TAENG International Journal of Applied Mathematics, 50:3, IJAM 50 3 23

On a Resonant Third-order p-Laplacian M-point
Boundary Value Problem on the Half-line With
Two Dimensional Kernel

Ogbu Famous Imaga*, Samuel Azubuike Iyase’ and Sheila Amina Bishop?

Abstract— By using a semi-projector and the Re
and Gen extension of coincidence degree theory, this
work studies the existence of solution for a third-order
p-Laplacian boundary value problems at resonance on
the half-line with two dimensional kernel. An exam-
ple is used to show applicability of existence result.

Index Terms— Coincidence degree, Integral boundary
value problem, M-point, p-Laplacian, Resonance.

1 Introduction

This work studies the existence of solutions for the fol-
lowing p-Laplacian third-order boundary value problem
having integral and m-point boundary conditions at res-
onance on the half-line with two dimensional kernel:

(o (t)pp (u” (1)) + £ (¢, u(t), ' (1), u"(£)) = 0, t € (0, +OE>1))

i 3 n -
u(0) = Zal/o u(t)dt, u'(0) = Zﬁj/o o (t)dt,
(0 ()pp(u”(t))) = 0

lim
t—+o0
(2)

where f [0,4+) x R® — R is an L'[0,+00)-
Carathéodory function, 0 < & < & < --- < &, < +00,
O<m<np<---<n, <400, ER, 1 =1,2,--- 'm
and B, €ER, j=1,2,-- ,n. 0 € C[0,+00) N C?(0,+00),
o(t) > 0 on [0,+00), pp(s) = [s[P™?s, p > 1, and
©q (1) € L0, 400).

Boundary value problem (1) is to be at resonance if
(o(t)pp(u”(t)))" = 0 subject to boundary condition (2)
has a non-trivial solution. The Mawhin’s coincidence
degree theorem [4] has been used by many authors to
study resonant problems where the differential operator
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is linear see [9, 11, 8, 7]. For the case of nonlinear p-
Laplacian differential operator, the Ge and Ren [1] ex-
tension coincidence degree theory has also been applied
see [14, 5, 12, 10, 13].

However, to the best of our knowledge, only few authors
in literature have considered p-Laplacian boundary value
problems on the half-line.

In section 2 of this work necessary lemmas theorem and
definitions will be given, section 3 will be dedicated to
stating and proving condition for existence of solutions.
Finally an example will be given to demonstrate applica-
bility of results obtained.

2 Preliminaries

In this section, we will give some definitions and lemmas
that will be used in this work.

Definition 1. ([14]) A map h : [0,+00) x R® — R is
L'[0, +00)-Carathéodory, if the following conditions are
satisfied:

(i) for each (q,r,s) € R3, the mapping t — h(t,q,r,s)
is Lebesgue measurable;

(i) fora.e. t € [0,00), the mapping (¢,7,s) — h(t,q,r,s)
is continuous on R?;

(iii) for each k > 0, there exists ¢y(t) € L1]0, +00) such
that, for a.e. ¢t € [0,00) and every (q,r,s) € [—k, k],
we have

|h(ta q,T, S)‘ < S%(t)

Definition 2. [1] Let (U, | - ||v) and (Z, || - |lz) be
two Banach spaces. The continuous operator M : U N
dom M — Z, is quasi-linear if Im M = M (U N dom M)
is a closed subset of Z and ker M = {u € U Ndom M :
Mu = 0} is linearly homeomorphic to R™, n < +oc.

Definition 3. [2] Let U be a Banach space and U; C U
a subspace. The operator @) : U — U; is a semi-projector

if Q% = Q and Q(\u) = AQu where u € U, X € R.

Let Uy = ker M and Us be the complement space of Uy
in U, then U = Uy @ U,. Similarly, if Z; is a subspace
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of Z and Z, is the complement space of Z; in Z, then
Z =71®7Z,. Let P:U — U be a projector, Q : Z — 73
be a semi-projector and 2 C U an open bounded set with
0 € Q the origin. Also, Let N; be denoted by N, let
Ny : Q — Z, where A € [0,1] is a continuous operator
and ¥ = {u € Q: Mu = Nyu}.

