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Domination and Independence Parameters in the
Total Graph of Zn with respect to Nil Ideal

Arijit Mishra, Kuntala Patra

Abstract—For any non-reduced ring Z,, the total graph
of Z, with respect to nil ideal, denoted by T'(I'x(Z,)), is a
simple, undirected graph having vertex set Z, and any two
distinct vertices z and y of T'(I'nv(Z,)) are adjacent if and
only if x +y € N(Z,), where N(Z,) = {z € Z, : 2* = 0}
denotes the nil ideal of Z,. In this paper, we attempt to find
the domination and independence numbers, domatic number
and independence domination numbers of 7 (I'n(Z,)) and
T(I'~n(Z»n)), the complement of the total graph of Z,,. We also
obtain the number of y—sets and independent sets of these
graphs.

Index Terms—Total Graph, Nil Ideal, Domination Number,
Independence Number.

I. INTRODUCTION

N the year 2008, the total graph of a commutative ring R,

denoted by T'(I'(R)), was first introduced by Anderson
and Badawi [4] as a simple undirected graph with vertex set
R and two distinct vertices x and y are adjacent if and only
if x+y € Z(R), where Z(R) denotes the set of all the
zero-divisors of R. One can find extensive literature on total
graphs and its variants in [2, 4, 5, 6, 8, 10, 11, 12].

Back in the year 2003, P. W. Chen [9] introduced a kind
of graph structure of a commutative ring R having vertex
set R and two distinct vertices x and y are adjacent if and
only if zy € N(R), where N(R) denotes the set of all the
nil elements of the ring R. This concept was later modified
by Ai-Hua Li and Qi-Sheng Li [3] who defined it as an
undirected simple graph 'y (R) with vertex set Zy(R)* =
{r € R* | zy € N(R) for some y € R* = R — {0}}
and two distinct vertices z and y are adjacent if and only if
xy € N(R) or yxr € N(R).

The total graph of the non-reduced commutative ring Z,,,
denoted by T(T'n(Z,,)), is a simple undirected graph with
all the elements of Z,, as vertices and two distinct vertices
x and y are adjacent if and only if x +y € N(Z,), where
N(Z,,) denotes the set of all the nil elements of Z,, i.e.
N(Zy) ={z € Zy, : 2> = 0}.

II. PRELIMINARIES

Let G = (V,E) be any graph having vertex set V' and
edge set E. For any vertex v, the open neighbourhood of v is
N(w) ={u €V :uv € E}, while the closed neighbourhood
of v is N[v] = {v} U N(v). A non-empty subset S of the
vertex set V' of a graph is called a dominating set if every
vertex in V' — S is adjacent to at least one vertex in S.
The domination number ~y of a graph G is defined to be
the minimum cardinality of a dominating set in G and the
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corresponding dominating set is called a v—set of G. The
partition of the vertex set V(G) of a graph G into dominating
sets is called a domatic partition of G. The maximum number
of such partitions is called the domatic number of G and is
denoted by d(G). A graph G is said to be domatically full
if d(G) = 6(G) + 1. A graph G is called excellent if for
every vertex v of G, there exist a y—set containing v. A
dominating set S of the vertex set V of a graph G is said
to be a perfect dominating set if every vertex in V — S is
adjacent to exactly one vertex in S. The minimum cardinality
of a perfect dominating set is called the perfect domination
number of the graph and is denoted by v, (G). The maximum
number of sets into which the vertex set of a graph G can
be partitioned in such a way that each partition is a perfect
dominating set is called the perfect domatic number of the
graph and is denoted by d,(G). A set of vertices in a graph
is said to be independent if no two vertices in that set are
adjacent. The maximum cardinality of an independent set of
a graph G is called the independence number of the graph
G and is denoted by 5y(G). A dominating set .S of a graph
G is said to be an independent dominating set if no two
vertices of S are adjacent. The independence domination
number, denoted by i(G), is the minimum cardinality of
an independent dominating set. The maximum number of
partitions of the vertex set of a graph G into minimum
dominating sets is called the independent domatic number
of G and is denoted by d;;q(G) A non-empty subset S of
the vertex set V(G) of a graph G is said to be a clique
dominating set of G if S is a dominating set and the induced
subgraph < S > of S is complete. The minimum cardinality
among all the clique dominating sets of G, denoted by
el (G), is called the clique domination number of G. A graph
is said to be well-covered if every maximal independent set
has the same size. Alternatively, a graph G is said to be well-
covered if i(G) = Bo(G).

