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Abstract—In this article a novel adaptive control approach of
microgrids is presented, where a robust estimation is performed
based on a linear ARMAX model. In addition, an adaptive
Linear Quadratic Regulator is used for optimal control based on
an extended state space approach to compute the control signal.
It is noticeable that the dynamical models of the microgrids are
presented in state space. In addition, in order to validate the
results, two microgrids are evaluated under noise and noise
free condition for regulation by using the same structure of
the adaptive control in state space. As a result, a general
methodology of multivariable adaptive control in state space
is presented which effectively estimate and control any of the
evaluated microgrids.

Index Terms—Multivariable adaptive control, microgrids,
state space.

I. INTRODUCTION

THE adaptive control strategies allow continuous update
of the system parameters and also the variability

of the design in terms of the identified model [1]. The
control of systems with non-linearities around an operational
point also can be performed by adaptive linear control
techniques [2], [3] or by intelligent neural networks based
control [4]. In [5], an ARMAX based methodology for
identification and control of multivariable time-varying
systems is proposed, which is based in a pole placement
technique. It can be seen, that the multivariable system
can effectively track any set point under noise conditions.
However, the model is designed only for systems with equal
number of inputs and outputs.

In the discussion about the new distribution systems
topologies, the integration of the non-conventional energy
resources, and the standardization of the so called smart
grid, the microgrid concept has won special attention due
to the flexibility, reliability and benefits that these network
topologies will add to the distribution lines in the near
future [6]. Several definitions have been established for
a microgrid but each country has a legislation for the
topic, the grid features, and its operation capabilities, but
in general, all definitions agree that a microgrid is a
cluster of distributed generators and loads, with clearly
defined electrical boundaries and the capacity of operate in
connection with the grid or autonomously (island mode) [7],
[8], [9]. According with these definition, Fig. 1 shows an
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arbitrary microgrid architecture, with distributed generators
and loads.

Fig. 1. Example of a microgrid with distributed energy resources

Due to the changing structure, and the different kind
of disturbances that a microgrid have to deal in normal
operation conditions, the control of a microgrid requires
the design of techniques with adaptive capabilities in order
to track any system variability. Usually the control of
microgrids is designed according to the structure depicted in
Fig. 2, in which each layer seeks to meet specific control
objectives, determined by the system’s operational needs.
The primary layer (field level) takes care of the internal
control of each distributed generator and loads, regulating the
power production and and loads consumption; the secondary
layer (management level) seeks to maintain a stable operation
of the grid, exchanging information with the tertiary layer
with the aim of setting the appropriate references to the first
layer, at the end, the tertiary layer (Grid Level) regulates
the economic dispatch, determining the times to sell or buy
energy from the utility grid [10], [11], [12].

Since the primary control is embedded at the site of
the distributed generators, and the tertiary control usually
is implemented in a centralised way, located in the point
of common coupling (PCC) of the microgrid with the
distribution line, the main control objectives of the microgrid
rest in the secondary layer, that define the turn on, turn down,
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Fig. 2. General structure of microgrids control

isolation, and re-connection protocols, besides the regulation
of the internal power production and consumption [13],
[14]. The control architecture in this layer does not have
a consensus due the different topologies proposed in the
literature, these include the centralized, distributed, and
decentralised methods, each one with its advantages and
drawbacks [15], [11], [16]

Due to the better performance and efficiency, the
centralized control have lead to important developments
in optimization and robustness, as is shown in [17], [18],
and the coordination of different renewable sources power
dispatch, shown in [19]. Notwithstanding, as demonstrated in
[20], [15], the great issue that centralized architecture have,
is the single point failure, since all the microgrid operation
is carried out by the central controller, a control failure will
lead to a generalized collapse of the system.

Examples of decentralized controllers whit significant
improvements could be seen in [21], [22], with a robust
drop control strategies in [21], and a sliding mode control in
[22]. However, this investigations only develop algorithms
for stand alone microgrids, avoiding the grid connection.
Another well known drawback of the decentralized control,
also developed by [20] is the poorer energy, and frequency
quality (compared with centralized structures), owing to the
time delays among the controllers response.