Definition 4. [10] Let U be the space of all continu-
ous and bounded vector-valued functions on [0, +oc0) and
X C U. Then X is said to be relatively compact if the
following statements hold:

(i) X is bounded in U;

(i) all functions from X are equicontinuous on any com-
pact subinterval of [0, +00);

(ii) all functions from X are equiconvergent at oo, i.e.
Ve>0,3aT = T(e)such that || A(t)— A(+0)||rr <
evVt>Tand Ac X.

Definition 5 [1] Let N, : © — Z, X € [0, 1] be a continu-
ous operator. The operator N, is said to be M-compact
in Q if there exists a vector subspace Z; € Z such that
dim Z; = dim U; and a compact and continuous operator
R :Q x [0,1] — Uy such that for A € [0, 1], the following
holds

(i) [ -QNA(Q) cIm M C (I-Q)Z,

(i) QNau=0< QNu=0, A€ (0,1),

(iii) R(-,u) is the zero operator and R(-,\)|s, =
P)|E,\v

(iv) M[P + R(-,\)] = (I — Q)Ny.

(I -

Lemma 1. [2] The following are true for ¢,:

(i) ¢p is continuous, invertible and monotonically in-
creasing. In addition, ng;l = ¢, and for ¢ > 1 then

1,1 .
p e =l
(i1) For all y, z,> 0,

¢p(y+z) §¢p(y)+¢p(z), ifl<p<2,
¢p(y +2) < 2p72(¢p(y) + ¢p(2))a if p>2.

Theorem 1 [1] Let (U, |- |ly) and (Z, | - ||z) be two
Banach spaces and 2 C U an open and bounded set. If
the following holds

(C1) The operator M : UNdom M — Z is a quasi-linear,
(Cy) the operator Ny : Q — Z, X € [0,1] is M-compact,

(Cd) Mu;é N)\u, A E [0, 1], u e 89,

(Cy) deg{JQN,Q Nker M,0} # 0, where N = N; and
the operator J : Z; — Uy is a homeomorphism with
J(0) =6.

then the eguation Mu = Nu has at least one solution in
dom M N Q.

Let U = {u € C?0,+00) : u,u’,0p,(u") € AC[0, +0),
limy 4 oo e Hul? (¢)] exist, i = 0,1,2}, with the norm
lu|| = max{||u]lso, |4 ||oc, | ||oc} defined on U where
[ulloo = suPyefo o0y € lu’l, i =10,1,2 . The space

(U,]l - ||) by standard argument is a Banach Space.

Let Z = L'[0, +00) with the norm ||y ;1 = 0+°° ly(v)|dv.
Define M as a continuous operator such that M
dom M C U — Z where

dom M = {u e U : (pp(u")) € L0, +00),
m & n Ul
u@zZmAMMMWzZ@Au@%

lim (o(t)gp(u”(1))) = 0, }

t—+o00

and Mu = (o(t)ep(u”(t))). We will define the operator
Nyu: Q — Z for A € [0,1] by
Nyuw = =Af(t,u(t),u'(t), u”(t), t€[0,+00)

where 2 C U is an open and bounded set. Then the
boundary value problem (1) in abstract form is Mu =
Nu.

In order to establish conditions for existence of solution
of (1.1)-(1.2), we assume the following:

(1) Y Bimy=1,> il =1, ;& =0;
Jj=1 i=1 i=1
(p2) W = (Qre™" - Qate™ — Qoe™ " - Qute™) =

Wo2 — W12 * w21) 75 0 Where

o= [ [ oGt )
+oo

/ y(v)dv> dsdzdt
and

zy—éﬂj /On /Ot <,0q<02t)><,0q</s+oo y(v)dv)dsdt.

Lemma 2 The operator M : dom M C U — Z is quasi-
linear.

