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Abstract—In this paper, the numerical solutions of multi-term
fractional differential equations are studied by Bernoulli poly-
nomials collocation method. By using the operational matrix
and collocation method, the equations are simplified to a system
of algebraic equations with unknown Bernoulli coefficients.
Detailed error analysis is also given. Numerical examples are
used to verify the efficiency and accuracy of the approach.
According to the numerical results, the proposed method can
be used as an alternative to obtaining the numerical solutions
of this kind of multi-term fractional differential equations.

Index Terms—Multi-term fractional differential equations,
Bernoulli polynomials, Operational matrix, Collocation method.

I. INTRODUCTION

FRACTIONAL calculus is a topic with a long history.
Due to the lack of applications, it has not received

much attention for a long time. With the development of the
science and technology, the theory of fractional calculus and
its applications have begun to attract the attention of many
researchers from different scientific and engineering fields.
One of the important applications of fractional calculus is
fractional differential equations (FDEs). FDEs can describe
non-local models more accurately. For example, FDEs are
used in physics [1], heat conduction problems [2], diffusion
problems [3], viscoelasticity [4], fluid mechanics [5], elec-
tromagnetic waves [6], bioengineering [7] and other fields
[8]. Therefore, the study of FDEs has become a hot research
topic.

It is not an easy task to get the exact solutions of
FDEs. Many scholars have developed numerical methods for
approximate solutions of FDEs. In recent years, a number
of numerical methods have been proposed. For example,
there are finite difference method [9], [10], polynomial
method [11], finite element method [12], spectral method
[13], wavelet collocation method [14], hybrid collocation
method [15], etc.

This paper considers the numerical method of multi-term
FDEs, which have the general form:

Dαy(x) = f (x, y(x), Dα1y(x), . . . , DαM y(x)) , x ∈ [0, 1],
(1)

where α > αM > . . . > α1 > 0, αi − αi−1 ≤ 1, M ∈ N+

and αi ∈ Q for all i, subjected to the initial conditions

y(k)(0) = dk, k = 0, 1, . . . , ⌈α⌉ − 1. (2)

Here, ⌈α⌉ is used to denote the integer closest to and less
than α.
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To date many researches have developed approximate
solutions of multi-term FDEs. Shiralashetti et al. [14] applied
Haar wavelet collocation method (HWCM) to obtain the
numerical solutions of (1). Talaei and Asgari [16] employed
Chelyshkov polynomials to solve this type of equations.
Mohammadi et al. [17] used Legendre wavelet Tau method
to gain the approximate solutions of multi-term FDEs.

Bernoulli polynomials collocation method is a powerful
tool for numerically solving integral, differential and integro-
differential equations. Recently, Bernoulli polynomials col-
location method has been extended to solve nonlinear differ-
ential equations [18], stochastic integral equations [19], 1D
and 2D fractional optimal control of system [20] and so on.
As pointed out in these references, Bernoulli polynomials
collocation method can provide accurate approximations of
the problem with simple computational procedures.

The purpose of this paper is to solve the multi-term FDEs
based on Bernoulli polynomials collocation method. By us-
ing Bernoulli operational matrix together with a collocation
method, Eqs. (1) and (2) are simplified to a systems of
algebraic equations and numerical solutions are obtained
by solving the system. We also show error analysis of the
proposed method.

The paper is organized as follows. In Section II, the basic
definitions of fractional calculus, properties of Bernoulli
polynomials and the related Bernoulli operational matrix
are given. In Section III, detailed method to solve multi-
term FDEs is discussed. An error analysis is investigated in
Section IV. Section V provides several examples to illustrate
the efficiency and accuracy of the proposed method. Section
VI concludes.

II. PRELIMINARY

We first give some necessary definitions and mathematical
preliminaries of fractional calculus which will be used further
in this paper.

Definition 1. [11] The Riemann-Liouville fractional in-
tegral operator Jα of order α is given by:

Jαy(x) =


1

Γ(α)

∫ x

0

(x− s)α−1y(s)ds, α > 0,

y(x), α = 0,

where

Γ(α) =

∫ ∞

0

xα−1e−xdx.

