we solved the 

discritized equations numerically adopting a method based on 

the Gauss-Seidel iteration scheme. Numerical techniques are 

used to find the values from AB and CF formulae for fractional 

derivatives on time. The effects of various parameters involved 

in the problem viz., viscosity parameter, thermal conductivity 

parameter, magnetic field parameter, radiation parameter, 

Schmidt number, prandlt number, chemical reaction 

parameter etc. on velocity, temperature, and concentration 

distribution at the plate have been shown graphically. The 

coefficient of skin-friction, heat transfer rate, and Sherwood 

number are also obtained and presented in tabular form. The 

effects of each parameter are prominent. A comparison has 

been given on AB and CF methods in tabular form. It is 

observed that both the methods agreed well. 

 

Index Terms- AB fractional, CF fractional, free convection, 

velocity, MHD fluid, variable viscosity, variable thermal 

conductivity. 
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I.  INTRODUCTION 

HE boundary layer flow and heat transfer of a viscous 

fluid over flat surfaces have been investigated in several 

technological processes such as hot rolling, metal 

extrusion, continuous stretching of plastic films and glass 

fiber, polymer extrusion, wires drawing and metal spinning. 

So the study of two dimensional boundary layer flows over 

a stretching sheet has gained much interest. Coupled heat 

and mass transfer popularly known as double diffusion, has 

so many important applications in the field of science and 

engineering, such as chemical catalytic reactor and 

processes, underground disposal of nuclear wastes, 

migration of moisture through the air contained in fibrous 

insulation, spreading of chemical pollutants through water-

saturated soil, diffusion of medicine in blood veins, filtration 

etc. Application of the magnetic field to the fluid flow gives 

utmost importance in the fields of meteorology, 

astrophysics, cosmic fluid dynamics, geophysics, solar 

physics etc. Magnetohydrodynamic flow has applications in 

the motion of the earth's core also. 

Due to the technological importance, studies of free 

convection flow of viscous incompressible fluid past a semi-

infinite or infinite vertical plate have been done by many 

researchers. Uwanta et al. [14] studied about MHD fluid 

flow over a vertical plate with Dufour and Sorret effects. 

Kumar et al. [10] and Uddin et al. [13] are investigated the 

effects of thermal diffusion and chemical reaction on 

unsteady fluid flow over a vertical porous plate with a heat 

source. Effects of thermal radiation and chemical reaction 

on free convection flow past a moving vertical plate were 

analyzed by Hemalatha and Reddy [5]. Soundalgekar [11] 

observed the effects of free convection on the flow past an 

infinite vertical oscillating plate. Elabashbeshy [4] analyzed 

double diffusion of an MHD flow along with a vertical plate 

with variable surface tension and concentration. Zubi [15] 

studied MHD heat and mass transfer over a permeable 

vertical plate with a chemical reaction. 

The effects of heat source/sink in thermal convection are 

significant where a higher temperature difference exists 

between the surface and the fluid in contact with the surface. 

Buoyancy effects on MHD free convection flow in the 
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presence of heat source/sink were studied by Baag et al. [3] 

and Princely [9]. Effects of chemical reaction on MHD flow 

over a moving vertical plate in the presence of heat sources 

were analyzed by Tripathy et al. [12]. An unsteady MHD 

free convective flow past a vertical plate with thermal 

diffusion and heat source was investigated by Ahmed et 

al.[1]. Nadeem et al. [8] made comparative study on 

generalized Casson fluid model using CF and AB fractional 

derivatives with chemical reaction and heat generation and 

presented their results graphically. Fractional calculus has 

become a burning topic in research due to two 

reasons/weaknesses: problem of the singular kernel with 

locality and problem of the non-singular kernel with non-

locality. In order to avoid the problem of the singular kernel, 

Michele Caputo and Mauro Fabrizio proposed a fractional 

derivative by employing an exponential function [7]. Indeed, 

the claim of a singular kernel for the fractional derivative 

operator is not based on their observations; even they 

suggested their fractional derivative operator is appropriate 

for various physical problems. Atangana et al. [2] employed 

the time-fractional Caputo–Fabrizio derivative on the 

advection-diffusion equation for tracing out the fundamental 

solutions using the Laplace transform for the fractional 

diffusion phenomenon. Lai, Kulacki [6] discussed the effect 

of variable viscosity on convective heat and mass transfer 

along a vertical surface in standard porous media.  

