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Generalized Simpson-Type Inequalities
Considering First Derivatives through the
k-Fractional Integrals

Hui Lei, Gou Hu, Jialu Nie, and Tingsong Du*

Abstract—Using the k-fractional integrals, we establish sev-
eral Simpson-type integral inequalities for mappings whose first
derivatives belong to the Lebesgue L, spaces. We also present
certain new inequalities of Simpson-type for mappings whose
first derivatives in absolute value at some powers are (s, m)-
convex. The inequalities established here generalize some known
results in the literature involving Riemann-Liouville fractional
integrals.

Index Terms—Simpson-type inequality, (s, m)-convex func-
tions, k-fractional integrals.

I. INTRODUCTION

Mapping f : 0 # I C R — R is named convex on I,
if inequality

flm+ (1 —t)m) <tf(m) + (1 —1)f(2)

holds for all 7,7 € I and t € [0, 1].

The concept of convex mappings has been extended in
different ways by many authors in recent years. In [1]], the
author introduced the definition of s-convexity as follows.

Definition 1.1: A mapping f : [0,00) — R is called s-
convex in the second sense, for certain fixed s € (0, 1], if
the inequality

flm+ (1 —t)r) <t°f(n) + (1= 1) f(72)

holds for all 74,72 € [0,00) and ¢ € [0, 1].

In [2]], Toader also gave the following extension of convex
mappings to m-convex mappings.

Definition 1.2: A mapping f : [0,d] — R,d > 0 is said
to be m-convex, for some fixed m € (0, 1], if the inequality

Fltr+m(1 —t)m) <tf(r) +m(1 —t)f(r2)

holds for all 74,72 € [0,d] and ¢ € [0, 1].

By combining the concepts of s-convex and m-convex
mappings, Eftekhari [3]] introduced a class of (s, m)-convex
mappings as follows.
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Definition 1.3: A mapping f : [0,00) — R is said to be
(s, m)-convex in the second sense, for certain fixed (s,m) €
(0,1]2, if the inequality

ftr+m(l —t)m2) <t f(r1) + m(1 —t)° f(72)

holds for all 7,7 € [0,00) and ¢ € [0, 1].

Recently, many authors have studied some integral in-
equalities associated with these classes of convex mappings.
For more information and related results, we refer the in-
terested readers to [4]], [S], [6], [Z], [8], [9], [10], and the
related references therein.

In what follows, we review the space of all complex-
valued Lebesgue measurable functions, which will be used
subsequently.

Let x2(a,b) (¢ € R,1 < p < o) be the space of all
complex-valued Lebesgue measurable functions f on [a, d]
for which [|f||,z < oo, where the norm || - [[,» is defined
with the following expression:

b 1/p
(/wmwf>7 (1 <p <o)

|[f]lxge = ess sup [t°|f(2)]],
a<t<b

Il =

and
(p = 00),

where ess sup stands for essential supremum.

Also, we need the following fractional integral operators,
which are essential to our current work.

Definition 1.4: Let f € L([a, b]). The Riemann-Liouville
integrals J", f and J/* f of order . > 0 with a > 0 are
defined as

1

T flx) = ()

/L(x — ) f)dt, (x> a)

and
b
Ti @) = 5o [ t=or i @<,

where T'(p) = [;Ce 't*~'dt. It is to be noted that
T0, f(@) = T (x) = F(@).

In [11]], Mubeen and Habibullah gave the following exten-
sion of Riemann-Liouville fractional integrals to k-fractional
integrals.

Definition 1.5: Let f € L([a,b]). Then k-fractional inte-
grals . 7" f(x) and ,J}" f(z) are defined as

kT fx) = ﬁ(u) /:(J:—t)"j_lf(t)dt, (0<a<axz<b)
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and

1
KLk (1)

where k& > 0 with g > 0 and I'y, gc,u) is the k-gamma function
given as p(n) = [;° th=le=i—dt, with the property that
Pk(ﬂf + k) = qu(ﬂ) Note that kj(10+f($) = kjbo,f(l') =
f(=).

For recent results involving the k-fractional integrals, we
refer the interested readers to [12], [13l], [14], and the
references mentioned in these articles.