(wn :

Proof Clearly, ker M = {u € dom M :u=a+10bt, a, be
R}. Next, we obtain Im M. Let u € dom M and consider
the problem

((®)pp(u” (1)) =y, t € [0, +00), (3)
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Integrating (3) from t to +oo, and applying (2) gives

)=~ (s [ wtonio)
==en(gg e o)

Integrating (4) from 0 to ¢ yields

woy =0~ [ (55 el [ v ©

applying boundary conditions (2) to (5), then

w'(0) = u'(0),
iﬂj/ "(t)dt = Z,Bj/ [u’ (0)

Lol [ ow)ele

W/ (0) =/ O)Zm

e

n
Since Zﬂjnj =1,
j=1

=S [ [t o)

=0.

(4)

and

Integrating, (5) from 0 to ¢ gives

u(t) = u(0) + u'(0)t

L Lol [ o)

Applying boundary conditions (2), gives
Zal/ ( (0) +u'(0)t

/ I %(U(S)soq( / ” (v)dv)dsdar)d

u(0) = u(0) Zalﬁz + u/(0) 2%52

Zaz/&// (1)
/8 (v)dv) dsdadt.

Since Y% ;& =1 and Y0 ;&2 = 0 then
m & ptopx 1
Q2y = ai/ //%()80(
1-221 o JoJo T \a(s)) 7"
+o0o
/ y(v)dv) dsdzdt

=0.
Thus Im M ={y € Z: Q1y = Q2y = 0} and

u(t) a+bt/0t /0 @q(a(ls)%q(/:my(v)dﬂdsdx,

where a and b are arbitrary constants and w(t) is a so-
lution to (3) satisfying (2). So ker M = 2 < oo and
M C (Undom M) C Z is closed. Therefore, M is quasi-
linear.

We will define the projector P : U — U; as
= u(0) +u'(0)t,

Pu(t) ueU, (7)

Similarly, the operator @ : Z — Z; will be defined as

Qy = (A1y) + (Agy) - t (8)
where 1
Ay = W((Sll@ly + 012Q2y)e ",
1
Agy = W@Ql@ly + 022Q2y)e ",

and d;; is the co-factor of w;j, 4,j = 1,2. The operator
Q : Z — Z; can be shown to be a semi-projector.

Finally, Let the operator R : U x [0,1] — Uz be defined
by

R(u, A)(#)

G

OG0 0 0) + QN s

= [ [ e (ot)
[ ot )t

where U, is the complement space of ker M in U.

Lemma 3 If f is a L0, 4+o0)-Carathéodory function,
then R: U x [0,1] — U, is M-compact.

Proof. Let Q C U be nonempty, open and bounded, then
for u € Q, there exists a constant k > 0 such that ||Ju <
k. Since f is an L![0, +00)-Carathéodory function, there
exists ¢y € L0, +00) such that for a.e. t € [0, +00) and
A € [0, 1], we have

[INxullzr + [|@Nxullr < [l + [|@NullLy,
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For any u € 2, A € [0, 1], we have

[R(u, Moo = sup e [R(u, A)(1)]

te[0,4+00)

7 (5)

1

(&

IN

eallNaullzs + 1QNxull) (9
Ll

1
<[oa ()| entiontir +1QNulz) <+,
Ll
IR @A = sup e R @A)
te[0,400)
1 (10)
<[en (3] ationti + 10Nl < 40
Ll
and
IR (N oo = sup e LR )(0)
t€[0,+00)
(1)
<

1
oo (3)] ertionte +1@Nul) < o

Therefore it follows from (9), (10) and (11) that R(u, \)Q
is uniformly bounded.

Next we will show that R(u, \)Q is equicontinuous in a
compact set. Let u € Q, A € [0,1]. For any T € [0, 4+00),
with t1,t9 € [0, T] where t; < t2, we have

le™ 2 R(u, \)(t2) — e " R(u, \)(t1)|

// v <0(5)>%<

/ (=1 + Q)Nyu(v)dv )dsdx

)
// . <g<s§%<

/S (=1 + Q)Nxu(
<

1
Pq P
+ |Q@Nul 1)t

e(3)| ettt
L1

+HQN’U,HL1)(t2—t1) —>0, as t1—>t2,

12
dsdx (12)

(7" —e™) Pq(lltorl 2

Lt

+e

le2 R (u, \)(t2) — e R (u, \)(t1)]

RACoR

/S+00( I+ Q)Nyu(v )dv)ds

S IcoR!

