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Abstract—In this paper, the 3-tuple Bézier surface 

interpolation model is introduced. The 3-tuple control net 
relation is defined through intuitionistic fuzzy concept. Later, 
the control net is blended with Bernstein basis function to 
obtain surface blending function and to produce 3-tuple Bézier 
surface. The 3-tuple Bézier surface model is illustrated through 
the interpolation method by using data point with intuitionistic 
features. Some numerical example is shown. Lastly, the 3-tuple 
Bézier surface properties is also discussed.  

 
Index Terms—3-tuple, Bézier surface, control net relation, 

interpolation. 

I. INTRODUCTION 

URFACE and their properties plays an important role in 
visualizations of data such as from marines, consumer 

products, medical, geological, physical, design, 
manufacturing and other natural behavior. The easiest way 
to build a surface is to sweep a curve through space such 
that its respective points move along some curves [1]. A 
tensor product surface or just called surface is defined by a 
control net that is parameterized in two directions denoted 
by  0,1u  and  0,1v [2]. This control nets consist by 

set of control points that control the surface. The surface 
modeling is a mathematical method that used mathematical 
expression in computer-aided geometric design to visualize 
an object by using provided data.  

One of the surface modeling techniques that often used is 
the Bézier surface. The geometric properties of Bézier were 
developed by P. de Casteljau in 1959, [3], [4], and by P. 
Bézier starting in 1962 as stated in [5]. The Bézier method 
were used respectively in computer-aided design systems of 
Renault and Citroën. P. Bézier has derived the mathematical 
basis of curves and surfaces techniques from geometrical 
considerations as in [6]–[8]. Later, around 1970s, Forrest in 
[9] and Gordon and Riesenfeld in [10] found the connection 
between the work of Bézier and the classical Bernstein 
polynomials. They discovered that the Bernstein 
polynomials are in fact the basis functions used for Bézier 
curves and surfaces.  

The uncertainty in the data set is a major problem that 
exists in the surface design. In geometric modeling, the data 
set is also called control point for approximation and data 
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points for interpolation methods [11]. Normally, a 
problematic data (uncertainty data) will be ignored or 
eliminated from a set of data regardless of its effect on the 
curve and the resulting surface. Hence, the evaluation and 
analyzing process will be incomplete. Therefore, if there is 
an element of uncertainty in a data set, the data set should be 
filtered so that it can be used for generation of surfaces of a 
model that want to be investigated. To overcome this matter, 
intuitionistic fuzzy set (IFS) is used. IFS is a generalization 
of fuzzy set theory from Zadeh [12] and was introduced by 
Krassimir T. Atanassov in [13]–[16]. The set consists of 
three components namely degree of membership, non-
membership and uncertainty (non-determinacy). 

Surface modeling is a method of mathematical 
representations construction in the form of geometry while 
the IFS theory is a mathematical representation that aimed at 
concepts and techniques to tackles uncertain problems. 
Therefore, in this paper, a surface model that can handle 
uncertainty data problems (intuitionistic data) represent by 

, ,    called 3-tuple and its data visualization that 

focused on Bézier surface interpolation is introduced. The 
aim of this paper is to visualize data point with intuitionistic 
features by using Bézier surface function and yield 3-tuple 
Bézier surface (3-TBS) through interpolation method by 
using 3-tuple control net relation (3-TCNR). This paper is 
organized as follow. Section 1 discusses some introduction 
about this paper. In section 2, some basic definitions and 
concepts of IFS are shown. Later, section 3 introduces 
intuitionistic fuzzy point relation (IFPR) with some of its 
properties. Section 4 introduces 3-TCNR based on IFPR and 
3-tuple control point relation (3-TCPR). Section 5 defines 
and visualized 3-TBS interpolation and some numerical 
example is shown. In Section 6, the 3-TBS properties are 
discussed and section 7 concludes this research. 