The following inequality is named the Simpson-type inte-
gral inequality:

i+ an (252 ] - L [ hioa

kT f(x) =

6

= 2880” W (2 = 70)*,

D
where h : [11, 2] — R is a four-order differentiable mapping
on (71,72) and ||h|| = supse(,, ., |[pP(t)] < oc.

Some researchers have generalized and studied the
Simpson-type inequality in many different ways. For more
information about the Simpson-type inequality, we refer the
interested readers to [15], [16], [L7Z)], [18], [19], [20]. The
authors in [21], [22], [23], [24], [25], [26], [27] also provided
some Simpson-type inequalities for several classes of convex
functions.

Motivated by the results in the articles above and the recent
studies, the main aim of this paper is to establish several k-
fractional integral inequalities of Simpson type for mappings
whose first derivatives belong to the Lebesgue L, spaces or
(s, m)-convexity.

II. MAIN RESULTS

The following lemma is of importance to prove our main
results.

Lemma 2.1: Let ] C R be an open interval, a,b € |
with @ < mb < b for some fixed m € (0, 1]. Suppose that
f :[a,b] — R is a differentiable function on (a,b) such that
' € L'([a,mb]). The following identity for k-fractional
integrals with > 0 and £ > 0 exists:

Tr(p, k;m, a,b)
= [+ 2 () + o)

6 2

25 2Ty (p + k) )
 (mb—a)k(2F — 1) {kjaJrf(mb)“v‘kjmb,f(a)}

2228 —)Ty(u+ k)
(mb—a)¥ (2F —1)
o S/ CURY D]

b_
= Tn4 a[Il+I2+13+I4],

2

1
I :/0 [é - %(1 —t)‘xé]f'<tmb+ § —t)a+2mb)dt7

b
/ (t—z) 5L f(t)dt, (0<a <z <b),

1 a1 b
12:/0 {2(1t)k6]f’(ta+(1t)a+2m )dt,

and

1 ! 1 w1
14:/0 [2(2‘é—1)_2(2z_1)(1+t) +3}
xf/<t“+(1—f>a+zmb>dt,

Proof. Integrating by parts, we have that
' 1 w] .
I :/0 [6—2(1—t)k}f (tmb+(1—t)
2 1 1 _ /a+mb ,
N mb—a[ﬁf(mb)+3f( 2 )} Cmb—ua
1
u b
></ (1—t)k+1f<tmb+(1—t)a+2m )dt
0
u

2 1 1 /a+mb
_mb—a[6f(mb)+3f( )} s

a+mb)dt

ESlISENNG)

and

! 1 u 1 1
s :/0 [2(22‘ —1)(1+t) T 22k — ) 3}
x f’(tmb—i— (1 —t)a+2mb)dt

2 1 1 _ /a+mb
:mba[Gf(mb)+3f( 2 )}
I
k

b
tmb + (1 — )% +2m )dt

X
[N} O\._A
—~
—_
+
~
~— —~
:r\‘*
"\h
/N

1 1,/a+mb
mb—a[Gf(mb)+3f( 2 )}
— 3 - Jo.
(mb—a)(2% — 1)
Analogously,
2 1 1, ra+mb e
Ime—a{Gf(a)—'_?)f( 2 )}_mb—ajl
and
2 1 1, /a+mb
I4_mb—a[6f() gf( 2 )}
I
k

Adding four equalities above, we get that

4 b
e [fr@+ 2 () + )]
13
_ k
(mb— a)(2% — 1) [t ot Tyt i) (3)
$2¥ -2

T mb—a@E—p

=L+ L+ I+,
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Now making suitable substitutions, we have that

Jy = /1(1 —t)‘£+1f<m+ §! —t)a+2mb>dt
0

a+mb
2

- af>/ (u— a)E " f(w)du

and

1
JQZ/ (1+t)5§+1f<tmb+(1—t)a+2mb)dt
0

:ﬂ/m (1 — a) £ f(w)du.