In this paper, we investigate the effects of variable 

viscosity and thermal conductivity of viscous 

incompressible fluid flow in the presence of a uniform 

magnetic field over a moving vertical plate. The governing 

partial differential equations along with the boundary 

conditions are made dimensionless by using some suitable 

non-dimensional parameters. The non-dimensional 

governing equations with the non-dimensional boundary 

conditions are discretized with ordinary finite-difference 

kernel solved numerically with the help of AB fractional 

derivative and CF fractional derivative method by 

developing suitable programming code in MATLAB. 

Comparisons of the results obtained by both the methods are 

shown in tabular form.  

II. FORMULATION OF THE PROBLEM 

Let us consider an unsteady incompressible fluid for 

free convective flow which occupies the space above a 

moving plate in the yx  plane, and the plate is normal to the 

y   axis. Initially, T is the temperature and C  is the 

concentration level to the plate whereas plate as well as fluid 

is kept at rest. At 
 0t , the double diffusion from the 

plate to the fluid have gained the temperature 
wT , and 

concentration level near the plate is
wC . A uniform 

magnetic field with strength 0B   is applied in the transverse 

direction of the flow. The condition of incompressibility is 

obviously satisfied for such type of flow. Keeping the usual 

Boussinesq approximation in mind, the governing boundary 

layer equations are: 

Equation of Continuity: 
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Equation of conservation of momentum: 
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Equation of conservation of energy: 
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Equation of concentration: 
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The initial boundary conditions are: 

  CCTTut ,,0:0      y  

 ,cos:0 0 tUut     ,tATTTT w     

              tACCCC w    at 0y  

,0:0 ut   TT ,  CC  at y  

 (5) 

 

where u  and v  are the fluid velocities in x   and y   

directions respectively,   is the kinematic viscosity,  is 

the fluid density,   is the viscosity of the fluid,  is the 

electrical conductivity, g is the acceleration due to gravity,
 

T  is the coefficient of volume expansion for heat transfer, 

C  is the coefficient of volume expansion for mass 

transfer, T  is the temperature and T   is the temperature at 

free stream of the fluid, C   is the concentration and C   is 

the concentration at free stream of the fluid,   is the 

thermal conductivity of the fluid, 
pC  is the specific heat at 

constant pressure, rq  is the radiative heat flux, D   is the 

mass diffusivity, 0U  is the velocity of the plate, 
wC is the 

species concentration at the surface of the plate and A  is a 

constant, J  is the electric current density. By Ohm’s law 

 BqEJ


 , q


  be fluid velocity at a particular 

point, jBB


0  be the applied magnetic field. Here no 

electric field is applied for which 0E


, Ch  is the 

chemical reaction rate of the species concentration. 

The last two terms of eqn. (2) represent the thermal and 

concentration buoyancy effects respectively. In eqn. (3) the 

last two terms denote the heat absorption and thermal 

radiation effects respectively. Also, the last term of eqn. (4) 

represents the chemical reaction effect. 

By the Rosseland approximation, the radiative heat flux is 

given by 
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where a   is the mean absorption coefficient and    is the 

Stefan – Boltzmann constant. 

Assuming that the temperature differences within the flow 

is such that the term 
4T   may be expressed as a linear 

function of the temperature, we expand 
4T  in Taylor’s 

series about T  as follows: 

    ......64T
22344   TTTTTTT  

By neglecting the higher order terms beyond 1
st
 degree in 

TT   we have 434 34T   TTT       (7) 

 
Using equations (6) and (7), eqn. (3) reduces to 
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Let us introduced the below mentioned dimensionless 

quantities: 
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The viscosity and thermal conductivity of the fluid are 

assumed to be inverse linear function of temperature [6] as 

follows: 
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where   and   are constants which depend on the thermal 

property of the fluid. 