II. PRELIMENARIES 

IFSs have been studied and used in different fields of 
science and mathematics. Among the works on these sets 
are as in [17]–[27]. IFS is generally defined by three 
functions (membership, non-membership and uncertainty) 
with the constraint that the sum of these three functions 
must be equal to one [28]. This section shows some basic 
definition of IFS consists of intuitionistic fuzzy number 
(IFN), intuitionistic fuzzy relation (IFR) and intuitionistic 
fuzzy point (IFP). 
 
Definition 1. [14] Let a set X is fixed and let A X  be a 

fixed set. An IFS A  in X is an object of the following 
form: 
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( ) ( ) , , |A AA x x x x X  =           (1) 

 

where functions  : 0,1A X →  and  : 0,1A X →  define 

the degree of membership and non-membership of the 

element x X to the set A, respectively and for every 

x X , ( ) ( )0 1A Ax x  +  . Obviously, the ordinary 

fuzzy set has the form ( ) ( ) , ,1 |A Ax x x x X −  . If 

( ) ( ) ( )( )1A A Ax x x  = − + , then ( )A x  is the degree of 

uncertainty or intuitionistic index of the membership of 

element x X to set A where 0 1A  .  

 

The concept of fuzzy number has been developed 

through fuzzy set and possibility theory. The notion of fuzzy 

number was introduced in [29] and [30]. IFN was 

introduced in [31] and they studied perturbations of IFN and 

the first properties of the correlation between these numbers. 

Hence, IFN can be defined as follows: 

 

Definition 2. [32] IFN A  is defined as an intuitionistic 

fuzzy subset of the real line, normal i.e. there is any 
0x ℝ 

such that ( ) ( )1, 0A Ax x = = , convex for the membership 

function ( )A x  i.e. ( )( ) ( )(1 2 11 min ,A Ax x x   + −   

( ))2A x
1 2,x x ℝ ,  0,1   and concave for the non-

membership function ( )A x  i.e. ( )( )1 21 maxA x x  + −   

( ) ( )( )1 2 1 2, ,A Ax x x x    ℝ  , 0,1 . 

 

Definition 3. [33] Triangular IFN is IFS in ℝ with 

membership function and non-membership function as 

follows: 
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,

,
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Where ' 'm        and ( ) ( ), 0.5A Ax x    for 

( ) ( )A Ax x x =  ℝ and value of both membership is 0 

and 1 otherwise respectively. The symbolic representation 

of triangular IFN is
IFNA =  ( ), , ; ', , 'm m    .   and   

are called left and right spreads of membership function 

( )A x  respectively. ' and '  represented left and right 

spreads of non-membership function ( )A x  respectively. 

 

      Fuzzy relations are fuzzy sets defined on universal 

sets which are Cartesian products of  X Y  that represents 

the strength of association between elements of the two sets. 

Fuzzy relation has been studied in [34]–[36]. The concept of 

IFR is based on the definition of IFS. IFR were introduced 

in different forms and their approach was from different 

starting points and independently [37]–[43]. 

 

Definition 4. [40] Let ,X Y ℝ be universal sets, then 

 

( ) ( ) ( )( ) ( ) , , , , , | ,R RR x y x y x y x y X Y  =       (4) 

 

with  : 0,1R X Y  →  and  : 0,1R X Y  →  where 

( ) ( ) ( )( ), 1 , ,A A Ax y x y x y  = − +  and (4) satisfy the 

condition ( ) ( ) ( )0 , , 1, ,R Rx y x y x y X Y  +     . 

 

Next, IFP was introduced in [44]–[47] which used the 

natural generalization of fuzzy point given by [48]. 

Therefore, IFP is defined as follows: 

 

Definition 5. Let ( ), 0,1    and 1 +  . IFP 
( ),

xp
 

 of 

X is and IFS of X defined by ( ),
, ,x

p pp x
 

 =  where for 

y X  

 

( )
if

0 if
p

y x
y

y x




=
= 


 and ( )

if

1 if
p

y x
y

y x




=
= 


 (5) 

 

In this case, x  is called the support of 
( ),

xp
 

. IFP is said to 

belong to IFS , ,A AA x   =  of X, denoted by 
( ),

xp A
 

 , 

if ( )A x   and ( )A x  . Next section will introduce 

IFPR and some of its properties. 