A ring is said to be non-reduced if it contains at least one
non-zero nil element, otherwise it is said to be reduced.

III. GRAPHICAL STRUCTURE OF T(I'y(Zy,))

In this section, we obtain the basic graphical structure of
the total graph T(I'n(Z,)) of Z, with respect to its nil
ideal N(Z,). This new graph structure is a part of one
of our previous papers (not yet communicated) where we
have defined T(I'y(Z,)) as an undirected simple graph
of the non-reduced ring Z,, having vertex set Z, and any
two distinct vertices z and y are adjacent if and only if
x4y € N(Z,), where N(Z,,) = {z € Z,, : z* = 0(modn)}.

Here Ty (z,) and TW denote the induced subgraphs

of T(n(Z,)) whose vertex sets are N(Z,) and N(Z,)
respectively, where N (Z,,) = Z,,— N(Z,,). Also, throughout
this section, we use the following notations: o = |N(Z,,)]
and 8 = |Z,, — N(Z,)|.
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Theorem 3.1 :
(i) Let R = Z,, be non-reduced and N(Z,,) be the set of all
the nil elements of Z,,. Then Ty (z,,) is a complete subgraph
of T(I'n(Zy)) and Ty (z,) is disjoint from Ty
(i1) Let R = Z, and let ny, be the smallest non-zero nil
element of Z,,. Then

(1) If |R| is odd, then Tz = (”12*1)1(#,73 )

(2) If |R| is even, then T &y Ny — K= U (% — 1)Kni,ﬁ.
(iii) Let R = Z,, and n; be the smallest non-zero nil element
of Z,,. Then

() If |R|is odd, then T (T (R)) = K%U(’“Tfl)

() If |R| is even, then T(Iy(R)) = 2K U (

L,
‘nq

717
2

(i) Since the ring R = Z,, is commutative, so N(Z,) is
an ideal of Z,. Thus ¥ z,y € N(Z,), v +y € N(Z,).
Consequently all the vertices of Tz, are adjacent to
each other and therefore T (z,) is a complete subgraph of
T(T'n(Zy)). The second part of the result is clear from the
definition.

(ii) (1) Let |R| be odd. Then each x; € N(Z,), V i =
1,2,..., = is adjacent to each other since N(R) is an ideal
of R. Thus the set of vertices N(R) forms the clique K .
Again, for u; € RV u; = 1,2,..., ™ L such that 2u; ¢
N(R), the elements of the cosets u; + N (R) are adjacent to
the elements of the cosets (Iny — u;) + N(R), for | € Z*
since (u; +71) + (Ing — u; + 7o), for some r1,79 € N(R),
gives (u; +1Iny —w;) + (r1 +r2) =Iny+ (r1 +r2) € N(R).
However for each i, the elements of the cosets u; + N(R)
are not adjacent to each other since (u; +r1) + (u; +72) =
(u; +u;) + (r1 +r2) € N(R), since u; + u; = 2u; ¢
N(R). Thus, (u; + N(R)) U ((Iny — u;) + N(R)) is the
complete bipartite graph K o Also, for some y; € R
such that y; # wu;, if the elements of the cosets y; + N(R)
are adjacent to the elements of the cosets u; + N(R), then
u; +y; € N(R) and thus, y; + N(R) = (In1 —u;) + N(R).
Hence, (u; + N(R)) U ((Iny — u;) + N(R)) forms ™%
disjoint complete bipartite graphs K T

(2) Let |R| be even. Here again, the vertices of the set
N(R) form the clique K~ , since N(R) is an ideal of R.
Also, for the smallest non zero nil element n; of R, the
vertices of the coset 5+ + N(R) having cardinality ;- are
adjacent to each other since for some 71,75 € N(R), (5 +
r)+ (5 +re) = (B +5)+(rtr) =nm+(rit+r) €
N(R) since N(R) is an ideal of R. Thus the vertices of the
coset - + N(R) form the clique K = .