We define two parameters as 
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Conductivity parameter. 

Using these two parameters in (10) and (11), we have the 

viscosity and thermal conductivity respectively as 
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Using the transformations (9) and (12), the non-dimensional 

forms of (2), (3) and (4) are  
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The related initial and boundary conditions are reduced to 

the form:
  

,0:0  ut  ,0v  ,0  0     y  
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A. Atangana-Baleanu Fractional Derivatives 

 

In order to generate the AB fractional model, we 

replace governing partial differential equations with respect 

to time by the AB fractional operator of the order

10  , Eqns. (13)-(15) become 
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B. Caputo- Fabrizio Fractional Derivatives 

In order to generate the CF fractional model, we replace 

governing partial differential equations with respect to time 

by the CF fractional operator of the order 10   , Eqns. 

(13)-(15) become 
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C.  Numerical Solution 

Solutions of equations (17) – (20) or (21) – (24) are 

obtained by using ordinary finite difference scheme. 

Discritization is performed using the following formulae:  
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The fractional derivatives given by (20) or (24) are 

calculated using numerical integration. Finally the set of 

equation (17) – (19) or (21) – (23) together with boundary 

condition (16) completely discritized and the discritized 

equations are solved by using an iterative method based on 

Gauss- seidel scheme. 

The boundary condition corresponding to (16) becomes 
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D. Important Physical Parameters 

Three important physical parameters for the present 

problem are  

(a) Coefficient of skin friction:  

The viscous drag at the plate per unit area in the 

direction of the plate velocity is given by the Newton’s 

law of viscosity in the form 
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The non-dimensional skin-friction at the plate in the 

direction of the free stream is given by, 
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(b) Nusselt number: 

 The Nusselt number measures the rate of heat transfer 

at the plate. The heat flux q from the plate to the fluid is 

given by the Fourier’s law of heat conduction in the form 
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The coefficient of rate of heat transfer from the plate to 

the fluid in terms of Nusselt Number is given by 
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(c) Sherwood number: 

The mass flux mq from the plate to the fluid is given 

by the Fick’s law in the form 
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The Sherwood number measures the rate of mass transfer 

at the plate and is given by
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III.  RESULT AND DISCUSSION 

The non dimensional discretized governing equations 

together with the non-dimensional boundary conditions have 

been solved with the help of AB and CF fractional 

derivative method by developing suitable programming 

code in MATLAB using the method described in section C. 

This analysis has been done to study the effects of various 

parameters such as r , c , Pr,,, EcScKr , ,M
 
and  ,

 , Sc  etc. on velocity( u ), temperature ( ) and species 

concentration( ) profiles in presence of time. The 

numerical results have been presented graphically in figures 

(1) to (14). In the following discussion, the initial values of 

the parameters are considered as ,7r  ,7c  

,3.0 ,3.0 ,5.0M ,1.0mGr ,1.0Gr

,1.0,05.0  EcKr ,71.0Pr  22.0Sc and 

01.0  unless otherwise stated. 

 

Fig 1: Effects of  and   on velocity profile 

 

Fig 2: Effects of  and   on temperature profile 
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   Fig 3: Effects of  and  on concentration profile 

 

 
Fig 4: Effects of M on velocity Profile 

 

 
Fig 5: Effects of M on temperature Profile 

 
Fig 6: Effects of M on concentration Profile 

 

 

Fig 7: Effects of r on velocity profile 

 

 

Fig 8: Effects of r on temperature profile 
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Fig 9: Effects of r on concentration profile 

 

Fig 10: Effects of c on velocity profile 

 

 

Fig 11: Effects of c on temperature profile 

 

 

Fig 12: Effects of c on concentration profile 

 