We state the properties of Jα as follows [21]:

Jα1Jα2y(x) = Jα1+α2y(x), (3)
Jα1Jα2y(x) = Jα2Jα1y(x). (4)

Definition 2. [11] The Caputo definition of fractional
differential operator Dα of order α is given by:
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Dαy(x) =


1

Γ(n− α)

∫ x

0

(x− s)n−α−1 dn

dsn
y(s)ds,

n− 1 < α < n,
y(n)(x), α = n.

The important relationship between Jα and Dα is [21]

JαDαy(x) = y(x)−
n−1∑
i=0

y(i)(0+)
xi

i!
, n−1 < α < n, n ∈ N+.

(5)
Next, we provide the definition and some properties of

Bernoulli polynomials. Bernoulli polynomials Bn(x) of de-
gree n are generated by the following relation [22]

n∑
k=0

(
n+ 1

k

)
Bk(x) = (n+ 1)xn, n = 0, 1, · · · . (6)

We show the first five Bernoulli polynomials as follows

B0(x) = 1,

B1(x) = x− 1

2
,

B2(x) = x2 − x+
1

6
,

B3(x) = x3 − 3

2
x2 +

1

2
x,

B4(x) = x4 − 2x3 + x2 − 1

30
.

We collect the following properties of Bernoulli polynomials
[23]

B
′

n(x) = nBn−1(x), n ≥ 1,∫ 1

0

Bn(x)dx = 0, n ≥ 1,

Bn(x+ 1)−Bn(x) = nxn−1, n ≥ 1,

Bn(x) =
n∑

k=0

(
n

k

)
Bk(0)x

n−k, n ≥ 1.

The Bernoulli vector is defined as

B(x) = [B0(x), B1(x), . . . , BN (x)]T . (7)

Using (6), we can rewrite vector (7) in the following form

B(x) = D−1TN (x), (8)

where

D =


(10) 0 0 ··· 0

1
2 (

2
0)

1
2 (

2
1) 0 ··· 0

1
3 (

3
0)

1
3 (

3
1)

1
3 (

3
2) ··· 0

...
...

...
. . .

...
1

N+1 (
N+1

0 ) 1
N+1 (

N+1
1 ) 1

N+1 (
N+1

2 ) ··· 1
N+1 (

N+1
N )

 ,

and
TN (x) = [1, x, x2, . . . , xN ]T . (9)

Furthermore, by using the properties of Bernoulli polynomi-
als, if n increase from 0 to N , we get

B(x) = D̂TN (x), (10)

where

D̂ =


(00)B0(0) 0 0 ··· 0

(11)B1(0) (10)B0(0) 0 ··· 0

(22)B2(0) (21)B1(0) (20)B0(0) ··· 0

...
...

...
. . .

...
(NN)BN (0) ( N

N−1)BN−1(0) ( N
N−2)BN−2(0) ··· (N0 )B0(0)

 .

Note that D̂ = D−1. By the result in [24], the dual matrix
of B(x) is denoted as

Q =

∫ 1

0

B(x)BT (x)dx = D̂WD̂T , (11)

where

W =

∫ 1

0

TN (x)TT
N (x)dx

=


1 1

2
1
3 · · · 1

N+1
1
2

1
3

1
4 · · · 1

N+2
1
3

1
4

1
5 · · · 1

N+3
...

...
...

. . .
...

1
N+1

1
N+2

1
N+3 · · · 1

2N+1

 .

We use H = L2([0, 1]) to denote the space of square
integrable function with respect to Lebesgue measure on the
closed interval [0, 1]. According to [25], the arbitrary function
y(x) in H can be expressed by Bernoulli basis as

y(x) ≃
N∑

k=0

ykBk(x) = BT (x)Y, (12)

where the coefficient vector Y is given by

Y = [y0, y1, . . . , yN ]T .

We present results of Bernoulli coefficients yn as follows.
Lemma 1. [26] Assume that y(x) ∈ H be an arbitrary

function and also is approximated by the truncated Bernoulli
series PN [y](x) =

∑N
n=0 ynBn(x), then the coefficients

y0, y1, . . . , yN , can be calculated from the following relation

yn =
1

n!

∫ 1

0

y(n)(x)dx.

Lemma 2. [26] Assume that the function y(x) is ap-
proximated on the interval [0, 1] by Bernoulli polynomials
as argued in Lemma 1. Then the coefficients yn decay as
follows

yn ≤ Yn

n!
,

where Yn denotes the maximum of y(n)(x) in the interval
[0, 1].