Between this methods, the distributed strategies seek
to obtain the best features of both architectures: the
improved variable management of the centralized, and the
flexibility and plug and play service of the decentralized.
The literature in distributed topologies include complex
methodologies like H∞ norm, Model Predictive Control,
Intelligent Control, among others, all have in common, model
based math techniques and complex implementation due to
the algorithms computational cost. In [23] an MPC technique
is applied to a renewable based microgrid with satisfactory
results, that need to be adapted to arbitrary microgirds
configurations. In [24] a novel broadcast gossip technique
with applicability in real-world scenarios is presented, but
still dependent on the mathematical model. In [25] a resilient
distributed control with the capability of avoid certain sensor
faults is shown, however it is developed to work only in
stand alone microgrids. Note that most of the aforementioned
works have in common the dependence of an existing
mathematical model to be implemented.

A useful approach to model any multivariable system, like
a microgrid, is by using state space equations, where a set

of first order differential equations are presented to describe
the system dynamics. Several attempts to model microgrids
in state space have been presented [26], [27], [28], [29], [30].
For example, in [29] a state space equation of a composite
microgrid model based on IEEE 14 bus standard mode is
presented, where the microgrid includes diesel generators,
PV model, battery energy storage system, nonlinear loads
such as arc. In [28] a microgrid based on IEEE 4 bus
network is presented, where an analysis of communications
delays is also performed. An also, in [30] a smartgrid with
decentralized control is proposed in state space. However, the
control design of these approaches are model dependant and
require a detailed knowledge of the system to be controlled.

In this work a novel adaptive control approach of
microgrids is presented, where a robust estimation is
performed based on a linear ARMAX model where the an
extended state space representation of system is estimated. In
addition, an adaptive Linear Quadratic Regulator is used for
optimal control based on the extended state space approach
to compute the control signals. It is noticeable that the
dynamical models of the microgrids are presented in state
space. In order to validate the results, two microgrids are
evaluated under noise and noise free condition for regulation
by using the same methodology of the state space model. In
addition for the second microgrid, an analysis in steady state
is presented under noise conditions. It is remarkable, that
the same estimation structure is used for both microgrids
for estimation and control tasks. As a result, a multivariable
control in state space is obtained which effectively estimate
and control the microgrid. This paper is organized as follows:
in section II a mathematical modeling of the microgrid is
presented in state space, in section III the adaptive control
approach of microgrids is presented, and in section IV the
results for the two microgrid cases described in section II
are presented.

II. MATHEMATICAL MODELING OF MICROGRIDS

In this work, a general state space modeling of microgrids
is used by including the disturbance inputs, as follows:

ẋ = Ax(t) + Bu(t) + Hω(t) (1)

being x the state vector, u the input vector, and ω the
disturbance vector, A the feedback matrix, B the input
matrix, and H the disturbance matrix, and where (1) is used
to describe the dynamic behaviour of the microgrid.

In this framework, according to (1), two cases are
presented: the first case considers a four states microgrid
and the second case that uses 11 states microgrid.

A. Case 1: 4 states microgrid

The first case of a microgrid is based on the model
described in [27] and [28], where four micro-sources are
connected to the IEEE 4-bus network [31]. An schematic
diagram of the microgrid is presented in Fig. 3.

IAENG International Journal of Applied Mathematics, 50:4, IJAM_50_4_13

Volume 50, Issue 4: December 2020

 
______________________________________________________________________________________ 



Fig. 3. Schematic of the 4 states microgrid where four micro-sources are
connected to the IEEE 4-bus network

According to (1), the matrix A, B, and H of the state
space model can be described as:

A =


175.9 176.8 511 103.6
−350 0 0 0
−544.2 −474.8 −408.8 −828.8
−119.7 −554.6 −968.8 −1077.5

 (2)

and

B =


0.8 334.2 525.1 −103.6
−350 0 0 0
−69.3 −66.1 −420.1 −828.8
−434.9 −414.2 −108.7 −1077.5