Fig 13: Effects of Sc on velocity profile 

 

 

Fig 14: Effects of Sc temperature profile 
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Fig 15: Effects of Sc concentration profile 

 

 
Fig 16: Effects of Pr temperature profile 

 
Fig 17: Effects of Kr temperature profile 

 

The solutions have been found for different values of 

Physical parameters such as the AB fractional operator ( ) 

and CF fractional operator (  ), magnetic parameter  M , 

viscosity variation parameter ( r ), thermal conductivity 

parameter ( c ), Schmidt number ( Sc ), Prandlt (Pr) , 

Radiation parameter )(Kr on velocity, temperature and 

species concentration of fluid and are expressed graphically 

in Fig1 to Fig17. 

 

Fig. 1- Fig.3 demonstrate the velocity, temperature and 

concentration profile for various values of the AB fractional 

operator ( ) and CF fractional operator (  ). It is observed 

in all the three figures that the velocity, temperature and 

concentration ,u  and   respectively increases for 

increasing values of   and .   

In Fig.4, it is seen that with the increasing value of the 

Hartmann number M , velocity decreases. The presence of 

magnetic field in the normal direction of the flow in an 

electrically conducting fluid produces Lorentz force which 

opposes the flow. To overcome this opposing force, some 

extra work should be done which is transformed to heat 

energy. Hence temperature increases (Fig.5). With the 

increase of M species concentration also increases (Fig.6).  

The effects of viscosity parameter r  on velocity, 

temperature and species concentration distribution are 

plotted in Fig.7, Fig.8 and Fig.9. In Fig.7 displays that 

dimensionless velocity u  decreases with the increase of r . 

It happens with the increase of the viscosity parameter the 

thickness of the velocity boundary layer decreases. 

Physically, this is due to a larger r , implies higher 

temperature difference between the fluid and the surface. 

Fig.8 shows that temperature profile rises with the increase 

of r . The species concentration  decreases for increasing 

value of r  (Fig.9). Fig.10 depicts the distribution of 

velocity with the variation of the thermal conductivity 

parameter c . Velocity increases and temperature decreases 

with the increasing value of c  (Fig.11) which implies 

decreasing of viscosity and so velocity increases. With the 

increase of c   concentration of species increases (Fig.12).  

Fig.13 and Fig.14 displays the variation of velocity and 

concentration profile for various values of Schmidt number 

Sc . Velocity decreases with the increasing value of Sc  

(Fig.13). The species concentration decreases with the 

increasing value of Sc . With the increase of Sc, the 

concentration boundary layer becomes thinner due to which 

the concentration gradient increases. As a result, the species 

concentration decreases (Fig.14). In Fig.16 it is seen that 

temperature is decreases with the increasing value of Prandlt 

number (Pr) . In Fig.17 shows that temperature is increases 

with the increasing value of radiation parameter )(Kr . 

A. Comparision of AB and CF Fractional Derivative 

Methods for Various Values of the Parameters 

Here we compare between AB and CF fractional 

derivative for various values of the parameters taking

35.0y . From the following tables it is observed that the 

values of the velocity, temperature and concentration 

profiles for various parameters are almost the same for both 

the the methods- AB and CF fractional derivative but the 

values of CF is slidly greater than the values of AB. From 

Table I, II, III, IV,V and VI it is observed that the values of 

CF is slightly greather than the values of AB for velicity (𝑢) 
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and temperature (𝜃) but for concentarion (𝜙) the values of 

CF is slightly less than the values of AB.  