(b — a)% a+mb

Hence, we obtain that

2

2% mb w_q
J1+J2:W/ (u—a)r " f(u)du
u o “4)
o 2Ekrk(/”’) o
B (b— a)% #Tmp-f(0)
Likewise, we have that
1
Jy = / 1- t)i‘+1f<tmb+ (1- t)a+2mb)dt
0
2% mb %71
= m /;+mb (mb—u)* " f(u)du
and
! L a+mb
Jy =/ (1+t)k+1f(ta+(1—t) 5 )dt
0 2% a+mb
N 2 £71
= W/ (mb—u)* " f(u)du.
Therefore, we have that
2% mb u_
J3+J4:W/ (mb—u)"‘ 1f(u)du
“ &)
28 kT (p
B (b—Z)(ﬁz)kjf*f(mb)
Also, we note that
2k kTk(p)
= ————— b 6
Jl (b—a)% kk7(a+2m )7f(a) ( )
and
2% kL (1
J3 = (b_fl)(;,z)k (y;+2mb)+f(mb)' (7)

Using equalities @), (3), (6) and (7) in identity (3), we get
the desired identity in (2)). The proof is completed.

Remark 2.1: If we choose ¥ = 1 = p in Lemma [2.1]
then we have that

@ v (B2

: ! )+f(b>]—bia/abf<x)dm
[ [Gprraoty o

1ty a+b
s - o)/ (ta+ -2 |ae
+(3 Q)f(“+( )= }
Noting that tb + (1 —t)%E2 = Ly 4+ =g and ta + (1 —
t)ett = LHg + 1ot the identity (8) yields Lemma 1
presented by Sarikaya et al. in [18]].

The following calculations of definite integrals are used in
next result:

111
IC1:/ S (1 —t)F|dt
o |6 2
1 1 1 g O
— . 1 - _
2(4+1) 6+< g+1)(3)
and
K —/1 ! (148)% — ! —1‘dt
2 o 12(2%F —1) 2(2F —1) 3
.
1 e (20 1)+1”“+7
2k 15 +1
1 2 2(2% — 1) “o3
z 1 -z
+<2£—1 3>< 3 +) 2
(10)

Theorem 2.1: Under all conditions of Lemma [2.1] sup-

pose that f’ is bounded, i.e., ||f'|lcc = sup |f'(¢)] < cc.
te(a,mb)
Then for any x € [a, mb|, the following inequality holds:

mb—a

2
where K;(i = 1,2) are defined by equalities (9) and (I0),
respectively.

Proof. If we use Lemma [2.1] and the property of modulus,
then we have that

|T¢ (ks m, a,b)| < (K1 4+ K2) [/ Moo, (D)

mb—a
T (1 s m, 0,b)] < (ERIARRIARRIA)
(12)
Here,
1
1 1 n
ni=| [ [5-3a-0%

X [f’ (tmb—l— (1- t)a +2mb>} dt

1
</
0

Similarly,

A f (tmb +(1- t)a +2mb) ‘ dt.

1
1 | , a+mb
< Z(1=H% — =] . _
|12|_/O Sa-f -l |f (ta+ (1 - 25 )‘dt,
1
1 . 1
Li< | |————(1+t)F — — -z
'3‘*/0 e R o 3‘
b
X f/(tmb+(1—t)a+2m )‘dt
and
II</1 ! ! (1+t)‘£+1’
=0 1202F - 1) 202F — 1) 3

