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Fixed-Time Stabilization of Spatial Constrained
Wheeled Mobile Robot via Nonlinear Mapping

Yanling Shang and Jiacai Huang

Abstract—The problem of fixed-time stabilizing control for on system growth, [24] and [25] respectively studied the
wheeled mobile robot subject to spatial constraint is studied finite-time control for a class of nonholonomic systems by
in this paper. A nonlinear mapping is first introduced 10  giq10 feedback and output feedback. An output feedback
transform the constrained system into a new unconstrained one. . s -

Then, by employing the adding a power integrator technique controller was develo.ped in [26] .to finite-time stgblllze a
and switching control strategy, a state feedback controller is €lass of nonholonomic systems in feedforward-like form.
successfully constructed to guarantee that the states of closed-Later, this result is further extended to the high order case in
loop system are regulated to zero in a given fixed time without [27]. However, a common drawback of the above-mentioned
violation of the constraint. Finally, simulation results are given ¢;,dies is that the convergence time seriously relies on the
to confirm the efficacy of the presented control scheme. o o . .

initial condition of the considered systems, which renders

Index Terms—wheeled mobile robot, spatial constraint, that they cannot achieve the desired performance in an exact
adding a power integrator, fixed-time stabilization. preset time. Recently, to remove the limitation of finite-

time algorithm, a novel finite-time stability concept that
. INTRODUCTION requires the convergence time of a global finite-time stable

HE Wheeled mobile robot (WMR) has attracted gystem being bounded independent of initial conditions, was

great deal of attention during the past decades becamtroduced in [28]. Such stability, usually called fixed-time

L o : . . %§§DI|Ity, offers a new perspective to study the finite-time
it wide applications in entertainment, security, war, rescue . ’ .
- . - ) ntrol problems and has stimulated some interesting results
missions, spacial missions, assistant health-care, etc [1- Lo ; :
-31]. However, the effect of the constraints is omitted in

An important feature of WMR is that the number of contro :
-the above-mentioned results.

:npgtstlstlk(]ass t?]?rn Ithfev'\}:/lrgber: OIT cri]egi:]r:ee : f frei(;?o(;n, V\t/hb'ChAs a matter that the constraints which can represent not
€ads 1o the control 0 chaflenging. As pointed ou nly physical limitations but also performance requirements

Brockett in [4], there is not any smooth (or even continuous . . - :
g . . e common in practical systems. Violation of the constraints
time-invariant state feedback to stabilize such category l%f

nonlinear systems. To give this difficulty a solution, a numb ray cause perfprmance degradat|on or system d?mage- In
of control approaches have been proposed whicr’1 mainly FCcent years, driven by practical needs and theoretical chal-
. . . S ; ges, the control design for constrained nonlinear systems
time-varying feedback [5-7] and discontinuous tlme—lnvarlarp]as become an important research topic [32-35]. However
feedback [8,9] Mainly thanks to these valid approaches, a : '

. . . o less attention has been paid to the space-constrained non-
number of interesting results on asymptotic stabilization ha}ﬁ)‘lé)nomic mobile robots

been established over the last years, see, e.g., [10-16] and't otivated by the above observations, this paper focuses on

re]‘lerencet§ tr;ere|r|1.. i the closed.-| tem is d . sqlving the fixed-time stabilization problem of nonholonomic
n practical applications, the closed-loop System IS desirggy o subject to spatial constraint. The contributions are

o POSSESS th_e _pro_perty that trajectories converge_to Shlighted as follows. (i) The fixed-time stabilization prob-
equilibrium in finite time rather than merely asymptoUcaII)f

. e : em of nonholonomic WMR subject to spatial constraint is
since system with finite-time convergence may retain .ngfudied. (i) A nonlinear mapping is introduced, under which
only faster convergence, but also better robustness and dls{HE— constrained interval is mapped to the whole Euclidean
bance rejection properties [17]. Motivated by this, the finites- ace, and then the constrained control problem is trans-
time contrql of nonlinear systems has attained signific ?rmeé into an unconstrained one. (jii) Based on a switching
amount of Interests and efforts over the last years [_18'2 rategy to eliminate the phenomenon of uncontrollability of
Particularly, by using state feedback, the authors in [2u — 0, and by using backstepping technique, a systematic
first addressed the finite-time stabilization of nonholonomyg._. . féedback control design procedure is pro'posed to force
systems with weak drifts, and then the adaptive finite-ti