Again foru; € RV u; = 1,2,..., 5 — 1, such that u; +
u; = 2u; ¢ N(R), the elements of the cosets u; + N(R)
having cardinality n—”l are not adjacent to each other, but are
adjacent to the elements of the cosets (In; — u;) + N(R).
Thus, (u;+N(R))U((Iny —u;)+ N(R)) forms the complete
bipartite graph K e For any y; € R such that y; # u;,
if the elements of the cosets y; + N (R) are adjacent to the
elements of the cosets u; + N(R), then u; +y; € N(R) and
thus, y; + N(R) = (In1 — u;) + N(R). Consequently, for
eachi=1,2,...,% —1, (u; + N(R))U((In1 —u;) + N(R))

forms disjoint complete bipartite graphs K » . Thus, we
can write, T (R)—Kn U (5 )K%%l '

(iii) Since T'v(r) is the complete graph K E the result
easily follows by (ii). (I

Example 3.2: Let us consider the non-reduced ring Z.
The nil elements of Z¢ are {0,4,8,12}. Fig 1 shows that
the total graph of Z1¢ with respect to its nil ideal is a disjoint
union of two K4’s and (7 —1) Ky4.

Similarly, the nil elements of the non-reduced ring Zg are
N(Zg) = {0,3,6}. The total graph of Zg with respect to
N(Zg), as shown in Fig 2, is a disjoint union of a K5 and
(331) K33

o 1 5 9 13 2
4‘ @Iz IM ﬁ@m
8 3 7 11 15 10

Fig 1 : T(In(Z16))

0 1 4 7
A 2 5 8
Fig 2 : T(In(Z9))

Corollary 3.3: From theorem 3.1 (iii), it is obvious that
for any = € V(T(I‘N(Z )))s

— lfIGKn n_,
deg(x) =

,ifx €K B
ny
Having obtained the structure of T(T'n(Z,)), we now
characterize the domination parameters of T'(I'y (Z,,)) in the
following section.

IV. DOMINATION PROPERTIES OF T(I'N (Z,,))

Theorem 4.1: For any non-reduced Z,, if |N(Z,)| = a =
—t, where n; is the smallest non-zero nil element of Z,,, then

)

Proof : Let us consider two cases here:

Case 1: Let n be even. Then T'(T'n(Z,,)) = 2K n U (%
1)K% S

Clearly, the y—set of T(I'y(Zy,)) of minimum cardinality
contains 1 4 1+ (% — 1).2, i.e. ny vertices.

Case 2: Let n be odd. Then T(I'n(Z,)) = Ka U
(=l JE o oo

The y— set of T(T'n(Zy,)) of minimum cardinality con-
tains 1 + (™5—= 1).2, i.e. ny vertices. Therefore, in both the
cases, V(T (I'n(Zy))) = n1. O

Having obtained the number of vertices in a minimum
dominating set of T(I'n(Zy,)), we now proceed to find out
the number of such minimum dominating sets.

Theorem 4.2: For any non-reduced Z,,, the total number
of y—sets of T(I'y(Z,)) = (a)=, where a = |N(Zy,)]|.

Proof : For any value of n such that n is not square-
free, any ~y—set of T(I'x(Z,)) contains (Z) vertices.
Also, each vertex z; in any y—set of T(I'y(Z,)) has «
choices. So the total number of y—set of T(I'y(Z,)) is
A0 x* Oy X ... X* O L i (a)@. O

()
Alternatively, the total number of y—sets of T'(I'y (Z,,))

(=)™ since a = - O
1 ny’
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Example 4.2.1: In Fig.2, we have n = 9. Here n; = 3
which is the smallest non-zero nil element of Zg. The differ-
ent y—sets of this graph are {0,1,2}, {0,1,5}, {0,1,8},
{0,4,2}, {0,4,5}, {0,4,8}, {0,7,2}, {0,7,5}, {0,7,8},
{3,1,2}, {3,1,5}, {3,1,8}, {3,4,2}, {3,4,5}, {3,4,8},
{3,7,2}, {3,7,5}, {3,7.8}, {6,1,2}, {6,1,5}, {6,1,8},
{6,4,2}, {6,4,5}, {6,4,8}, {6,7,2}, {6,7,5} and {6, 7, 8}.

Clearly each of these y—sets contains 3(= nj) vertices
and there are 27(= (;-)") y—sets in all. O

The following theorem characterizes all the y—sets of
T(I'n(Zy,)) for any non-reduced Z,.

Theorem 4.3: Let S = {z1,22,23,....,%n,} C
V(T(Tn(Zy))), where ny is the smallest non-zero nil el-
ement of Z,. Then S is a y—set of T(I'y(Z,,)) if and only
if x;+ N(Z,,) form distinct cosets of N%Z y for each z; € 5.