 

 
 

TABLE I : EFFECT OF 𝛼 or 𝛽 ON  𝑢, 𝜃 AND 𝜙 

𝛼/𝛽 t 
u 𝜃 𝜙 

AB CF AB CF AB CF 

0.2 

0.4 0.019534 0.019535 0.008676 0.008679 0.008187 0.008187 

0.8 0.014359 0.014379 0.017176 0.017187 0.016858 0.016858 

1.2 0.006799 0.006814 0.025699 0.025725 0.025567 0.025567 

0.4 

0.4 0.052086 0.052137 0.023211 0.023209 0.021670 0.021661 

0.8 0.038286 0.038396 0.045909 0.045924 0.045092 0.045058 

1.2 0.018185 0.018308 0.068283 0.068496 0.068904 0.068898 

0.6 

0.4 0.087558 0.087666 0.039193 0.039159 0.035939 0.035912 

0.8 0.064684 0.064981 0.077228 0.077186 0.075289 0.075170 

1.2 0.031495 0.031982 0.114996 0.115771 0.113639 0.113596 

 

 
TABLE II: EFFECT OF 𝑀 ON 𝑢, 𝜃 AND 𝜙 

M t 
𝑢 𝜃 𝜙 

AB CF AB CF AB CF 

1 

0.4 0.086655 0.086714 0.008627 0.008630 0.008188 0.008188 

0.8 0.063689 0.063825 0.017174 0.017186 0.016861 0.016861 

1.2 0.030350 0.030513 0.025694 0.025724 0.025575 0.025575 

1.5 

0.4 0.051863 0.051903 0.023206 0.023205 0.021677 0.021670 

0.8 0.038132 0.038212 0.045898 0.045908 0.045108 0.045084 

1.2 0.018112 0.018194 0.068306 0.068449 0.068943 0.068941 

2 

0.4 0.0194990 0.019513 0.039151 0.039138 0.035998 0.035986 

0.8 0.014356 0.014378 0.077106 0.077092 0.075552 0.075515 

1.2 0.006797 0.006814 0.114287 0.114567 0.116222 0.116218 

 

 

TABLE III:  EFFECT OF 𝜃𝑐  ON  𝑢, 𝜃 AND 𝜙 

𝜃𝑐  𝑡 
𝑢 𝜃 𝜙 

AB CF AB CF AB CF 

-10 

0.4 0.019499 0.019513 0.039072 0.039059 0.008192 0.008192 

0.8 0.014356 0.014378 0.076795 0.076782 0.016877 0.016877 

1.2 0.006797 0.006814 0.113611 0.113892 0.025611 0.025611 

-8 

0.4 0.052089 0.052129 0.023185 0.023183 0.021731 0.021724 

0.8 0.038299 0.038380 0.045814 0.045824 0.045321 0.045297 

1.2 0.018191 0.018274 0.068122 0.068265 0.069412 0.069410 

-6 

0.4 0.087573 0.087632 0.008625 0.008628 0.036197 0.036185 

0.8 0.064367 0.064504 0.017167 0.017180 0.076339 0.076302 

1.2 0.030674 0.030839 0.025679 0.025709 0.117941 0.117939 
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TABLE IV:EFFECT OF 𝜃𝑟  ON 𝑢, 𝜃 AND 𝜙 

𝜃𝑟  𝑡 
𝑢 𝜃 𝜙 

AB CF AB CF AB CF 

-10 

0.4 0.086886 0.086946 0.008627 0.008630 0.035797 0.035785 

0.8 0.063406 0.063542 0.017173 0.017186 0.074782 0.074745 

1.2 0.030044 0.030207 0.025693 0.025723 0.114595 0.114592 

-8 

0.4 0.051837 0.051877 0.023203 0.023201 0.021612 0.021604 

0.8 0.037944 0.038024 0.045895 0.045905 0.044853 0.044830 

1.2 0.017955 0.018037 0.068305 0.068448 0.068399 0.068397 

-6 

0.4 0.019465 0.019479 0.039142 0.039128 0.008180 0.008180 

0.8 0.014307 0.014329 0.077095 0.077081 0.016832 0.016832 

1.2 0.006764 0.006781 0.114282 0.114563 0.025513 0.025512 

 