III. INTUITIONISTIC FUZZY POINT RELATION 

IFPR is developed and introduced based on the concept of 

IFS that is discussed in the previous section. Let V, W be a 

collection of universal space of points in the Euclidean 

space and ,V W ℝ2, then IFPR is defined as follows: 

 

Definition 6. Let ,X Y  be a collection of universal space of 

points with non-empty set and , ,V W I ℝℝℝ, then 

IFPR is defined as 

 

( ) ( ) ( ) ( )
( ) ( ) ( )( ) 

, , , , , , , |

, , , , ,

i j T i j T i j T i j

T i j T i j T i j

T v w v w v w v w

v w v w v w I

  

  

 =



   (6) 

 

where ( ),i jv w  is an ordered pair of points or coordinate and 

( ),i jv w V W  . ( ),T i jv w , ( ),T i jv w  and ( ),T i jv w  are 

the grade of membership, non-membership and uncertainty 

of the ordered pair of points respectively in  0,1 I . 

Furthermore the condition ( )0 ,T i jv w +  

( ), 1T i jv w  is follows and the degree of uncertainty is 

denoted by 
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( ) ( ) ( )( ), 1 , ,T i j T i j T i jv w v w v w  = − +            (7) 

 

The IFPR is based on fuzzy point in the Euclidean space and 

the IFP is in IFS. Hence, the IFPR is in IFR and denoted by 

T R   and P Q A B      . 
 

 

Definition 7. Let P  be an IFP and A
 is the IFN in V. 

Hence, P
 is said to be in A

 and denoted by P A   if 

and only if ( ) ( )P i A iv v   and ( ) ( )P i A iv v   for all 

iv V . Every fuzzy number A
 can be expressed as the 

union of all IFP that belong to A
 which if ( )A iv  and 

( )P iv  is non-zero for 
iv V , then ( )A iv =  

( )sup : P iy v  is IFP (membership) and ( )0 A iy v   

and ( ) ( )inf :A i P iv y v =  is IFP (non-membership) and 

( ) 0 A iv y   respectively. Therefore, each and every IFP 

P
 in A

 can be written as P = { | 1,2, , ,iP i n i = ℕ}
 

and 
1 2 .nA P P P   =  

 

Theorem 1. If 
i

i I

A A 



=  where  1,2, ,I n=  and I is any 

index, then P A   if and only if 
iP A   for some i I . 

 

Proof: Let the support for P
 denoted by 

0v , then  

 

( ) ( )

( ) ( )

0 0

0 0

sup ,

inf

i

i

A A
i I

A A
i I

v v

v v

 

 





=

=
                          (8) 

 

i) There exists some 
0i I  such as ( ) ( )

0
0 0iA Av v =  and  

( ) ( )
0

0 0iA Av v = . 

ii) ( ) ( )0 0iA Av v  and ( ) ( )0 0iA Av v   for all i I . 

For (i)
0i

P A  . For (ii) P A   implies that 

( ) ( )0 0 ,P Av v  ( ) ( )0 0P Av v   and considering 

that ( ) ( )0 0sup
iA A

i I

v v 


= , ( ) ( )0 0inf
iA A

i I
v v 


= , it follows 

that ( ) ( )
0

0 0iP Av v  , ( ) ( )
0

0 0iP Av v   for some 
0i . 

Thus
0i

P A  . 

 

Definition 8. Let P
 and Q  be an IFP and A

 and B
is 

the IFN in V and W respectively. Hence, IFPR T 
 on P  

and Q , P Q  is said to be in R , and denoted by 

P Q A B       if and only if ( ) ( ), ,T i j R i jv w v w   and 

( ) ( ), ,T i i R i iv w v w   for all ( ),i jv w V W  . Obviously, 

every R
 can be expressed as the union of all IFPR that 

belong to R  which if ( ),T i jv w  and ( ),T i jv w  is non-

zero for ( ),i jv w V W  , then ( ), supR i jv w =  

( ) ( ) , : ,P Q i j P Q i jv w v w    is IFPR (membership) and 

( ) ( )0 , ,P Q i j R i jv w v w    and ( ), infR i jv w =  

( ) ( ) , : ,P Q i j P Q i jv w v w    is IFPR (non-membership) and 

( ) ( )0 , ,R i j P Q i jv w v w     respectively. Therefore, each 

and every T 
 in R

 can be written as 

T  = { | 0,1, , ,iT i n i = ℕ} and 
1 2 nR T T T   = .  