We represent the solution of (1) in the form of truncated
Bernoulli series (12). It means that y(x) can be written in
the following form

y(x) ≃ BT (x)Y,

Y = [y0, y1, . . . , yN ]T .

By (10), we can write it as

y(x) ≃ TT
N (x)D̂TY. (13)

Now, taking Caputo fractional derivative Dα to both side of
Eq. (13), we have

Dαy(x) ≃ T
(α)
N (x)D̂TY, (14)
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where

T
(α)
N (x) = [Dα1, Dαx,Dαx2, . . . , DαxN ]

=

 0, 0, . . . , 0︸ ︷︷ ︸
⌈α⌉

,
Γ(⌈α⌉+ 1)x⌈α⌉−α

Γ(⌈α⌉+ 1− α)
, . . . ,

Γ(N + 1)xN−α

Γ(N + 1− α)

 .

At the end of this section, we state the product matrix of
Bernoulli polynomials basis from [24]. The result is

B(x)BT (x)Y ≃ Ŷ B(x), (15)

where Ŷ = D̂Ỹ T . For more details, we refer to [24].

III. SOLUTIONS OF MULTI-TERM FDES

In order to describe the Bernoulli polynomials collocation
method in detail, we consider the following form of multi-
term FDEs

Dαy(x) +Dα1y(x) +Dα2y(x) + f(x)yn(x) = g(x) (16)

with the initial conditions

y(k)(0) = dk, k = 0, 1, . . . , ⌈α⌉ − 1, (17)

where n is a positive integer and f(x) is a function smooth
enough on [0, 1]. By approximating function y(x) and f(x)
in the form of Bernoulli polynomials, as described by (12),
we have

y(x) ≃ BT (x)Y, (18)
f(x) ≃ BT (x)F, (19)

where the vectors Y and F are Bernoulli polynomial coeffi-
cients of y(x) and f(x), respectively.

Next, we deal with the term yn(x) in Eq. (16). By (18),
(13) together with (15), we get

yn(x) ≃ Y TB(x)BT (x)Y yn−2(x)

≃ Y T Ŷ B(x)yn−2(x)

≃ Y T Ŷ B(x)BT (x)Y yn−3(x)

≃ Y T Ŷ 2B(x)yn−3(x)

· · ·
≃ Y T Ŷ n−1B(x). (20)

Substituting (14) and (18)-(20) into Eq. (16) yields

T
(α)
N (x)D̂TY + T

(α1)
N (x)D̂TY + T

(α2)
N (x)D̂TY

+BT (x)FY T Ŷ n−1B(x) = g(x).
(21)

Now, for initial conditions (17), by (12) and (14), we have

y(0) = BT (0)Y = d0 (22)

y(k)(0) = T
(k)
N (0)D̂TY = dk, k = 1, 2, . . . , ⌈α⌉ − 1. (23)

To obtain more accurate solution, we adopt different
strategies to select collocation points.
Case 1
When n = 1, we collocate (21) at the N +1−⌈α⌉ Newton-
Cotes nodes as

xl =
2l + 1

2(N − ⌈α⌉+ 1)
, l = 0, 1, . . . , N − ⌈α⌉,

then we get

T
(α)
N (xl)D̂

TY + T
(α1)
N (xl)D̂

TY + T
(α2)
N (xl)D̂

TY

+BT (xl)FY T Ŷ n−1B(xl) = g(xl),

l = 0, 1, . . . , N − ⌈α⌉.
(24)

It is noted that (22)-(24) is a system of N + 1 lin-
ear algebraic equations with N + 1 unknown coefficients
y0, y1, . . . , yN . After solving it with conventional numerical
methods, we can acquire the numerical solution for Eq.(16)
by (18).
Case 2
When n > 1, we choose the first N + 1 − ⌈α⌉ roots of
shifted Legendre polynomial PN+1(x) as collocation points
[27] for (21). Combined with the initial conditions (22) and
(23), we can get N + 1 nonlinear equations. After solving
them using Newton’s iterative method and putting the values
of y0, y1, . . . , yN into (18), we can obtain the solution of the
given problem.