Mfie states of the closed-loop system to zero for any given
stabilization problems were considered for nonholono b Sy y 9

. NS OMifed time while the state constraints are not violated.
systems with linear parameterization in [22] and nonlinear

parameterization [23], respectively. By relaxed the restriction || prosLEM STATEMENT AND PRELIMINARIES
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where f : RT x Uy — R™ is continuous with respect to
2 on an open neighborhoadd, of the originx = 0. The
equilibriumz = 0 of the system is (locally) uniformly finite-
time stable if it is uniformly Lyapunov stable and finite-
time convergent in a neighborhodd C U, of the origin.
By “finite-time convergence,” we mean: If, for any initial
conditionz(ty) € U at any given initial timet, > 0, there
is a settling timeT" > 0, such that everyc(¢,to, 2(t))
of system (5) is defined withx(¢, ¢, z(t9)) € U/{0} for
t € [to,T) and satisfieslim,_, (¢, to, z(tp)) = 0 and
> x(t, to,x(tg)) = 0 foranyt > T. If U = Uy = R", the
origin is a globally uniformly finite-time stable equilibrium.
Lemma 1['7]. Consider the nonlinear system described in
(5). Suppose there is@" function V (¢, z) defined onl/ C
Uy x R, whereU is a neighborhood of the origin, clags

0 5%

Fig. 1. The planar graph of a mobile robot.

velocity while w is the angular velocity of the robot. functionsm; ands, real numberg > 0 and0 < a < 1, for
Introducing the following change of coordinates t € [to,T) andx € U such that
T = Ty, T1 =Y To = tand, 5 m(|z|) < V(¢ 2) < mo(|z]),VE > to, Vo € U,
up = vcosh, u; = wsec’, (2) and
system (1) is transformed into the chained form as V(t,x) +cV(t,z) <0,Vt >ty ,Vz e U.
&0 = uo, Then, }rje origin of (5) is uniformly finite-time stable with
&1 = uoTa, 8 T< % for initial conditionz(ty) in some open
Ty = uy. neighborhood’ of the origin at initial timet,. If U = Uy =

. R™ and m; and 7y are classK, functions, the origin of
Note that the statéry, z1) can be see as the d|splacemenstystem (5) is globally uniformly finite-time stable.

from the parking position. As we all know, when the robots Definition 213U, The origin of system (5) is said to be

initial position is ff.ir away  from thg pa”"f‘.g position, it lobally fixed-time stable if it is globally finite-time stable
usually can move directly to the parking position. The robo oo . ; .
. . o and the settling time functiofi(z) is bounded, that is, there
body angle can be aligned without difficulties and no more . L
... exists a positive constarft,,.,, such that?'(z¢) < Thaq,
maneuvers are needed. However, when the robots initial po- n
sition is close to the parking position, it might not be feasible™? < R, . .
. . S Lemma 2311, Consider the nonlinear system (5). Suppose
to get to the parking position while aligning the robots bod . 1 " - .
. g ere exist aC', positive definite and radially unbounded
angle at the same time. Therefore it is very necessary

o . "

develop control techniques for spatial constrained WMR f(lé)erCtlon V() : R" > R and real numbers > 0, d > 0,
o e : . <a<1,vy>1, such that

giving this difficulty a straightforward solution.

Due to physical limitations, in this paper we assume that V(z) < —cV¥(x) —dV7(z), Yo eR™

the statesc, andx; are constrained in the compact sets o ) ] )
Then, the origin of system (5) is globally fixed-time stable

Oy, ={-ki<ax; <k}, i=0,1, (4) and the settling tim&(z() satisfies
wherek;’s are positive constants. T(20) < Trnaw := 1 1 . Vi € R™.
The objective of this paper is to present a state feedback c(l-a) dy-1)