Proof: Let S = {x1,29,23,...,2,,} be a y—set of
T(Tn(Zy)). If possible, suppose that there exist distinct
x;, ©; € S, such that x; + N(Z,) = x; + N(Z,). Then
x; = xj(modny). Thus each vertex adjacent to z; is also
adjacent to x; and so S is not a y—set of T(I'n(Z,)),
a contradiction. Therefore each z; + N(Z,,) forms distinct
cosets of N for each xz; € S.

Conversely, let z; + N(Z,) form distinct cosets for each
x; € S. Each z; € S is adjacent to each element of the coset
(Ini—xi)+N(Zy), where | = 1,2, ..., 7. Also, |(Iny —z;)+
N(Zy)| = ny and |N[S]| = n. Clearly, S is a dominating
set, where | S |= n;. By theorem 4.1, S is a y—set. O

Corollary 4.4: For any non-reduced Z,,, if | ﬁ |= u,
then A(T(Tn (Z,))) = . 0

Corollary 4.5: From theorem 4.1, since v(T(I'n (Zy,))) =
nl, where n1 is the smallest non-zero nil element of Z,,, so
| O
L,

b

heorem 4.6:
(T (Za))) = ma.
Proof : Since the y—set S = {0,1,...,n; — 1} contains
vertices such that each vertex in Z,, \ S is adjacent to exactly
one vertex in S, so the set S is a perfect dominating set.
Also S, being a ~y—set, has minimum cardinality. Thus,
(TN (Z0)) = . O
Theorem 4.7: For any non-reduced Z,,,

(i) T(T'n(Zy,)) is an excellent graph.

(i) d(T(Tw (Z,))) = 2.

(iii) T(T'n(Z,,)) is domatically full V n € N.

For any  non-reduced

(iv) For any non-reduced Z,, d,(T(I'n(Zn))) = 7.

Proof: (i) Since each vertex of Z,, is a part of a y—set of
T(I'n(Zy,), so the result follows immediately.

(ii) Since each y—set of T'(I'y(Z,,)) contains n, vertices,
therefore d(T'(I'n(Zyn))) = -

(iii) From (ii) and Corollary 3.3, since d(T(T'n(Zy))) =
ay and 6(T(Tn(Zn))) = 35 = 1. so d(T(Pn(Zn)))
5(T(Tn(Zy))) + 1. Hence the result follows.

(iv) The result is obvious since d,(T(I'n(Z,))) =
V(TN (Zn))| _ 0

Yp (T (TN (Zn)))

Frorn Example 4 21 the three y—sets {0, 1,2}, {3,4,5}
and {6,7,8} form disjoint partitions the vertex set of the
ring Zg. So d(T(Pn(Zg))) = 3 = § = ;. Also, since
each vertex of Zg is a part of a y—set, so T'(I'n(Zg)) is an
excellent graph.

Theorem 4.8:

(i) For each z; € y—set of T(I'y(Z,)) such that x; ¢
N(Zy), but 2z; € N(Zy,), the vertices of the coset x; +

N(Z,,) form disjoint complete graphs.

(ii) For some y—set S = {x1, 22, ..., zpn, } of T(Tn(Zy))
and r € N(Z,), the vertices in the coset r + S are adjacent
if and only if the vertices in S are adjacent.

(iil) For each x; € y—set of T(I'x(Z,,)) such that neither
x; nor 2x; € N(Z,), the vertices of the cosets x; + N(Z,)
and (In; — x;) + N(Z,) form disjoint complete bipartite
graphs, for [ € ZT, where n; is the smallest non-zero nil
element.

Proof : (i) For z; ¢ N(Z,,) such that 2z; € N(Z,,) and for
some 71,79 € N(Zy), (x;411)+(zi+r2) = 22+ (r14712) €
N(Z,). Thus the vertices of the cosets z; + N(Z,,) form a
complete graph. Also, for some y;(# z;) & N(Z,,) such that
2y; € N(Zn), (i +71) + (yi +72) = (¥ +y3) + (11 +
r9) & N(Z,). So the vertices of the cosets x; + N(Z,) and
yi + N(Z,) are disjoint. Consequently for each %, the cosets
x; + N(Z,) form disjoint complete graphs.

(ii) For some z;, z; € S, let the vertices r+x; and r+x; in
the coset r+ .5 be adjacent. Then (x;+7)+(z;+7) € N(Zy,)
= (zi+z;)+(r+r) € NZ,) = z; +x; € N(Z,). Thus
x; is adjacent to z2 in S. Conversely, let ; be adjacent to x;
in S. Then z;+x; € N(Zy,) = (z;+r)+(xj+7) € N(Zy).
Thus the result follows.