IV. ERROR ANALYSIS

In this section, the error analysis of the proposed
method will be discussed. We assume that ∥f(x)∥∞ =
supx∈[0,1]|f(x)|. It is noted that the set of Bernoulli polyno-
mials B0(x), B1(x), . . . , BN (x) ⊂ L2[0, 1]. We suppose

Y = span{B0(x), B1(x), . . . , BN (x)},

and h ∈ L2[0, 1] is an arbitrary element. Because Y is a
finite dimensional subspace of L2[0, 1], there exists a unique
best approximation ĥ ∈ Y for h such that for every z ∈ Y

∥h− ĥ∥ ≤ ∥h− z∥.

Moreover, we have

h ≈ ĥ =
N∑
i=0

hnBn(x) = BT (x)H,

where H = [h0, h1, . . . , hN ]T , and h0, h1, . . . , hN are u-
nique coefficients.

The following theorems will play an important role in our
error analysis.

Theorem 1. [26] Suppose h(x) ∈ C∞[0, 1] and PN [h](x)
is the approximate polynomial using Bernoulli polynomials.
Then the error bound would be obtained as follows

E(h) = ∥h(x)− PN [h](x)∥∞ ≤ 1

(N !)
BNHN ,

where BN and HN denote the maximum values of BN (x)
and h(N)(x) in the interval [0, 1], respectively.

Theorem 2. [21] Let h : [0, 1] → R and Jα(·) denotes the
Riemann-Liouville’s fractional integration operator. Then,

∥Jα (h(x)) ∥∞ ≤ 1

Γ(α+ 1)
∥h(x)∥∞ (25)

Theorem 3. [28] Suppose p ∈ L2[0, 1] is approximated by
pN as

p(x) ≃ pN (x) =
N∑
i=0

piBi(x) = PTB(x),

where

B(x) = [B0(x), B1(x), . . . , BN (x)]T ,

P = [p1, p2, . . . , pN ]T .
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Consider

LN (p) =

∫ 1

0

[p(x)− pN (x)]2dx,

then, we have
lim

N→∞
LN (p) = 0.

Next, we give the main results of error analysis.
Theorem 4. Suppose that y(x) and yN (x) are the exact

and numerical solutions of (16) with initial conditions (17).
Moreover, we assume
(1) There exist positive numbers ρ1, ρ2, ρ3, such that
∥yN (x)∥∞ ≤ ρ1, ∥f(x)∥∞ ≤ ρ2, ∥y(x)∥∞ ≤ ρ3,
(2) 1− φ− ρ4E(f)

Γ(α+1) > 0.
Then,

∥y(x)− yN (x)∥∞ ≤ Γ(α+ 1)E(p) + ρn3E(f)

Γ(α+ 1)− Γ(α+ 1)φ− ρ4E(f)
,

where

φ =
1

Γ(α− α1 + 1)
+

1

Γ(α− α2 + 1)
+

ρ4ρ2
Γ(α+ 1)

,

E(f) = ∥error (f(x)) ∥∞ = ∥f(x)− fN (x)∥∞,

E(p) = ∥p(x)− pN (x)∥∞,

ρ4 = ρn−1
3 + ρn−2

3 ρ1 + · · ·+ ρ3ρ
n−2
1 + ρn−1

1 .

Here,

p(x) =

⌈α⌉−1∑
k=0

y(k)(0)

k!
xk

+

⌈α1⌉−1∑
k=0

y(k)(0)

Γ(k + α− α1 + 1)
xα−α1+k

+

⌈α2⌉−1∑
k=0

y(k)(0)

Γ(k + α− α2 + 1)
xα−α2+k + Jαg(x).

(26)

Proof: Applying the Riemann-Liouville fractional integral
operator Jα to both sides of (16) and using the properties of
Jα, we have

y(x) = p(x)−Jα−α1y(x)−Jα−α2y(x)−Jα (f(x)yn(x)) ,
(27)

where p(x) is defined as in (26).
Now, suppose that f(x) and p(x) are expanded using

Bernoulli polynomials, then the obtained solution is an
approximated solution. Here, we want to deduce an upper
bound for the associated error between y(x) and yN (x).
Thus, we get

∥y(x)− yN (x)∥∞
= ∥ (p(x)− pN (x))− Jα−α1 (y(x)− yN (x))

−Jα−α2 (y(x)− yN (x))

−Jα (f(x)yn(x)− fN (x)ynN (x)) ∥∞
≤ ∥p(x)− pN (x)∥∞ + ∥Jα−α1 (y(x)− yN (x)) ∥∞
+∥Jα−α2 (y(x)− yN (x)) ∥∞
+∥Jα (f(x)yn(x)− fN (x)ynN (x)) ∥∞. (28)

By Theorem 3, we have that E(p) decreases to zero as N
increases. Besides, by using Theorem 2, it follows

∥Jα−α1 (y(x)− yN (x)) ∥∞ ≤ ∥y(x)− yN (x)∥∞
Γ(α− α1 + 1)

and

∥Jα−α2 (y(x)− yN (x)) ∥∞ ≤ ∥y(x)− yN (x)∥∞
Γ(α− α2 + 1)

.