control design strategy which stabilizes the system (3) for| emma 336 Forz € R,y € R, p > 1 andc > 0
any given fixed time with the constraint being not violatedare constants, the following inequalities hold: @)+ y|? <
Remark 1. Although great progress on constrained contr@lpflmp + |, (i) (Jz| + [y)¥? < |z|V/P 4 |y|t/P <
design has been made, for the constrained nonholonor@d@fl)/p(|$| + [y /2, (i) ||z| — [yl|P < [|2zP — |y|?], (iv)
system (3), how to construct a fixed-time stabilizer is sti\g|p+ P < (Jz] + [y)P, (v) |[z]/P = [y]/P| < 21-1/P|g —
very difficult problem. The crucial obstacle is that the timeg|1/p, i) [[2]? — [y]P] < clz —yl||lz — y[P~1 + |y|P~ ).
varying coefficiento makes the-subsystem uncontrollable | emma 4361, For any positive real numbers,d
in the case ofuy = 0, and thus the existing constrainethng any real-valued functiom(z,y) > 0, |z|y|? <
control methods mainly based on barrier Lyapunov function;dﬁ(w, y)|z|etd + —Lge/d(g y)|y|eta.
are highly difficult to the control problem of the system (3§ etd
or even inapplicable. Thereby, how to overcome this obstacle
and design a fixed-time stabilizer for the constrained system
(3) is main work of this paper. In this section, we give a constructive procedure for the
The following definitions and lemmas will serve as th&hite-time stabilizer design of system (3) for any given
basis of the coming control design and performance analysi§ttling time7" > 0. The overall controller design consists of

I1l. FIXED-TIME CONTROL DESIGN

Definition 1(17), Consider the nonlinear system two steps: (i) Choose an appropriate nonzero constant input
ugy for ug. In this way, thez-subsystem can be interpreted
&= f(t,x) with f(t,00=0, z€ R™, (5) as alinear-like system, for which the fixed-time stabilization
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an unconstrained variable. Moreover, based on the inverse
mapping

w1 =M =k (1 - ehi 1), (12)

and (10), we know that — 0 if and only if z — 0 and that
—k PRI x1 will stay in the constraint intervale;| < k; regardless

! ! of the value ofz;. Therefore, the control design for the
constrained system (7) is equivalent to the control design
for the unconstrained system (11).

With the aid of (11), a fixed-time stabilization controller
will be designed foru; by employing recursive technique.
Our design procedure consistsrobteps. Before proceeding,
we taker; = 1 andr;.qy =7, +7 >0, i =1,2,3 with
7 € (—1,0) being a negative number, and introduce the
following coordinate transformation:

Fig. 2. Schematic illustration of the nonlinear mappisdg .

controller can be proposed; (ii) After arrives at zero before 1 1
a fixed time and remains zero afterwards, we design a new & = [zi] T [oi—a]™, (13)
fixed-time stabilization controllet:, to stabilize thez- ai = —g;" " (Z)&G]T, =12,
subsystem. whereag = 0, as = u; andg;(z;) > 0 is aC*! function to
be specified later.

A. Fixed-time stabilization of the z-subsystem We further definéV; : R — R as follows:

For thexy-subsystem, we take the following control law Wilz:) = /z {[s]ﬁ - [mq]ﬂzimld& (14)

ug, x0(0) < 0, i-1
Uo = —ug,  x0(0) >0, (6) In the following, the detailed design procedure is elabo-
= (Isign(zo(0))] - sign(zo(0)) — 1)u;, rated.

) N o Step 1. For the z;-subsystem of (11), take the state
where uj is a positive constant satisfying; < ko/(6T) yariablez, as a virtual control input. Choosé = W; and
with 6 € (0,1)NR. As a result, the following lemma can be ((1+ll+12|§1|p>/dl>rz with design parametets > 0,
established by some simple derivations. lg > 0 andp > —7 to be determined later, we have

Lemma 5. For any initial conditionz(0) € Q,,, the ' ~
corresponding solution(t) is well defined on[0,07) and Vi < —(1 +11)[&1]* — L& PP + di[&]* 7™ (22 — a).