 (3)

and H = I being I the identity matrix.
In this case, the disturbance input (1) is related to the

zero mean process noise, x(t) is the state voltage deviation
defined as x(t) = vs(t) − vref (t), being vref the point of
common coupling (PCC) reference voltage and vs(t) the
PCC voltages. In addition, the control signal u(t) is the
distributed energy generation resources (DER) control signal
deviation, and is defined as the u(t) = vp(t) − vpref (t),
being vpref the reference control effort, and vp(t) the input
voltages, being vs and vp defined as

vs(t) =


v1(t)
v2(t)
v3(t)
v4(t)

 , vp(t) =


vp1(t)
vp2(t)
vp3(t)
vp4(t)

 (4)

where vi is the i-th PCC voltage. It can be seen that the four
micro-sources are connected to the power network at the
corresponding PCCs whose voltages are denoted by vs(t).

B. Case 2: 11 states microgrid

In [30] a state space model of a smartgrid is presented,
where the model considers an electric power network
composed of two subsystems which are: a thermal power
plant and a wind power plant in Area 1 and a battery system
and micro gas turbine generators in Area 2. The structure of
the microgrid is described in Fig.4.

Fig. 4. Structure of the microgrid composed by subsystems which include
a thermal power plant and a wind power plant in Area 1 and a battery
system and micro gas turbine generators in Area 2

According to (1) the state space matrices are defined as
follows:

A =


−0.1 0.1 0 0 0.03 0 0 0 0 0 0

0 −0.1 0.1 0 0 0 0 0 0 0 0
−80 0 −4 0 0 0 0 0 0 0 0
−5 0 0 0 1 0 0 0 0 0 0
−2 0 0 0 0 2 0 0 0 0 0
0 0 0 0 −0.1 −0.2 0.1 0 0 0.1 0
0 0 0 0 0 0 −1 1 0 0 0
0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 −0.9 0
0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 −1 −5 0 0 0 0 0


and

B =



0 0
0 0
4 0
0 0
0 0
0 0
0 0
0 0.8182
0 0
0 0.1818
0 0


, H =



0.1 0
0 0
0 0
0 0
0 0
0 0.1
0 0
0 0
0 0
0 0
0 0


with centralized control inputs for area A1 and A2 defined
as

u =

[
uA1

uA2

]
, ω =

[
ωA1

ωA2

]
(5)

and the state space vector defined as

x =

x1

x2

x3

 (6)

being

x1 =


∆fA1

∆PT

∆xgA1

UA1

 , x2 = ∆Ptie, x3 =


∆fA2

∆PG

∆xgA2

xB

∆PB

UA2

 (7)

The state space models of case 1 and case 2 described by
using (1) can be represented as a difference equation by using
backward difference approach, resulting in the following
discrete state space equation

x[k + 1] = Adx[k] + Bdu[k] + Hdnd[k] (8)

where Ad = A + Its, Bd = Bts, Hd = Hts being ts the
sample time, tk = kts, being k the sample. It can be noticed
that (8) is the representation needed in order to apply the
adaptive control approach proposed in this work.
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III. ADAPTIVE CONTROL OF MICROGRIDS

In order to perform adaptive control of microgrids based
on an estimated modeling it is necessary to estimate the
parameters of the system through an Auto Regressive Moving
Average with eXogenous inputs (ARMAX) model. The
approach is divided in two stages: robust estimation of
parameters considering disturbances or noise and adaptive
linear quadratic regulator for control vector computing.

A. Robust estimation of parameters

A model defined by the following equation is proposed to
identify the model [5]:

y (k) = B1u (k − 1) + · · ·+ Bn2u (k − n2)

−A1y (k − 1)− · · · −An1y (k − n1)

+C0w (k) + C1w (k − 1) + · · ·+ Cn3w (k − n3) (9)

where

ŵ (k) = y (k)− ŷ (k) = y (k)− θTφ (k − 1) (10)

being θT the transpose of θ, and with θ a matrix of
dimension (mn1 + pn2 + rn3) × m that holds the matrix
parameters Ai, Bi, and Ci as follows:

θT =
[
B1 · · · Bn2

A1 · · · An1
C1 · · · Cn1

]
(11)

and being φ (k − 1) a vector of dimension
(mn1 + pn2 + rn3) × 1 that holds the past inputs and
outputs as follows:

φ (k − 1) =



u (k − 1)
...

u (k − n2)
−y (k − 1)

...
−y (k − n1)
ŵ (k − 1)

...
ŵ (k − n3)


(12)

In [1] a class of identification algorithms is presented,
where θ̂ (k) is computed from θ̂ (k − 1), as follows:

θ̂ (k) = θ̂ (k − 1) + M (k − 1)φ (k − 1) e (k) (13)

being θ̂ (k) the estimated parameter matrix at sample k,
M (k − 1) the gain matrix, φ (k − 1) the vector with past
inputs and outputs, and e (k) the estimation error, as follows:

e (k) = y (k)
T − ŷ (k)

T (14)

being ŷ (k) given by:

ŷ (k) = θ̂ (k − 1)
T
φ (k − 1) (15)

As described in [1] the multivariable least squares
algorithm can be defined as:

e (k) = y (k)
T − φ (k − 1)

T
θ̂ (k − 1)

M (k) = P (k − 1)

θ̂ (k) = θ̂ (k − 1) + M (k)φ (k − 1) e (k) (16)

and

P (k − 1) = P (k − 2) (17)

−P(k−2)φ(k−1)φ(k−1)TP(k−2)
1+φ(k−1)TP(k−2)φ(k−1) (18)

with initial estimate θ̂ given and P (0) a positive diagonal
matrix.

B. State Feedback Adaptive Control

In order to perform an adaptive control of the microgrid,
an extended state space formulation is obtained form the
identified ARMAX model of (9) as follows:

xe[k + 1] = Fxe[k] + Gu[k] (19)
(20)

being the matrices F and G defined as

F =


−A1 −A2 B0 B1

I 0 0 0
0 0 0 0
0 0 I 0

 , G =


0
0
I
0

 (21)

and, where the state space vector x is defined as

xe[k] =


y[k − 1]
y[k − 2]
u[k − 1]
u[k − 2]

 (22)

By using the state space model of (19), a state feedback
control can be presented in terms of the state vector as
follows:

u[k] = −Kxe[k] (23)

being K is the feedback control matrix, that can be computed
by using a Linear Quadratic Regulator (LQR) [32], where the
performance index is defined by

J =

N∑
k=1

xT
e [k]Qxe[k] + uT [k]Ru[k] (24)

being Q and R matrices constraints positive and
semi-positive defined. Since (24) is minimized subject
to (19) which is an adaptive model with time varying
features, the resulting feedback control matrix K is also
time varying. Therefore, the proposed control is an adaptive
optimal control.

In Fig. 5 is presented an structure of the adaptive control
including the identification of the ARMAX model stage,
the Digital to Analog Converters (DAC) and the Analog to
Digital Converters (ADC).
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Fig. 5. Adaptive optimal control scheme based on a linear quadratic
regulator

It can be seen that, even when an adaptive LQR strategy
is used in this work, in general, any optimal scheme [33] or
pole placement technique [34] can be used to compute the
control signal based on the identified model.

IV. RESULTS

In order to evaluate the performance of the proposed
method, the adaptive control is evaluated for the two
aforementioned cases of microgrids. The estimation is
performed by using a second order ARMAX model, and
the extended state space equation in discrete time of (19)
is obtained. The adaptive control approach is evaluated
under noise and noise free conditions (with or without
disturbances), and considering initial conditions not equal to
zero. In addition, the initial parameters are set to a random
value. Also for the second case, an steady state analysis of the
system is performed for the state vector. It is worth noting
that the case 1 and case 2 are formulated in terms of the
evolution of the state around operational points, therefore,
the control signals and the states evolution tends to zero in
steady state.

A. Case 1: 4 states microgrid

For the first case, the matrix is F ∈ R16×16, matrix G ∈
R16×4, matrices Ai ∈ R4×4 and Bi ∈ R4×4. Constraints
matrices Q ∈ R16×16 and R ∈ R4×4 are selected as identity
matrices. The initial value of the model parameters is selected
as random value, and the initial state conditions are selected
as 8 in p.u. for all the states, and the sample time is ts =
0.1 miliseconds. It can be seen that, for the first case, the
voltage deviation under noise free conditions are presented
in Fig. 6 and Fig. 7. It can be seen that the system is regulated
since all the voltage deviations at each node tends to zero.
It is noticeable that the system is estimated and regulated
simultaneously.