 

Theorem 2. If 
i

i I

R R 



=  where  1,2, ,I n=  and I is 

any index, then T R   if and only if 
iT R   for 

some i I . 

 

Proof: Let the support for T   denoted by ( )0 0,v w , then  

 

( ) ( )

( ) ( )

0 0 0 0

0 0 0 0

, sup , ,

, inf ,

i

i

R R
i I

R R
i I

v w v w

v w v w

 

 





=

=
                 (9) 

 

i) There exists some 
0i I  such as ( ) ( )

0
0 0 0 0, ,

iR Rv w v w =  

and ( ) ( )
0

0 0 0 0, , .
iR Rv w v w =  

ii) ( ) ( )0 0 0 0, ,
iR Rv w v w   and ( ) ( )0 0 0 0, ,

iR Rv w v w   

for all i I . 

For (i) 
0i

T R  . For (ii) T R   implies that 

( ) ( ) ( ) ( )0 0 0 0 0 0 0 0, , , , ,T R T Rv w v w v w v w      and 

considering that ( ) ( )0 0 0 0, sup , ,
iR R

i I

v w v w 


= ( )0 0,R v w =  

( )0 0inf ,
iR

i I
v w


, it follows that ( ) ( )

0
0 0 0 0, ,

iT Rv w v w  , 

( ) ( )
0

0 0 0 0, ,
iT Rv w v w   for some 

0i . Thus 
0i

T R  .  

IV. 3-TUPLE CONTROL NET RELATION 

The collection of all points or set of points that is used to 

determine the shape of a spline surface is called control net. 

The control net plays an important role in the process of 

generating, controlling and producing smooth surfaces. In 

this section, 3-TCNR is defined. 

 

Definition 9. Let T 
 be an IFPR, then 3-TCPR is defined as 

a set of points 1n +  that indicates the positions and 

coordinates of a location and is used to describe the curve 

and is denoted by 

 

 0 1, , , nC C C C   =                      (10) 

 

where i is one less than the number of points, n. Hence, from 

(6) and (10) the 3-TCNR can be defined as in Def. 10. 

 

Definition 10. Let C
be 3-TCPR, then the 3-TCNR can be 

defined generally as collection of points 1n +  and 1m+  for 

C
 in the direction of u and v respectively and denoted by 

,i jC
 that indicates the positions and coordinates of a 

location to describe the surface and written as 
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0,0 0,1 0,

1,0 1,1 1,

,

,0 ,1 ,

j

j

i j

i i i j

C C C

C C C
C

C C C

  

  



  

 
 

 =
 
 

  

               (11) 

V. 3-TUPLE BÉZIER SURFACE INTERPOLATION MODEL 

The surface is a vector value function of parameter u and 

v, that represents the mapping of uv plane into Euclidean 

three-dimension space. The tensor product method is 

basically a bidirectional curve scheme that uses basic 

functions and geometric coefficients. Therefore, the tensor 

product of 3-TBS is defined as follows: 

 

Definition 11. Let ,i jC
 be a 3-TCNR, then the tensor 

product of 3-TBS is given by 

 

( ) ( ) ( ),

0 0

,
n m

n m

i j i j

i j

B u v C B u B v 

= =

=              (12) 

 

where ( )n

iB u  and ( )m

jB v  is the Bernstein basic functions in 

the parametric directions u and v and written as  

( ) ( )

( ) ( )

1

1

n in i

i

m jm j

j

n
B u u u

i

m
B v v v

j

−

−

 
= − 

 

 
= − 

 

with 
( )

( )

!

! !

!