satisfieszo(t) € Q. _ _ (15)
Under the control law (6), the-subsystem can be rewrit- Step 2. Consider the2 ed Lyapunov functior/, = Vi +
ten as Ws. It can be deduced from (15) that
1 = d1x2, .
g () Va<—(1+0)&f —blaft?
Ty = dauy, I s W3
-T2 _ -3
whered; = (| sign(zo(0))| —sign(z(0)) — 1)uy anddy = 1. Fdi[§1]77 " (22 — 1) + do[€]T P un + 0 2.
Next, we will stabilize the system (7) within the settling (16)
time §T. To prevent the state; from violating the constraint, First, we observe from Lemmas 3 and 4 that
we introduce a one-to-one nonlinear mappiag : 2., — d1[61]2772 (20 — o) < 2d4 |61 72| Eo
R as follows: 9 9 a7)
. < Sl&l” + w2l
2 =A(r1) =ln (k1 - xl) ®) wherey; > 0 is aC! function.
where., is shown in Fig. 2, from which, it is clear that the TN€n, by using Lemmas 3 and 4, we have
function.#; has a continuous inverse, see Remark 1. Based oWy ~ 9 9
on (8), we can obtain 021 dizz < |€1| +onl6l (18)
. 1, s wheregys > 0 is aC?! function.
1 1 iy
= 2k:1( Fe 4 2)dims. ©) Choosing
Furthermore, by denoting (o e + |6\ s
g2 = =~ ) (19)
2 = 13, (10) 2
. and substituting (17), (18 and (19) into (16), we have
we can rewrite the system (7) as ) )
a= di2s, (12) V2 < -l Z €517 = L Z €517 (20)
29 = douy, j=1 j=1

So far, the inductive design steps are completed. Therefore,

7 — zZ1 —Z1 7 P
whered; = dy (e +e7*! +2)/2k, anddy = dy. there exists a continuous state feedback controller of the form

Remark 2. From the nonlinear mapping?;, the statez;
is defined in the whole real number fieRl and thus it is up = ag = —g5°[&2]"®, (21)
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such that Proof. From Lemma 6, we can easily see that the states
2 2 z;(t), 1 = 1,2 are bounded, and satisﬁ/mt_)% zi(t) = 0.
Vo < -1y Z &2 =1y Z |&;127, (22) The bounded state (¢) together with the nonlinear mapping
j=1 j=1 (8) leads to

whereV, = Z?Zl W;.

Consequently, the following result is obtained.

Lemma 6. If the controlleru; of system (11) is specified
by (21) with design parametets > 0, I > 0 andp > —7

|21 ()] = k1|1 — <k, (29)

2
ez1(t) 41

that is, the stater; will remains in the sef),, and never
violates the constraint. Furthermotéan; g7 22(t) = 0 and

satisfying (10), (12) imply thatlim;_ 47 z2(t) = 0, and
2r—2)  (2-7)27rnts 03 )

Ol + 0l2(p+ 1) <t @ tl—lng 1(t) = tl—lng & (1 B m)
then the equilibrium: = 0 of closed-loop system is globally =k (1 _ %) (30)
fixed-time stable and all the trajectories converge to zero 0 ememor 218 41
before a fixed time&)T. ) ) -

Proof. According to(z; — a;—1)([z:]"* — [i—1]77) >0, Thus, the proof is completed.
we easily verify thatV, = Z?Zl W, is positive definite
and radially unbounded. Moreover, we have the following
estimation forls. B. Fixed-time stabilization of the zy-subsystem
2 2 From Lemma 7, we know that(¢) = 0 whent > 6T.
Va=) W;<2) |g (24)  Since the time derivative af(t) is identically zeroz(t) will
j=1 j=1 always keep zero fot > 0T in spite that a new controller

Letting o = 2/(2 — 7), it is not difficult to obtain that will be designed forug whent > 0T. Therefore, we just
need to stabilize the-subsystem in a fixed timé7'. In

2 .

1 . this case, for therg-subsystem, we can take the contrgl

- lP <5V (25) o nresy

Jj=1
ug = —(mg + malzo|?)[xo0]?, 31
On the other hand, taking (24) into account, it can be 0 (mo tlzol){ao] 1)
deduced that where0 < o0 < 1, mg >0, m; > 0andg > 1— ¢ are
2 2 24p design parameters to be determined later.
*Z|£j|2+p = ,Z (IijQ_T) Lemma 8. If design parameter§ < ¢ < 1, mg > 0,
j=1 j=1 my1 > 0 andqg > 1— o in (31) satisfy
21p [ 2tp (26)
1- 2—1
<27 F (Xlel) 2 + 2 <T, (32
j=1 mo(l—0)(1—-6) mi(c+qg—1)(1-10) ’

< 2721y,
then, for any initial conditiorcy(0) € {—ko < x0(0) < ko},
erl_er:evfz (2 Jgp)/(Q de): 02\ (25 and (26). it foll the following properties hold.
that erefore, by considering (22), (25) and (26), it follows (i) The statery remains in the s, = {—ko < zo(t) <

a ko}, Vt > 0 and never violates the constraint.
(ii) The statex is regulated to zero within a fixed settling