(ili) For each ¢ N(Z,) such that
¢ N(Zp), the vertices of the cosets x; + N(Zy,)
are adjacent to every vertex of the cosets

(ln1 — Iz) -+ N(Zn), since (Ii + 7’1) + (ln1 — QZ‘Z) +1ry =
(LCZ' +Ilng — 1'1) + (7‘1 —+ 7'2) =Iny + (7"1 + 7“2) S N(Zn),
for some r1,79 € N(Zy,). Also, since (z;+71)+ (z;+712) =
2x; + (r1 + r2) € N(Z,), so the vertices of the coset
x; + N(Z,,) are not adjacent to each other. Consequently,
{z; + N(Z,)} U {(lnx — z;) + N(Z,)} form disjoint
complete bipartite graphs. (]

Theorem 4.9: For any non-reduced Z,,, let S be any y—set
of T(T'n(Z,)) and let 21 and x5 be any two distinct vertices
of T(I'n(Zy)) such that xo € 21 + N(Zy,). If a vertex u €
x1+ S is adjacent to a vertex v € x5 +.9, then each vertex of
the coset x1 + S is adjacent to a vertex in the coset xo + S.

Proof: Let u € z1 + S be adjacent to v € x5 + S. Then
u+v € N(Zy). Let u+ v = r, for some r € N(Zy).
Thenr =u+v € xy +x2+ S. Now let v/ € 1 + S and
v € V(T(T'n(Zy))) such that v’ +v" € N(Z,,).

= u' +v' = Iny, for some [ € Z and n, is the smallest
non-zero nil element of Z,,.

= 71+ 8" +v =Inq, for some s’ € S

=0 =ln;, —xz; — 5

= v =lny +leng —x; — ', for some 1,1y € ZT such
that [ =1y + 1y

= v =(x1+hn)+ (lang — 221 — 8') € 22+ S.

Thus each vertex of the coset 1 +.5 is adjacent to a vertex
of the coset x5 + S. [l

We now find out the independence number and its variants
associated to the graph T'(I'(Z,,)) in the following section.

V. INDEPENDENCE PARAMETERS OF T'(I'n (Z,,))

Theorem 5.1: Let 7Z, be non-reduced and let n;
be the smallest non-zero nil element of 7Z,. Then
B 2+%—nﬂl,ifniseven
Bo(T(I'n (Zn))) = 1+ %5 — 5, if nis odd
Proof : As in theorem 3.1 (iii) ,when n is even, since
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T(Tn(Zn)) = 2K » U (% —1)Kn =, so the indepen-
dent set of T(I'n(Zy, 3) of maximuI;ll1 cgrdinality contains
L+1+ (% —1).0 ie 2+ 5 — n’—Ll Vertlces

Therefore So(T'(I'n(Zn))) =2+ 5 — 7=

Similarly, when n be odd, the 1ndependent set of
T(Tn(Z, )) of maximum cardinality contains 14 (2.-1). -
ie. 14+ 5 — 5o vertices. Therefore, So(T (FN(Z ) =
1+ 35— L. O

Unhke the number of y—sets of T(I'y(Z,,)), the number
of maximum independent sets of T(I'y(Z,)) differs in
accordance with the parity of n, as evident from the following
theorem.

Theorem 5.2: Let Z, be non-reduced and n; be the
smallest non-zero nil element of Z,,. Then the total number
of maximum independent sets of T(I'y(Z,,)) is given by

(%)2.(\/5)”1*2, if n is even
%.(\@)”1*1, if n is odd
Proof : Let n be even. Since T'(I'n (Zy,)) = 2K » U("1 —
DK~ ~n, 50 each vertex z; in the maximum 1ndependent
set of T(FN(Z )) has ;% choices if z; € Kon, and 2
choices if z; € K S So the total number of maximum

szlx C’1>< . X Cl

e
= -1

independent sets = "1 C] X 3 Ch

= (2.2,
Again, let n be odd. Then T(T'n(Z,)) = K= U

’ILl
(M)K» o, so each vertex z; in the maximum inde-

pendent set of T(Tn(Zy,)) has 2 choices, if x; € Ko,
. So the total number of max-

ni
and 2 choices, if z; € K n n
201 X 01 X ... X 201:

e 01
ny—1
2

. (V2)m O

The following theorem characterizes all the maximum
independent sets of T'(I'y (Z,,)) for any non-reduced Z,,.