Furthermore, we have

∥Jα (f(x)yn(x)− fN (x)ynN (x)) ∥∞
≤ ∥Jα (f(x) (yn(x)− ynN (x))) ∥∞
+∥Jα ((f(x)− fN (x)) (yn(x)− ynN (x))) ∥∞
+∥Jα ((f(x)− fN (x)) (yn(x))) ∥

By Theorem 2, we can gain

∥Jα (f(x)yn(x)− fN (x)ynN (x)) ∥∞

≤ 1

Γ(α+ 1)
∥f(x)∥∞∥yn(x)− ynN (x)∥∞

+
1

Γ(α+ 1)
∥f(x)− fN (x)∥∞∥yn(x)− ynN (x)∥∞

+
1

Γ(α+ 1)
∥f(x)− fN (x)∥∞∥yn(x)∥∞

≤ 1

Γ(α+ 1)

(
ρ2∥yn(x)− ynN (x)∥∞

+E(f)∥yn(x)− ynN (x)∥∞ + ρn3E(f)
)
. (29)

Noting assumptions and the fixed number n , we have

∥yn(x)− ynN (x)∥∞
= ∥ (y(x)− yN (x)) (yn−1(x) + yn−2(x)yN (x)

+ · · ·+ y(x)yn−2
N (x) + yn−1

N (x))∥∞
≤ ∥y(x)− yN (x)∥∞

(
ρn−1
3 + ρn−2

3 ρ1 + · · ·+ ρn−1
1

)
= ρ4∥y(x)− yN (x)∥∞. (30)

In the end, by (28), (29) and (30), we conclude

∥y(x)− yN (x)∥∞ ≤ Γ(α+ 1)E(p) + ρn3E(f)

Γ(α+ 1)− Γ(α+ 1)φ− ρ4E(f)
,

and this completes the proof.

V. NUMERICAL EXAMPLES

In this section, several numerical examples are provided
to demonstrate the efficiency and accuracy of the proposed
method in Section III.

Example 1. Firstly, we consider a linear non-homogeneous
FDE [14]:

D2y(x) +D
3
4 y(x) + y(x) = x3 + 6x+

8.533333333

Γ(0.25)
x2.25

with the initial conditions y(0) = 0, y′(0) = 0. The exact
solution is y(x) = x3.

As shown in Figure 1, the numerical solution obtained
by the proposed method is very close to the exact solution
when N = 5. Table I shows the comparison of the results
obtained here with the results obtained in [14] for Example
1. In Table II, the absolute error of Bernoulli polynomials
collocation method in comparison with HWCM when N
takes different values are given. Figure 2 plots the absolute
error graph with N = 8. Table I and Table II demonstrate that
Bernoulli polynomials collocation method is able to achieve
a higher accuracy than HWCM.
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TABLE I
COMPARISON OF EXACT SOLUTION, PRESENT METHOD AND HWCM FOR EXAMPLE 1

x(= 1/16) HWCM (N = 8) Present method (N = 5) Exact solution Absolute errors
|E −H| |E − P |

1 0.000720594592103 0.000244140625000 0.000244140625000 4.7645E-04 2.7657E-21
3 0.007946937149659 0.006591796875000 0.006591796875000 1.3551E-03 2.9108E-20
5 0.032632454777584 0.030517578125000 0.030517578125000 2.1148E-03 1.6347E-19
7 0.086482887501875 0.083740234375000 0.083740234375000 2.7426E-03 6.1592E-19
9 0.181211960646956 0.177978515625000 0.177978515625000 3.2334E-03 1.7185E-18
11 0.328538847506652 0.324951171875000 0.324951171875000 3.5877E-03 3.9167E-18
13 0.540186878967990 0.536376953125000 0.536376953125000 3.8100E-03 7.7603E-18
15 0.827882618666712 0.823974609375000 0.823974609375000 3.9080E-03 1.3895E-17