Sincea < 1 and~ > 1, from Lemma 2, we conclude thatiime (1 — )T .
the equilibriumz = 0 of the closed-loop system is globally Proof. The proof of Lemma 8 follows the same line of

fixed-time stable and the settling time functidi satisfies e proofs of Lemmas 6and 7.
Up to now, we have finished the fixed-time state feedback

. 1
Vo < —5hVs' = 1527721V (27)

T, < - + 27! stabilizing controller design of the systef??]. Consequent-
T hl-a) biHy-1) ly, the following theorem can be obtained to summarize the
2T —2)  (2-7)27 b (28) main result of the paper.
LT + lalp+ 1) Theorem 1. If the following switching control strategy
< OT. with an appropriate choice of the design parameters is

With the help of Lemma 6, we are ready to state the ma?rpp”ed to system (3) subject to constraints (4),

result of this subsection.

Lemma 7. If the proposed control design procedure with up = 1 Ho- , b< 6T, (33)
appropriate design parameters is applied to system (7), then, *d—o(mo +malzo|?)[z0]7, ¢ =0T,
for any initial conditionz(0) € ©; = {# € R"| — k1 <
x1(0) < kq}, the following properties hold. uy = — B [6] (34)
(i) The stater; remains in the se®,,, = {—k1 < z1(t) <
ki}, Vt > 0. then the states of the closed-loop system are regulated to
(ii) All the states of closed-loop system are regulated toero within any given settling tim@" while, at the same
zero within a fixed settling timé7T. time constraints (4) are met.
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IV. SIMULATION RESULTS

In this section, we illustrate the effectiveness of th
proposed approach with the boundedness:of= 1, i.e.,
|zo| < 1 and|zi| < 1. Then, for thexy-subsystem, we can
choose the control law
ug, 20(0) <0,

—uf,  x0(0) >0,

= (Isign(z(0))[ — sign(zo(0)) — 1)ug,
where v is a positive constant satisfying; < 2/T.
Choosingr = —1/3 and following the design procedure
shown in Section lll, we can explicitly construct a stat
feedback controller

Uug =

(35)

1 2
ay = —d—(l + 11+ 12]&1P) [E1]§ = 1 13[51]% (36)
ur = —(li + @21 + @22 + 12]&2|7)[€2] 2,
with & = [z1], & = [2]? - [a ]%3, pn = 1185243,
22 = 2.0999| 2Ul2)| 41 3999| HeulZ) 14d? g, ard appro-

prlate positive Constanﬂs lo andp such that the states of
the z-subsystem of (3) are globally regulated to zero withi
a fixed settling timel’/2 without violation of the constraints.

Then, whert > T'/2, for thezy-subsystem, we switch the
control inputug to

1
tto = —=(mo +ma 20| z0] " (37)

1+10

with 2o = In({252), do = (e® +e~* + 2)/2 and some
suitable posmve constanta mg, m1, ¢, under which, the
statex, can be regulated to zero within a fixed settling tim
T'/2 without violation of the constraints.

In the simulation, by choosing the fixed ting =
and the gains for the control laws ag§ = 0.19, I; = 4,
lo =5,p=20=05andmyg = m = q = 2, Fig.
3 is obtained to exhibit the responses of the closed- |05F
system with (z.(0), y.(0), 6(0))= (—0.8,0.9,7/4). From
the figure, it can be seen that the moblle robot moves to the
desired location in a given fixed time and the state constraints
are never violated, which accords with the main resulfg
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The responses of the closed-loop system with(0), y.(0),
(—0.8,0.9,7/4).

Y. L. Shang, D.H. Hou, and F. Z. Gao, “Global output feedback stabi-

established in Theorem 1 and demonstrates the effectiveness lization of nonholonomic chained form systems with communication

of the control method proposed in this paper.

(4]
V. CONCLUSION
This paper has studied the problem of Fixed time stabis;
lization by state feedback for nonholonomic WMR subject
to spatial constraint. Based on the nonlinear mapping, aﬂg]
by skillfully using recursive technique, a constructive desig
procedure for state feedback control is given. Together with
a novel switching control strategy,a constructive design prd/]
cedure for state feedback control is given. Together with a
novel switching control strategy, the designed controller cars)
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