 
TABLE V: EFFECT OF Sc ON  𝑢, 𝜃 AND  𝜙 

Sc t 
𝑢 𝜃 𝜙 

AB CF AB CF AB CF 

0.1 

0.4 0.087576 0.087636 0.008627 0.008630 0.008260 0.036788 

0.8 0.064363 0.064500 0.017174 0.017186 0.016851 0.075551 

1.2 0.030659 0.030823 0.025694 0.025724 0.025439 0.114781 

0.2 

0.4 0.052090 0.052131 0.023206 0.023205 0.022081 0.022078 

0.8 0.038298 0.038378 0.045898 0.045908 0.045090 0.045081 

1.2 0.018186 0.018268 0.068306 0.068449 0.068186 0.068186 

0.3 

0.4 0.019499 0.019513 0.039153 0.039139 0.036795 0.008260 

0.8 0.014356 0.014378 0.077107 0.077094 0.075573 0.016851 

1.2 0.006796 0.006813 0.114287 0.114568 0.114783 0.025439 

 

TABLE VI: EFFECT OF Kr AND Pr  ON  𝜃 

𝐾𝑟 𝑡 
𝜃 

𝑃𝑟 𝑡 
𝜃 

AB CF AB CF 

0.01 

0.4 0.008627 0.008630 

0.01 

0.4 0.025650 0.025694 

0.8 0.017174 0.017186 0.8 0.017167 0.017185 

1.2 0.025694 0.025724 1.2 0.008643 0.008647 

0.03 

0.4 0.023201 0.023200 

0.02 

0.4 0.068050 0.068258 

0.8 0.045898 0.045908 0.8 0.045898 0.045913 

1.2 0.068456 0.068917 1.2 0.023326 0.023329 

0.05 

0.4 0.039133 0.039140 

0.03 

0.4 0.113733 0.114133 

0.8 0.077102 0.077190 0.8 0.077152 0.077163 

1.2 0.114323 0.114592 1.2 0.039446 0.039487 

 

B.  Comparison of AB and CF method for Coefficient of 

skin friction, Nusselt number and Sherwood number  

We are considering the values of the AB operator ( ) 

and the CF operator (  ) as 0.25 and 0.5. For these two 

values NuC f ,  and Sh  are calculated by both the AB and 

CF method for various values of the involved parameters. 

The variation of Coefficient of skin- friction (
fC ), Nusselt 

number ( Nu ) and Sherwood number ( Sh ) at the plate

0y   and time 35.0t   against c , M  and r   are 

demonstrated from Table VII to Table IX.   In table VII, it is 

seen that coefficient of Skin- friction (
fC ) increases but 

Nu  and Sh  are decreases for the increasing the values of

r . In table VIII, it is seen that 
fC  increases but Nu  and 

Sh  are decreases for the increasing the values of c . In 

table IX, it is seen that 
fC  increases but Nu  and Sh  are 

decreases for the increasing the values of M .                        
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     TABLES FOR NUMERICAL VALUES OF 
fC  , Nu  AND Sh  

TABLE VII: VARIATION OF PHYSICAL QUANTITIES WITH THERMAL CONDUCTIVITY PARAMETER FOR 

𝜃𝑟 = −10, 𝑀 = .5,  𝑆0 = 5 , 𝐾𝑟 = .01 

 

𝛼/𝛽 𝜃𝑐  
𝐶𝑓  𝑁𝑢 𝑆ℎ 

𝐴𝐵 𝐶𝐹 𝐴𝐵 𝐶𝐹 𝐴𝐵 𝐶𝐹 

.25 

-12 -14.380461 -14.379962 2.876189 2.879594 5.922515 5.905266 

-10 -10.431785 -9.719499 2.057259 1.893972 4.455403 4.877412 

-8 -8.52968 -8.010561 1.665563 1.54772 3.748706 4.056809 

-6 -7.347156 -6.921358 1.416665 1.321974 3.309653 3.564089 

0.5 

-12 -6.516398 -6.148493 1.297239 1.214924 3.031169 3.241514 

-10 -5.888037 -5.561046 1.168106 1.095565 2.816664 3.003347 

-8 -5.389216 -5.093224 1.063685 0.998631 2.646667 2.815835 

-6 -4.979286 -4.707939 0.972888 0.913938 2.507186 2.66312 

 