X

I (ta +(1- t)a +2mb) ’ dt.
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Adding four inequalities above, we get that used subsequently.
1 1 1 u P
TAERTARSTARNA L R
0
1 1
1 1 1 —k
<2 S C(1-t dt+/ . — e[ 13" T
(/0 5 3t-nf o 1202F —1) :(6> {/ [3(1—15)%—1} dt
0
n 1 1
X (14t)F — ——— — =|dt ||| /']]so 1 1P
o 2(2% = 1) 3‘ >|f| +/ [1—3(1—75)%} dt
1-3 »
=2(K1 + K2) 1] - k
I ulP (14)
This ends the proof. =< (6) { /0 ( [3(1 —1) "} - 1) dt
Theorem 2.2: Under all conditions of Lemma [2.1] sup- L
pose that f’ € L'([a,mb]). Then for any = € [a, mb], the Jr/ <1 7 [3(1 t)}k]p>dt
following inequality holds: 1-37 %
1\? _k\ EPHL
'y O el
Ty, ks moaB)| < 51171 (3) 6 i1
1
. +37 —2(1—3—73)“] = M,
where || f'[ly = [ | f(u)|du < . wP+1
Proof. Similar to the proof of Theorem 2.1} Continuing from and
inequality (T2), we get that /1 ] A+t - — 1 P dt
o 1202F —1 2(2F — 1)
1|+ L2 + [13] + [L4] per \E
2k +1) 4 ©w oop
By - LS IR (ES
sup |- — =(1— = I I
- tE[OI,)l] 6 2 0 2(2F - 1) 2027 = 1) )
1 @
+ sup ! ! (1+t)?+1’ +/ £\ s {2(12?‘%); _22“1 1 _:1’,] d
- Z = 2 1\ # E — E —
tefo.1] | 228 —1)  2(2% —1) 3 ( T > —1 [2(2F ) (2% )
1 £+ "
b 2kt _ n
x{/ f’(tmb+(1—t)a+2m)‘dt </< ) 1[ 1 +1]p_[(1+t)i rdt
0 ~Jo 2025 —1) 3 2(2% — 1)
1 N
a+ mb 1 2 P
+/ f/(ta+(1—t)>‘dt . +/ i & (W) _ |:#1_|_1] dt
0 2k 41 1 T — T —
2 ( i ) 2(25F — 1) 202% —1) 3
The desired inequality follows from the inequality above by 1 1 25+ 4 g
noting the following facts that = 2(2% — 1) + 3 2 3 -3
1 (1 Bkl = N [ 1 r 1
sup |- —=(1—¢)F| = =, 7
te[0,1] 2(2% —1)] fp+1
L p+
x |142%P+l _9 <2k+1>
1 (1+ t)% n 1 ’ 1 3
su - -|==
e [22F —1) T 22F 1) 3|73 - M,
(15)
and .
Theorem 2.3: Under all conditions of Lemma sup-
a+mb pose that f' € Li([a,b]) with 1 < ¢ < oo. Then for any
(tmb+ (1-1) dt r € [a,mb] with some fixed m € (0,1], the following
inequality holds:
a + mb
<ta+ (1—1) 5 >‘dt |T7 (e, k;m, a,b)|
1
mb—a 1 a 1 1 (16)
_ < Mi)?P p:| ,
_mb_a/a 7/ (wldu <t () [ + 0wt ie,
2 where .
mb a
151l = (/ If’(u)lqdu> < oo
This ends the proof. @

The following results acquired by the inequality of (4 — with % + % =1 and M,;(i = 1,2) are defined by (I4) and
B)? < A% — BY for any A > B > 0 with § > 1, will be (T3), respectively.
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Proof. Continuing from inequality in the proof of
Theorem and using the Holder’s inequality, we get that

|| < (/01 {é_%(l—t)%} pdt);
X </01 f’(tmb+(17t)a+2mb> th);

1
p P
dt)

13001

and

ni< ([ |[pa-nt-3
([

- (mb2—a>a (/O

x ( / . f’(u)qdu>

Adding two inequalities above, we get that

==
—_
;I

Q=

|| + | L2
1 1 "p %
< (=) ([ [5-30-0%| o)
x {( [ i ([ If’(U)I“du);}-

a7

Utilizing the inequality (p"+0") < 21="(p+0)" for p,o > 0
and r < 1, we have that

(/mm IZe >qdu>;+ (/
<o ( /" If’(U)I"dU)é .

Using inequality (I8) in inequality (T7), we obtain that

a+mb

If’(U)quU> q
(18)

11| + |2

<2(=a) ([

11 .
1-¢)f
g 5(1-1)

N

Making use of (I4) in inequality (T9), we have that

L) ( / mb|f’<u>|qdu>q.