Theorem 5.3: Let S C V(T(I'y(Zy,)))). Then S is a
Bo—set of T(I'n(Z,,)) if and only if for each z; € S such
that x; & N(Zy,), % + N(Zy), the coset x; + N(Z,) € S.

Proof: Let n be even.

Let S C V(T(I'n(Zy,)))) be a fo—set of T(I'n(Zy,)). For
any x; € N(Z,) such that z; € S, the vertex x; is adjacent
to the vertices of the coset x; + N(Z,) since z; + (z; +
r1) = 2x; +r1 € N(Z,), for some r; € N(Z,). So for
z; € S, the coset x; + N(Zy,) € S. Again, for z; = & € S,
where n is the smallest non-zero nil element the Vertex ”1
is adjacent to the vertices of the coset % + N(Z,), smce
B4 (B ) =ni 41 6 N(Zy,), for some r1 € N(Zy).
So for % € S, the coset %+ + N(Z,) ¢ S. Again, for any
z;, €8 such that 1 < zx; < (”71— ), the elements of the coset
x; + N(Zn) € S, since z; + (Jﬁl + 7"1) =2x;,+1m1 & N(Zn)
Similarly, for any (In; — ;) € S, 1 € ZT, the elements
of the coset (Iny — z;) + N(Z,) € S. Conversely, since
z;+N(Zp) € S,s0 [S| = (G —1). - +14+1=5— 42
and from theorem 5.1, S is a (3p—set.

The case for odd values of n can be proven similarly. [J

Having obtained the domination and independence prop-
erties associated to T'(I'n(Z,,)), the following set of results
are immediate.

Theorem 5.4:
zero nil element

imum independent sets =

the smallest non-
i(T(TN(Zn)) =

If n; denotes
of Z,, then

{ 2+%—nﬂl,ifniseven
1+%—ﬁ,ifnisodd

Proof : Let n be even. Then the independent set S of
T(Tn(Zy)) with |S| = 2+ﬂfl obtained by choosing one
vertex from each K » and ;- vertices from each Kn o is
also a dominating set. Hence S is an independent dommatmg
set. Also, for any x € S, the set S — {«} is not dominating.
Thus, .S is a minimal independent dominating set. Therefore,
for any even n, i(T(I'v (Zy))) = 2+ 5 — ;= Similarly, when
nis odd, i(T(T'n(Zy))) =14+ & — ﬁ O

Theorem 5.5: For any non- reduced Z,, T(Tn(Zy)) is a
well-covered graph.

Proof : From theorem 5.1 and theorem 5.4, since

(T(Tn(Zy,))) = Bo(T(TN(Zy))), the result follows. O
Next, we discuss a couple of results for the case when Z,
is reduced.

Theorem 5.6: Let Z,, be reduced and let n be even. Then
the following results hold:

() YT (PN (Zn))) = 5(n+2).

(ii) Total number of y—sets of T(T'x(Z,)) = (v/2)" 2.

(i) Bo(T(Tn(Zn))) = 5(n +2).

(iv) Total number of By—sets of T(I'n(Z,)) = (v/2)" 2.

V) T(Tn(Zy,)) is an excellent graph.

Proof: Since the ring Z,, is reduced, thus N(Z,) = {0}.
So each z; € T(I'n(Z,,)) is adjacent to a unique —x;. Also,
the vertices 0 and %, being their own inverses, are isolated.
Consequently T(I'y (Z,,)) = 2K1 U (252) K.

(i) It follows clearly that the y—set of T'(I'y(Z,,)) con-
tains 1 4+ 1 4 (252).1, i.e. 1(n + 2) vertices. Therefore
AT(CN (Z0)) = L(n +2).

(ii) The total number of y—sets of T(I'y(Z,,)) are
101 Xl Cl X 201 ><2 Cl X ... ><2 Cl

n—2
2

=(2)"7 =(V2)" 2

The results (iii) and (iv) are obvious since for disjoint
complete graphs, v—sets and maximum independent sets are
identical.

The result (v) is trivial. O

In a similar manner, one can also prove the following
result.

Theorem 5.7: Let Z,, be reduced and let n be odd. Then
the following results hold:

() Y(T(CN(Zn))) = 2(n +1).

(ii) Total number of y—sets of T(I'x(Z,)) = (v/2)" L.