TABLE VIII: VARIATION OF PHYSICAL QUANTITIES WITH MAGNETIC FIELD PARAMETER FOR 

𝜃𝑐 = −10, 𝜃𝑟 = −10,  𝑆0 = 5 , 𝐾𝑟 = .01 

 

𝛼/𝛽 𝑀 
𝐶𝑓  𝑁𝑢 𝑆ℎ 

𝐴𝐵 𝐶𝐹 𝐴𝐵 𝐶𝐹 𝐴𝐵 𝐶𝐹 

.25 

0.3 -14.371963 -14.371464 2.876188 2.879593 5.922519 5.905269 

0.4 -10.422982 -9.711021 2.069326 1.905571 4.461536 4.881495 

0.5 -8.525322 -8.006635 1.689689 1.571011 3.762675 4.06727 

0.6 -7.350862 -6.925328 1.457594 1.360612 3.334035 3.583069 

0.5 

0.3 -6.504223 -6.136033 1.294805 1.21245 3.043622 3.254078 

0.4 -5.874657 -5.54823 1.173643 1.101037 2.826903 3.012431 

0.5 -5.381041 -5.085716 1.078538 1.013185 2.658466 2.825455 

0.6 -4.980536 -4.709631 1.001124 0.941463 2.523318 2.675773 

 

TABLE IX: VARIATION OF PHYSICAL QUANTITIES WITH VISCOSITY PARAMETER FOR 

𝜃𝑐 = −10, 𝑀 = .5,  𝑆0 = 5 , 𝐾𝑟 = .01 

 

𝛼/𝛽 𝜃𝑟  
𝐶𝑓  𝑁𝑢 𝑆ℎ 

𝐴𝐵 𝐶𝐹 𝐴𝐵 𝐶𝐹 𝐴𝐵 𝐶𝐹 

.25 

-12 -14.482981 -14.482481 2.876101 2.879506 5.957634 5.94033 

-10 -10.464855 -9.747952 2.069283 1.904258 4.461086 4.884307 

-8 -8.50729 -7.987997 1.689836 1.570678 3.731955 4.037108 

-6 -7.250114 -6.827735 1.458046 1.361271 3.26419 3.511475 

.5 

-12 -6.637243 -6.273966 1.294816 1.213616 3.067395 3.275105 

-10 -5.971478 -5.638657     1.173634 1.099497 2.830117 3.019577 

-8 -5.431367 -5.131772 1.078626 1.012163 2.638866 2.808491 

-6 -4.961446 -4.689 1.001423 0.941184 2.471469 2.624914 

 

 
IV. CONCLUSION 

 

This investigation presents a numerical solution to study 

the effects of variable viscosity and thermal conductivity on 

MHD flow over a hot stretching sheet. Based on above 

study we may conclude that: 

Velocity, temperature and species concentration are 

increases with the increasing value of  AB fractional 

parameter and CF fractional parameter. Increasing value of 

Magnetic field parameter decreases the value of velocity but 

increases the values of temperature and species 

concentration. When the viscosity parameter increases, the 

velocity and the species concentration decreases whereas 

temperature increases. With the increasing thermal 

conductivity parameter, the velocity and the species 

concentration increases but the temperature decreases. 

Velocity and species concentration decrease with the 

increasing value of the Schmidt number.The Coefficient of  

skin friction increases due to viscosity, thermal conductivity 

and magnetic field.The rate of heat and mass transfer 

decreases due to viscosity, thermal conductivity and 

magnetic field.  

The values of the velocity, temperature and concentration 

profiles for various parameters are almost the same for both 

the the methods- AB and CF fractional derivative. As 

gamma function is present inside the exponential function in 

AB fractional derivative method, so the result obtained by it 

is more accurate over the CF fractional derivative method. 
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