Il +|1 <2(
[I1]| + 12| < —

Analogously,
|I3] + | 14|

<2 ()"

x(/l uto N : —1pdt)é
o |22% —1)  2(2% —1)

1 : 1
<2Af ()" (V)7

where My is defined by (I3). This ends the proof.
Theorem 2.4: If |f'|9 for ¢ > 1 with p~! + ¢! = 1 is
(s, m)-convex on I, then the following inequality with p > 0
and k£ > 0 holds:
|75 (1, ks, a, b))

< mb4_ a(?ll)% [(Ml)% n (MQ)%}

ALl Gl ()
() +mf’(b)|q] }

where M; and M, are defined by with (T3)), respectively.
Proof. Continuing from inequality in the proof of
Theorem and using the Holder’s inequality, the (s, m)-
convexity of |f’|? and the inequality (I4), we get that

1 o)

+

|11]
N
g(/ 17}(1715)% dt)
b |6 2
1
q q
< <mb+ 1t“+2mb> dt>
Y11 ke v
< S _Z(1—tF
([ ]5-s0-0t] )

" </o1 {mt‘q O+ (1 1)

1 1 a+mb\|"\ ¢
< M P q !/ .
<onb (e o | (5]
Analogously,
|12
1 m a\ |9 1 a+mb\|? 7
< > (% /
(1)(s+1f(m) s+1f<2>>’
13
1 m 1 a+mb\|? v
< M » /bq !
ot (e o | (5]
and
| 14|
1 m a\ |4 1 a+mb\|? a
< m / 7‘ /
< (M) (s—i—lf(m) Jr$—|—1 < 2 > )

The desired result yields by adding four inequalities above.
This ends the proof.
In the next result, we will use the following functions.

Volume 50, Issue 3: September 2020



TAENG International Journal of Applied Mathematics, 50:3, [JAM_50 3 20

(I) The Beta function,

Proof. Continuing from inequality (I2) in the proof of The-
I'(x)(y)
Blz,y) = L)

1 orem and using the Holder’s inequality in the following
_ TN 1=t @y >0, way, we get that
Mey ~J, 0

(II) The incomplete Beta function

[11]
o1 VAR
a g(/ S(1—t)*® dt> </ 1
B(a;x,y):/ t* 11—ty ldt, 0<a<1, z,y>0. 0 6 2 0 6 2
0 g 1
+ mb a
"(tmb+ (1 — 1)~ dt) .
Now, we give the calculated definite integrals used as the ( mb + ( ) 2 ) )
following Theorem [2.5] (24)
Ks Using the (s, m)-convexity of |f’|?, we have that
1
1 1
= 1 —t)*|tdt 11 i by |
/0 5 300" / e (LR ’(tmb+(1—t)a+m) dt
TS TN NED BV Y O @b o i
—5< SE )—25(,k+ )

1 1 L
21—tk
L

1

g/

11 3_52 1 0
—s1-37) +

x [mts PO + (11
Ky

, [ a+mb
()

q
dt

11
=mlf (b)\q/ = - 7(1 — )k [todt
! 1 P 1 1 o |6
— . 14+t)F — ——— — —|tdt b 1 1 .
/0 2(2%—1)( ) 2(2% — 1) 3’ + ,<a+2m > / 6—5(1—t)l@ (1 —¢t)*dt.
n 142k 0
1 L fgper (225 -1 N1 (25)
2 —1 | £ +2 3 2
. Lk Utilizing the inequality of u¢ < (u—1)p+1forall0 < p <1
1 ok _ 2(2% —1) 1 : I 1 with © > 0, we have that
E41 3 2
, o1
1 o\ [1/T202% -1 1% \? 1 / 5~y —nF|eat
+l—+2) 5 |=——+1] -1) —+| 0
2F —1 3 2 3 4 1
</ Lo tg CpEla e 4sgar 0
22) </ 153
Theorem 2.5: If |f'|? for ¢ > 1 is (s, m)-convex on I, = (1 =81 + sK3
then the following inequality with > 0 and k£ > 0 holds and
| Ty (1, ks m, a, b))
mb—a

1 1

/016 S 0)F
4 1 1 1 u
by S
+<§1m|f () (Hmb)

+ )" [( () els

+(§3m|f’(b)lq+£4 (“mb)

==

(1—t)*dt

27
(1 — st)dt 7
= ICl - S’Cg.