/:OO(_I T Q)NA“(U)dv) ds

< (e7 — e )pq([[¥n e

i QNULl)/Otl ¥Ya (a(ls)> ’ds

to
+ ey ([rllz + [QNul21) /
t1

— 0,

as t1 — to

— "R (u, \)(t1)]

e[ ane
. <U(1t2)> qu</:x}( I+Q)Nau(v )dv)d
— ey, (d;)) %(/:(I + Q) Nau(v)dv

+ /+OO(—I + Q)N}(M(U)d@) ds

to

—>O, as t; — to.

(14)

Thus, (12), (13) and (14) show that R(u,\)Q is equicon-
tinuous on [0, T7.

Finaly, We prove equiconvergent at +oco. We will note
that since lim;_, o e~ = 0 then

—t o —t

1tilm e "R(u,\)(t) = tilglooe R (u, \)(¢)
_ —t ! _
= tilgloo e "R"(u, \)(t) = 0.

Then,

le  R(u, \)(t) — tiiinoo e "R(u, \)(t)]

L ) e

/: (=1 + Q) Nyu(v )dv)dsdm—o‘

(15)

<te i<

1
eq | — Cqlvrllzr + 1Q@Nul[ 1)
o It

— 0, uniformly as t — 400,
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le " R/ (u, \)(t) — tiigloo e "R (u, \)(t)] Let u € Q. Since Mu = (o(t)p,(u”(t))) we have
g /t (1> ( M[Pu+ R(u, N](t) = (o(t)pp([Pu+ R(u,\)]" ()’
; o(s)
‘ w0 (et | [ ()
/ (-1 + Q)N}ﬂl(ﬂ)d@) ds — O’ o
< eit@q(”wk”Ll + |QNul 1) /S (=1 +Q)Nx(v )dv)dsdx} >
— 0, uniformly as ¢ — 400 1 +oo !
~(etneu5i [ 1T+ @MIE))|)
d +oo '
" ([ T terr @miea)
e R (u, (1)~ lim_ e~ R (u, N) (1) (T QM = (- QN (),
4 1 that is condition (iv) of definition 5 holds. Hence, N, is
- Pq (g(t)) <‘0q< M-compact in .
+oo
/t (=1 + Q)NW(U)dU> ds — 0’ (17) '3  Existence Results
- 1 e In this section, the conditions for existence of solutions
S| twqﬁ SDq(/ [Nu(v) + QNU(U)|dU> for boundary value problem (1) and (2) will be stated

— 0, unifromly as t — +00. and proved.

Theorem 2 Suppose the following hypothesis holds:
Therefore R(u,\)§) is equiconvergent at +oo. It then

follows from definition 4 that R(u, \) is compact. (H1) There exists functions x(t),y(¢),z(t),r(t) €
L'[0,+00) such that for all (u,v,w) € R?® and

Lemma 4 The operator N} is M-compact. a.e. t €0, +0),

Proof. Since @ is a semi-projector, then Q(I—Q)Nx(Q) = |f(t,u,v,w)] < x(t)|ulP~ + y(t)|v]P!

0. Hence, (I — Q)NA(Q) C ker@Q = Im M. Conversely, (18)
letyeIm M, theny=y—-Qyu=(I—-Q)ye (I —Q)Z.
Hence, condition (i) of definition 5 is satisfied. It can (H,) For u € dom M there exist a constant ag > 0, d > 0
easily be shown that condition (ii) of definition 5 holds. such that if |u(t)| > ao for ¢ € [0,d] or |u/(t)] > ao

for t € [0, +00), then either

+ 2w~ +r(t)