(i) Bo(T(Tn(Zn))) = 3(n+1).

(iv) Total number of By—sets of T(I'n(Z,)) = (v/2)" L.

(v) T(T'n(Zy,)) is an excellent graph. O

Example 5.7.1: Figure 3 and Figure 4 represent the total
graphs of the reduced rings Zg and Zs respectively. The
~v—sets and maximum independent sets of T(I'y(Zg)) are
{0,1,2,3},{0,1,4,3},{0,5,2,3} and {0, 5,4, 3}, while the
~v—sets and maximum independent sets of T(I'y(Zs)) are
{0,1,2},{0,1,3},{0,4,2} and {0,4,3}.

VI. DOMINATION PARAMETERS OF T'(I'n (Zy,))

The graph T(I'y(Z,)) is the complement of the graph
T(I'n(Zy,)) with vertex set Z,, and any two distinct vertices
x and y are adjacent if and only if x +y € Z,, \ N(Z,,).

In this section, we discuss the domination and indepen-
dence parameters of T(I'n(Z,,)).
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Fig 3. T(Iny(Ze)) Fig 4. T(IN(Zs))

We begin this section with the following lemma.

Lemma 6.1: Let G = T(I'x(Z,)). Then A(G) =n— ;-
and 6 = n — nﬂ — 1, where A and § denote the maximum
and minimum degrees of G respectively.

Proof: The graph T'(I'y(Z,,)), being simple and comple-
ment of T(T'n(Z,)), the result follows immediately from
Corollary 3.3. ]

Theorem 6.2: (i) Let R = Z, be non-reduced, then
AT (T (Z0))) = 2 and 7 (T(Tx (Za))) = 2

(ii) If Z, is reduced, then v(T'(T'n(Z,))) = 1 and
YT x (Z0))) = 1.

(iii) For any non-reduced Z,,, T(I'n(Z,,)) is an excellent
graph.

Proof: (i) For x € N(Z,) and y € Z, \ N(Z,),
{z,y} is a dominating set of T(I'n(Z,)). Consequently,
YT (TN (Zy))) < 2. Also, no vertex of T(I'n(Z,)) has
degree n—1, for otherwise T'(I" i (Z,,)) would contain an iso-
lated vertex. This is possible only when o = 1. But since we
consider the ring to be non-reduced, so a > 2. Consequently,
Y(T(Tn(Zy,))) > 1. Therefore, v(T(T'n(Zy))) = 2.

Again, since the dominating set {x,y}, where z € N(Z,,)
and y € Z,, \ N(Z,,), induces the clique K5 in T(T' n(Z,))
and since the exclusion of any vertex from this set re-
moves the dominating character of this set, so {z,y} is a
clique dominating set of minimum cardinality. Therefore,
V(T (PN (Zn))) = 2.

(i) If Z,, is reduced, then N(Z,) = {0}. Clearly, 0 is
adjacent to z, V © € Z, \ {0}. Thus, deg(0) = n — 1 and
hence, v(T(T'n(Zy,))) = 1.

Again, since the dominating set {0} induces the clique
K, therefore v, (T(T'n(Zy))) =1

(iii) For any non-reduced Z,, since the set {z,y} is a
~v—set of T(I'n(Zy,)), for each x € N(Z,,) and y € Z,, \
N(Z,), it follows that there exists a y—set for each vertex
in the graph T(I'y(Z,,)). Hence T(T'y(Z,,)) is an excellent
graph. (]

Remark 6.2.1: From Theorem 6.2 (i) and (ii), the follow-
ing boundedness condition follows trivially:

For any Z,, 1 < ~y(T(T'n(Zy))) < 2. O

Theorem 6.3: The total number of ~—sets of
T(Cn(Zy)) = (1 — L), where ny is the smallest
non-zero nil element of Z,,.

Proof: By theorem 6.2 (i), {z,y} is a ~y—set of
T(Tn(Zy)), where x € N(Z,,) and y € Z,, \ N(Z,,). Since
IN(Z»)| = =, so there are w10y x "7 ¢y choices, i.e.
Z—?(l — %) choices. Thus the total number of y—sets of

n

TN (Zn) =2=(1-L). 0

ni
As proven in theorem 4.3, one can prove the following

result.