Using inequalities (23), (26) and in (24)), we obtain that

f

)

(a—l—mb)‘ > L] < (K1) % {(IC1—SIC3) f,<a+2mb> q
il

1
+ (1= 51 + skca]ml )" } .
(23)
To obtain the upper bounds of |15 | and |14],
where by means of the same approach above, we have that
& =(1-s)Ki+sKs, &=Ki—sKs, - rane
] < ()77 S [(1 = 9+ ks | m | ()
& =(1—-9)Ks+sKy4, & =Ko—35Ky m
1
and KC; (1 = 1,2,3,4) are defined by the equalities (©)), (T0), I (’C1 B le3) 7 (a + mb) a)
(21) and (22), respectively. 2 ’
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q

, [ a+mb
r(75")

1
q

|I3] < (K2)' 0 {(’C2 — 5K4)

+ [(1 — )+ S/C4}m I (B[ }

and

q

L < (;Q)l—% { {(1 —5)Ks + 3/C4}m ’f/ ( )

a
m
1
f/ <a—|—mb) q}q-
2
By adding four inequalities above, we obtain the desired
result in (23). This ends the proof.

Corollary 2.1: Under all conditions of Theorem [2.3] if
we take ¢ = 1, then we have the following inequality

|7-f(/'l’7 k’ ma a7 b)‘

+ (’CQ — 8K4)

mb—a
<

<™ {[(1—5)(/c1+/c2)+s(1c3+1c4)}

< (|7 ()] +1r o)
; <a+2mb>‘ }

+ 2 |:IC1 +IKCy — S(’Cg + ’C4):|
where K; (i = 1,2,3,4) are defined by the equalities (9),
(10), 21) and 22), respectively.

By means of Lemma 2.1, we obtain a new simpson-
type inequality in the case that first derivative of considered
function is Lipschitzian.

Theorem 2.6: Under all conditions of Lemma [2.1] sup-
pose that f’ satisfies a Lipschitz condition on [a,mb] for
some L > 0. Then for p > 0 , £ > 0 with some fixed
m € (0, 1], we have the following inequality

L(mb4— a) (

[T (11, ks a,b)| < Ks+Ki),  O9)

where K; (i = 3,4) are defined by the equalities (2I) and

(22)), respectively.
Proof. If we use Lemma then we get that

Ts(ps k;m, a,b)
mb—a 't 1 "
= {/0 530 0]
x [f’(tmb+(1—t)a+2mb)

2
! M 1 1
+/0 2(2%—1)(1+t)k_ (Z_1)_]
x lf’(tmb+(1—t)a+2mb)

_ f’(ta—!— (1 —t)a+2mb>]dt}.

Since f’ satisfies a Lipschitz condition on [a, mb] for some
L > 0, we have that

f’(tmb+(1—t)“+2mb> —f’(ta+(1—t)a+mb>‘

2
a + mb a + mb
< Litmb+ (1 —1) —ta—(1—1%) 5
= L(mb — a)t.
Therefore,
[Ty (1, k;m, a,b)|
_ 1
<ol [l - a-ot
4 0o |6 2
x f’(tmb+(1 t)a+mb>
—f’(ta+(1—t)a+mb>’dt
! P 1
+ n +t)F — — — =
/0 2(2F—1)( ) 2(2% — 1) 3‘
X f’(tmb+(1—t)a+mb>
—f <ta+ (1 t)a+2mb> ’dt}
Lmb—a)®[ [*]1 1 "
< = _ "
< 1 [/O 5 5 (1= 1)F [tdt
! 1 p 1
+ (1 +t)F — ———— — —|tdt].
/0 2(2%—1)( ) 2(2% — 1) 3‘ ]

The desired inequality follows from the above by noting the
equalities and (22). This ends the proof.

Corollary 2.2: In Theorem [2.6 if we take m = 1 and
= 1=k, then one obtains

: “jb)+éf<b>] —bfa/:f(x)dm
2L(b — a)Q.

81

5@+ 31(

<
(29)

III. CONCLUSION

Based on the presented k-fractional integral identity, sev-
eral Simpson-type integral inequalities are obtained for map-
pings whose first derivatives belong to the Lebesgue L,
spaces or (s, m)-convexity. Some sub-results can be deduced
from our main results by considering different special pa-
rameter values for k, p and m. The results established here
provide new extensions of those given in earlier works as
the estimates of Simpson-type inequalities for k-fractional
integrals involving (s, m)-convex mappings doesn’t exist
previously. With these ideas and the techniques developed
in this article, it is possible to investigate further estimates
of other type integral inequalities for k-fractional integrals
which involve other related classes of mappings.
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