Fig. 6. PCC voltages deviations of x1 and x2 under a noise free scenario
for case 1: 4 states microgrid

Fig. 7. PCC voltages deviations of x3 and x4 under a noise free scenario
for case 1: 4 states microgrid

The control inputs computed by the adaptive approach,
corresponding to the outputs shown in Fig. 6 and Fig. 7, of
the first case, are presented in Fig. 8 and Fig. 9. It can be
seen that once the system is regulated, the control signals are
zero.

Fig. 8. Control inputs u1 and u2 under a noise free scenario for case 1:
4 states microgrid
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Fig. 9. Control inputs u3 and u4 under a noise free scenario for case 1:
4 states microgrid

The results for the PCC voltage deviation under noise
conditions are presented in Fig. 10 and Fig. 11. It is
noticeable that the noise is zero mean Gaussian with 10%
signal-to-noise ratio. It can be seen that the voltage deviation
tends around zero even in the presence of noise. It is
noticeable that the settling times under noise and noise free
conditions are comparable.

Fig. 10. PCC voltages deviations x1 and x2 under noise conditions for
case 1: 4 states microgrid

Fig. 11. PCC voltages deviations x3 and x4 under noise conditions for
case 1: 4 states microgrid

The control inputs associated to the results presented in
Fig. 10 and Fig. 11, are presented in Fig. 12 and Fig. 13. It
can be seen, that also the control inputs in the noisy scenario
tends around zero. It is also worth noting that the amplitude
of the control signal under noise and noise free conditions
are the same.

Fig. 12. Control inputs u1 and u2 under noise conditions for case 1: 4
states microgrid

Fig. 13. Control inputs u3 and u4 under noise conditions for case 1: 4
states microgrid

B. Case 2: 11 states microgrid

For the second case, the matrix is F ∈ R26×26, matrix G ∈
R26×2, matrices Ai ∈ R11×11 and Bi ∈ R11×2. Constraints
matrices Q ∈ R26×26 and R ∈ R2×2 are selected as identity
matrices. The initial value of the model parameters is selected
as random value, and the initial state conditions are selected
for all the states as 0.5 in p.u., and the sample time is ts =
250 miliseconds.

It can be seen that, for the second case, the power
fluctuation results under disturbance free conditions are
presented in Fig. 14. It is worth noting that the first 20
seconds (80 samples) are required to estimate and regulate
adequately the system, achieving the settling time around 25
seconds (90 samples). The control inputs computed by the
adaptive approach, corresponding to the power fluctuations
of Fig. 14, are presented in Fig. 15. It can be seen that once
the system is regulated, the control signals are zero.
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Fig. 14. Power fluctuation of the case 2: 11 states microgrid under noise
free conditions

Fig. 15. Control inputs of the case 2: 11 states microgrid under noise free
conditions

The results for power fluctuation under noise conditions
are presented in Fig. 16.

Fig. 16. Power fluctuation of the case 2: 11 states microgrid under noise
conditions

It is noticeable that the noise is zero mean Gaussian with
10% signal-to-noise ratio. It is noticeable that under noise
conditions the system takes around 50 seconds to achieve
the settling time, however, it is remarkable that the system is
being estimated and regulated at the same time. A segment of

steady state of the power fluctuation is presented in Fig. 17.
As shown in Fig. 17 the power fluctuations are regulated
around zero.

Fig. 17. Segment of steady state of Power fluctuation of the case 2: 11
states microgrid under noise conditions

The control inputs under noise conditions are presented in
Fig. 18. It can be seen that once the system is regulated the
control signals are computed around zero.

Fig. 18. Control inputs of the case 2: 11 states microgrid under noise
conditions

Besides, the control inputs under noise conditions for a
segment of steady state conditions are presented in Fig. 19.
It can be seen that once the system is regulated the control
signals are computed around zero.
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