Theorem 6.4: For any non-reduced Z,, let G =

T(Tn(Zy)). Then {x,y} is a y—set of G if and only if

the cosets  + N(Z,) and y + N(Z,,) are distinct. O

Fig 5. T(In(Z16)) Fig 6. T(Iy(Z5))

Fig 7. T(Iy(Zg))

Fig 8. T(Ix(Zs)

Theorem 6.5:
Bo(T(TN(Zn))) = 75
Proof: Let S C V(T(I'n(Z,))) be a [o—set of

For any non-reduced Lo,

T(Tn(Zy)). Let y € S. We consider the following two

cases:

Case 1: y € Z, \ N(Zy,,).

Subcase 1(a): Let y & "+ N(Z,). Then y is not adjacent
to z; foreach z; = lny —y, 1 = 1,2, ..., nil Also, for any
distinct lhlg € [17 %], (llnl — y) + (lgnl — y) = Tll(ll +
l) — 2y & N(Zy). So for each [ = 1,2, ..., 7t the vertices
(In; — y) are adjacent. Thus |S| = 2.

Subcase 1(b): Let y € - + N(Zy). Since the vertices of
The| coset ‘5~ + N(Zy) of cardinality ;- are independent, so
S| =&

Case 2: y € N(Zy). Since the vertices of N(Z,) are
independent, so |S| = il

For any non-reduced Z,,, since nﬂl > 2, clearly from the

above cases, Bo(T(I'n(Zn))) = 1+ O
Theorem 6.6: For any non-reduced Z,,, the total number
of maximum independent sets of T'(I'y(Z,,)) are given by
1, if n is odd
2, if n is even and n% > 2
24 (%)2(% —1),if n is even and - =2
Proof: Let n be odd. Then N(Z,,) is the only maximum
independent set of T'(T' n(Zy,)).
Let n be even and ;- > 2. Then N(Z,) and - + N(Z,,)
are the only two maximum independent sets of T(T'n (Zy,)).
Let n be even and ;- = 2. Here again, N(Z,) and - +
N(Z,,) are maximum independent sets of T(I'x (Zy,)). Also,
for each z; € V(T'(I'ny(Zy,))) such that 1 < z; < % —1,
the vertices of the coset z; + N(Z,) are not adjacent to
the vertices of the coset (n; — ;) + N(Z,). So the total
number of maximum independent sets of T'(I'n(Z,)) are

T+ 1+ (2)2(% — 1), de. 24 (2)2(% - 1). O
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Theorem 6.7: For any non-reduced Z,,,
0 i(T(Cn(Zn))) = 3%

ny

(ii) dind(T(FN (Zn))) =ni.

Proof : (i) Since the vertices of the independent set N (Z,,)
are also dominating and since for some n € N(Z,), the
set N(Zy) \ {n} is not dominating, so N(Z,) is the inde-
pendent dominating set of minimum cardinality. Therefore,

(T(TN(Zn))) = 7=

nl'
(ii) The proof is obvious since dini(T(T'n(Zy))) =
VAT E) — 0 0
i(T(Cn (Zn))) iy ’

Corollary 6.8: 1For any non-reduced Z,, the graph
T(T'n(Zy,)) is well-covered.

Proof: From theorem 6.5 and theorem 6.7 (i), since
Bo(T(Tn(Zn))) = i(T('n(Zn))) = 5=, the result follows
immediately. O

VII. CONCLUSION AND FUTURE SCOPE

Our emphasis throughout this paper has been on estab-
lishing properties associated to the variants of domination
and independence numbers of T'(T'x(Z,)) and T(T' n (Zy,)).
For any non-reduced Z,,, the following table shows a small
comparison between the two types of graphs.

TABLE I
A BRIEF COMPARISON BETWEEN T'(I'y (Zr)) AND T (TN (Zn))

1 v(T(TN(Zn))) =m VTN (Zn))) = 2

2 | Number of vy—sets Number of vy—sets

2
- G =50

3 | T(T'n(Zy)) is excellent T(Tn(Zy)) is excellent

4 | T("'N(Zy)) is well-covered T(Tn(Zy)) is well-covered

n

5 | Bo depends on the parity of n | (o is always e

Another interesting result that we found out is that for any
reduced Z,,, the domination number of 7'(I'y(Z,,)) depends
on the parity of n, while that of T(T'n(Z,)) is always
constant (one).

Our future goal is to introduce and study two new graph
structures with all these y—sets and maximum independent
sets as vertices respectively (specifically for non-reduced
Zy), define a new adjacency condition and then compare
the structures and properties associated to these two graphs.
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