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Approximate Solution
Exact Solution

Fig. 1. Comparison of the numerical solution with exact solution for
Example 1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
×10-17

Fig. 2. Graph of absolute error for Example 1 with N = 8

TABLE II
THE ABSOLUTE ERROR OF BERNOULLI POLYNOMIALS COLLOCATION

METHOD IN COMPARISON WITH HWCM FOR EXAMPLE 1

N HWCM N Present method

32 7.5976E-06 4 1.7989E-17
64 9.5202E-07 8 1.8014E-17
128 1.1912E-07 12 1.8012E-17
256 1.4896E-08 16 1.8012E-17

Example 2. We consider another linear non-homogeneous
FDE:

D2y(x) +D
1
2 y(x) + exy(x) = exx3 + 6x+

3.2

Γ(0.5)
x2.5,

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5
×10-15

Fig. 3. Graph of absolute error for Example 2 with N = 16

with initial conditions y(0) = 0, y′(0) = 0. The exact
solution of this problem is y(x) = x3.

When N = 5, the numerical solution and exact solution
are shown in Table III. Figure 3 plots the absolute error
graph with N = 16. Moreover, we also employ our proposed
method with different N . Table IV shows the absolute error
of Bernoulli polynomials collocation method with different
N .

TABLE III
COMPARISON OF EXACT SOLUTION AND PRESENT SOLUTION WITH

N = 5 FOR EXAMPLE 2

x(= 1/16) Present method Exact solution Absolute error

1 0.0002441158117 0.0002441406250 0.0000000248133
3 0.0065916736303 0.0065917968750 0.0000001232447
5 0.0305173949514 0.0305175781250 0.0000001831735
7 0.0837400135552 0.0837402343750 0.0000002208198
9 0.1779781894722 0.1779785156250 0.0000003261528
11 0.3249506054657 0.3249511718750 0.0000005664093
13 0.5363760635138 0.5363769531250 0.0000008896112
15 0.8239735812919 0.8239746093750 0.0000010280831

Example 3. Consider a multi-term nonlinear non-
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TABLE IV
ABSOLUTE ERROR OF EXAMPLE 2 FOR DIFFERENT N

x(= 1/16) N = 4 N = 6 N = 8 N = 10 N = 16 N = 32

1 1.1659E-07 3.0990E-09 1.8867E-11 5.0612E-14 3.8362E-22 1.0317E-21
3 6.9079E-07 1.3286E-08 6.3229E-11 1.9364E-13 6.0475E-19 1.2834E-19
5 1.1458E-06 2.0166E-08 7.0034E-11 9.6096E-13 1.1572E-17 5.0023E-19
7 1.1672E-06 3.0039E-08 2.3125E-11 4.2040E-12 6.2950E-17 1.3674E-18
9 8.6815E-07 4.4408E-08 2.3529E-10 1.0237E-11 1.5982E-16 3.3626E-18
11 7.8933E-07 4.7792E-08 2.3906E-10 1.0829E-11 1.6826E-16 7.9041E-18
13 1.8992E-06 1.1124E-08 7.2159E-10 1.3357E-11 2.2615E-16 1.7891E-17
15 5.5937E-06 8.9265E-08 3.3179E-09 7.8885E-11 1.2925E-15 3.8803E-17

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Approximate Solution
Exact Solution

Fig. 4. Comparison of Bernoulli polynomials collocation method solution
with exact solution for N=4 for Example 3

homogeneous FDE [14]:

D2y(x) + 2D0.07621y(x) +
1

2
D0.00196y(x) + y3(x)

= 2x+
4

Γ(4− 0.07621)
x3−0.07621

+
1

Γ(4− 0.00196)
x3−0.00196 +

1

27
x9,

with the initial conditions y(0) = 0, y′(0) = 0, and the exact
solution is y(x) = x3

3 .
Table V illustrates the comparison results for Example 3.

It indicates that the present method (N = 4) gives a more
accurate solution than HWCM (N = 8). From Figure 4, it is
easy to see the closeness of the numerical solution and exact
solution. The graph of absolute error for numerical solution
is plotted in Figure 5 with N = 8. Table VI shows the
absolute error of Bernoulli polynomials collocation method
in comparison with HWCM when N takes different values.
From Table VI, the results show that the present method can
achieve higher accuracy than HWCM. It means that HWCM
requires more number of bases to achieve the same accuracy
as the present method.