Let uw € ¥y, Mu = Nyu, then Nyu € Im M. Hence,

QNyu = 0 and R(u, \)(t) becomes QuUVu(t) #0 or QaNu(t) £0, € [0, +oc).
(19)
(Hs) There exists a constant by > 0 such that for |a| > by
<Pq 0(3) Pq or |b| > by either
/ A0, 0, 0 Y QuN(a+b)+QaN(a+b) <0, 1€ (0,+00), (20
# or
Then R(U,O)(t) =0 and QlN((I-"bt)-"QQN(Q-“bt) > O, te (O, +OO), (21)
where a,b € R, |a| + [b] > by and ¢ € [0, +00).
1 Then the boundary value problem (1) and has at
/ / ©q <(> ( least one solution in dom M N €2, provided
o(s)
+o0 A5 + gl + 112152 < 1, for p>2
/ A0 u(e) 0 0) 0 ) s
or
/ / W (s)dsda = u(t) — u(0) — o/ (0}t 20 ([l 5+ g ) < 1 for 1< p <2
Pu(t) = [(I = P)ul(t). where A = max{(2 + d)H‘Pq (%)HLl’(l +
1 1
Therefore, condition (iii) of definition 5 holds. d) |[¢q (5) HLl +leq (3) Hoc }
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The following lemmas are also needed to prove Theorem
2.

Lemma 6. The set O = {u € dom M : Mu =
Nyu for some X € (0,1)} is bounded.

Proof Let u € €y then Nyu € Im M = ker ). Hence,
QN u =0 and QNu = 0. It follows from Hs that there
exists tg € [0,d], t; € [0,+00) such that

lu(to)| < ao, |u'(t1)| < ao.

from u(0) = u(ty) + foto v/ (v)dv, we have

[u(0)] = < ag + d||t || so.-

u(to) — /Oto o' (v)dv

Also, from u/(t) = u/(t1) — fttl

u”’(v)dv,

t1
[u' (1) = |u(ty) —/ o' (v)dv| < ag + ||u”|| L1,
t
then
[/ (0)] < ag + [[u”| 1 (22)
and
Wlloo= sup e ()] <ao+ 'l (g9
te[0,+00)
Hence, from (22) and (23) we have
|u(0)] < 2aq + [|u”[| 1 (24)

Since Mu = Nyu, from (4), we then get

PN
/t s u(o), W (), u”(v))dv),

hence,

l[u” ||z = /Om ' — g <aét)) %(

/;OO A (v, u(v), o (v), u”(v))d'u) 'dt
eo(5)| eativaen.

<

Since, QNu = 0 for u € Qq, it follows from (9), (10) and
(11) that

172w, M|

Smax{‘

I

L1

w(5)

oo ()|} centivudnn

Also,

[[Pull

< a0(2+d) + (14 Aoy (| Vull2) . ®

w(5)

u(t) = Pu(t) + (I — P)u(t) = Pu(t) + R(u, \)u(t),

1

In addition, for u € Q;, we have

therefore,

[[ull = [1Pull + | R(u, |

a2,
oo ()|} etmaen

< ao(2+d) + (14 d)eg ([ Nullr)

1
e {e(2)
I

_ao(2+d)+ma><{<2+d)‘@q <i> o

ei(5)| e ()] Jontimaren

Let & = max{ (2 ) llog (D)l 1+ oo ()] +
u (2.} then

[ull < ao(2 +d) + Apg([| Null) ).

)

(1+d)’

"

Lt

(26)
Considering (Hy), and lemma 5, if p > 2, we have

Pq([[Null1) < eqlllzllLrep((lulloo)

+llylrepllu'lloe) + 1120 Lrpp (o) + lI7ll 2]
-1 -1 -1 -1

< fell(lelze + lyllze + =070 + el ze

(27)

if 1 <p <2, then

Pq([[NullL) < eqlllzllLrep(llull)
+ 1yl ep(lvlloe) + llzllzrep(lu” o) + lIr 1]
<22l (2 + g + D=0

+ 22074 ||| 97T
In view of (26), (27) and (28)

ao(2+d) + Allr||97"
-1 -1 —1
UlzlF + e +=l50)

[lull <
1-A

or

ap(2 + d) + 22044 ||r |47
— 22040 ([l2f 8+l + =l

ul| <
Jul < -

Therefore € is bounded.

Lemma 7. If Qs = {u € ker M : —Au+ (1 = \)JQNu =
0, A € [0,1]}, J : Im @ — ker M is a homomorphisim,
then 5 is bounded.
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Proof. For a,b € R, let J : Im @ — ker M be defined by

1
J(a+bt) = 5= [0nlal+012[b|+(J21 al +522[b])1)]e ™", (29)

If (20) holds, for any u(t) = a+bt € Qa, from —Au+ (1 —
A)JQNu = 0, we obtain

d11(=Ala[ + (L = A\)Q1N(a + bt))
+ 012(=Ap] + (1 = N)Q2N(a +bt)) =0,
da1(=Alal + (1 = N\)Q1N(a + bt))
+ d22(=A[b] + (1 = A)Q2N(a + bt)) = 0.

Since B # 0, then

AMa| = (1 = N)QiN(a+bt),
AB| = (1= \)QNa(a + bt).

From (30), when A =1, a =b=0. When A =0,
Qi1 N(a+bt) + QaN(a+bt) =0

which contradicts (20) and (21), hence from (Hs), |a| <
by and |b| < bg. For A € (0,1), in view of (20) and (30),
we have

0 < A(al+1b]) = (1

(30)

~N)[Q1N(a+bt)+QaN(a+bt)] <0

which contradicts A(|a] + |b]) > 0. Hence, (H3), |a| < by
and [b] < by, thus ||u|| < 2by. Therefore Q5 is bounded.

From lemma 2, we saw that condition (C) of theorem
1 holds, lemma 3 proved (C3). Lemmas 6 and 7 showed
that (C3) holds.

Proof of Theorem 2 Let 2 O QU5 be a nonempty,
open and bounded set, u € dom M N 9N, H(u,\) =
—Au+ (1 = N)JQNu, and J be as defined in Lemma 7
then H(u,A) # 0 . Therefore by the homotopy property
of the Brouwer degree

deg{JQN |qnyer as> 2 Nker M, 0}
= deg{H(-,0),Q2 Nker M,0}
=deg{H(-,1),QNker M,0}
= deg{—1I,QNker M,0} # 0.

Hence, condition (Cy) of theorem 1 holds.

Since all the conditions of theorem 1 are satisfied, (1) -
(2) has at least one solution in QN dom M.

4 Example

Consider the boundary value problem:

(e lg(u (1)) + f(t, u(t), ' (t),u"(t) =0,  (31)
1/3 1/2
w(0) = 9 / w(t)dt — 4 / u(t)dt,
) 0 ” 0 (32)
W)= /0 (D), Tim_ (' (1)) = 0

where ¢ € (0, +00)

0, 0<t<I1,

Fltu(t), ' (8),u" () =< 2e 2 sinuz + e 2 2ginv2
+e 333 + e O t>1.

Here o(t) = e?*l p = %, qg=3,a =9, a = —4,

&= 3a§2 %7 12%,771227

T2 e = (0) (1) + (~4) (3) =3-2=1,

S =) (1) + (-9 (3)’=1-1=0,

S Bimi = (2) (3) = 1. W =0.0009 # 0. Hence, (1)

and (¢2) holds

HIlHL1 - 0 2| e 1‘dt = 2f0+oo|€_2t_1|dt = %:

@2l = 0 F e 2dt = 5,

sl = [y e |dt = f+°°| THTdt = 55,

lpq (5 )IILl = [ e 12 dt = L,

2q (5) lloo = SUPse[0,400) € _2t =1

A—max{(?—!—l) (4;) (141 (412) +1} — 10677,

Allz )12

Therefore, (Hy) holds. (Hz) and (Hsz) can also be
shown to hold. Hence, from Theorem 2, the boundary
value problem (31) and (32) has at least one solution in
dom M N Q.

w90 4 [laa]|97Y) = 0.1497 < 1
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