TABLE VI
THE ABSOLUTE ERROR OF BERNOULLI POLYNOMIALS COLLOCATION

METHOD IN COMPARISON WITH HWCM FOR EXAMPLE 3

N HWCM N Present method

16 3.9493E-04 3 1.1295E-04
32 9.8846E-05 5 5.8532E-06
64 2.4724E-05 7 8.9226E-08
128 6.1822E-05 9 2.7649E-14

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8
×10-11

Fig. 5. Graph of absolute error for Example 3 with N = 8

Example 4. Finally, we consider a multi-term nonlinear
higher-order non-homogeneous FDE:

D2.2y(x) +D1.25y(x) +D0.75y(x) + sinxy3(x)

=
2

Γ(1.8)
x0.8 +

2

Γ(4− 1.25)
x3−1.25

+
2

Γ(4− 0.75)
x3−0.75 + sinx

(
x3

3

)3

,

subjected to y(0) = 0, y′(0) = 0, y′′(0) = 0. The exact
solution is y(x) = x3

3 .
The numerical solution and the absolute error are shown in

Table VII. The graph of absolute error for numerical solution
is plotted in Figure 6. In Table VIII, we give the absolute
error of Bernoulli polynomials collocation method when N
takes different values. From these figures and tables, we
can see that as N increases, the absolute error decreases
monotonically.

VI. CONCLUSIONS

This paper proposes Bernoulli polynomials collocation
method for numerical solution of multi-term FDEs. The op-
erational matrix and collocation method are used to simplify
the problem to a system of algebraic equations. Computa-
tional results show that the proposed method is efficient and
accurate. Satisfactory results can be obtained only with a few
steps. In sum, Bernoulli polynomials collocation method can
be used as a alternative to obtaining the numerical solutions
of multi-term FDEs.
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TABLE V
COMPARISON OF EXACT SOLUTION, PRESENT METHOD AND HWCM FOR EXAMPLE 3

x(= 1/16) HWCM (N = 8) Present method (N = 4) Exact solution Absolute errors
|E −H| |E − P |

1 0.000243 0.000082 0.000081 0.000161 0.000001
3 0.002674 0.002205 0.002197 0.000477 0.000008
5 0.010945 0.010191 0.010172 0.000720 0.000019
7 0.028947 0.027940 0.027913 0.001034 0.000027
9 0.060578 0.059359 0.059326 0.001252 0.000033
11 0.109736 0.108353 0.108317 0.001419 0.000035
13 0.180320 0.178831 0.178792 0.001527 0.000039
15 0.276231 0.274701 0.274658 0.001573 0.000043

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
×10-12

Fig. 6. Graph of absolute error for Example 4 with N=9

TABLE VII
COMPARISON OF EXACT SOLUTION AND PRESENT METHOD FOR

EXAMPLE 4

x(= 1/16) Present method (N = 4) Exact solution Absolute errors

1 0.000081 0.000081 0.000000
3 0.002197 0.002197 0.000000
5 0.010173 0.010173 0.000000
7 0.027914 0.027913 0.000001
9 0.059327 0.059326 0.000001
11 0.108317 0.108317 0.000000
13 0.178790 0.178792 0.000002
15 0.274651 0.274658 0.000007

TABLE VIII
THE ABSOLUTE ERROR OF BERNOULLI POLYNOMIALS COLLOCATION

METHOD FOR EXAMPLE 4

x N = 3 N = 5 N = 7 N = 9

0.1 2.9280E-08 1.1496E-09 1.1163E-10 8.7232E-14
0.2 2.3424E-07 1.1994E-08 3.4511E-10 2.6766E-13
0.3 7.9056E-07 4.7895E-08 3.6799E-10 2.2659E-13
0.4 1.8739E-06 1.2630E-07 3.3912E-10 1.4549E-13
0.5 3.6600E-06 2.6225E-07 6.5959E-10 2.7928E-13
0.6 6.3245E-06 4.6385E-07 1.2181E-09 5.9058E-13
0.7 1.0043E-05 7.2782E-07 1.1694E-09 9.2248E-13
0.8 1.4991E-05 1.0349E-06 2.8565E-10 1.3262E-12
0.9 2.1345E-05 1.3455E-06 2.9176E-09 1.6363E-12
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