! !

n n

i i n i

m m

j j m j

 
= 

− 

 
= 

− 

  (13) 

 

The 3-TBS in (12) consists of membership, non-

membership and uncertainty surface and denoted as follows: 

( ) ( ) ( ),

0 0

,
n m

n m

i j i j

i j

B u v C B u B v 

= =

=              (14) 

 

( ) ( ) ( ),

0 0

,
n m

n m

i j i j

i j

B u v C B u B v 

= =

=              (15) 

 

( ) ( ) ( ),

0 0

,
n m

n m

i j i j

i j

B u v C B u B v 

= =

=              (16) 

 

For the 3-TBS interpolation model, the surface will lie in the 

data points. Therefore, the interpolation method is given by: 

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

0,0 0,1 0,

1,0 1,1 1,

,0 ,1 ,

0 0 0 1 0

1 0 1 1 1

0 1

, , ,

, , ,

, , ,

m

m

n n n m

m

m

n n n m

D D D

D D D

D D D

B u v B u v B u v

B u v B u v B u v

B u v B u v B u v

  
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  

  

  

  

 
 
 
 
 
  

 
 
 =
 
 
  

     (17) 

Each ( ),i jB u v
 can be written as a matrix product such as; 

 

( ) ( ) ( ) ( )

( )

( )

( )

0 1

0
0,0 0,1 0,

11,0 1,1 1,

,0 ,1 ,

, n n n

i j i i n i

m

j
m

m

jm

mn n n m
m j

B u v B u B u B u

B v
C C C

B vC C C

C C C B v



  

  

  

 =  

 
   
   
   
   
   
     

   (18) 

 

All the individual equation may be combined into one 

matrix equation: 

 
TD M C N =                          (19) 

 

where D  is the given matrix data points as in (17) and C  

is the matrix containing the unknown control points ,i jC
. 

The matrix TM  and N  contains the values of the Bernstein 

polynomials at the given parameters:  

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

0 0 1 0 0

0 1 1 1 1

0 1

n n n

n

n n n

nT

n n n

n n n n

B u B u B u

B u B u B u
M

B u B u B u

 
 
 =
 
 
  

        (20) 

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

0 0 0 1 0

1 0 1 1 1

0 1

m m m

m

m m m

m

m m m

m m m m

B v B v B v

B v B v B v
N

B v B v B v

 
 
 =
 
 
  

        (21) 

 
Equation (19) is conveniently decomposed into a sequence 

of linear systems. First TC M C=  is defined and later 

reduced to D CN =  and simplified to  
 

( )
1

1TC M D N
−

  −=                      (22) 

 

To illustrate the 3-TBS interpolation, let considered 3-

TCNR with degree of membership, non-membership and 

uncertainty with 3, 3m n= =  as follows: 

 

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

C C C C

C C C C

C C C C

C C C C

   

   

   

   

 
 
 
 
 
  

 

 
where each column with their respective value and 3-tuple 

degree , ,    is given as; 

( )

( )

( )

( )

0,0

1,0

2,0

3,0

17,17 ;0.3,0.6,0.1

7,17 ;0.5,0.3,0.2

7,17 ;0.5,0.1,0.4

17,17 ;0.6,0.2,0.2

C

C

C

C









 − 
  

−   =   
  
     
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( )

( )

( )

( )

0,1

1,1

2,1

3,1

17,7 ;0.8,0.2,0

7,7 ;0.7,0.1,0.2

7,7 ;0.7,0.3,0

17,7 ;0.3,0.5,0.2

C

C

C

C









 − 
  

−   =   
  
     

 

 

( )

( )

( )

( )

0,2

1,2

2,2

3,2

17, 7 ;0.3,0.3,0.4

7, 7 ;0.4,0.4,0.2

7, 7 ;0.4,0.6,0

17, 7 ;0.3,0.5,0.2

C

C

C

C









 − − 
  

− −   =    −  
   −   

 

 

( )

( )

( )

( )

0,3

1,3

2,3

3,3

17, 17 ;0.5,0.4,0.1

7, 17 ;0.6,0.3,0.1

7, 17 ;0.4,0.2,0.4

17, 17 ;0.6,0.3,0.1

C

C

C

C









 − − 
  

− −   =    −  
   −   

 

 

Through (22), the unknown control points ,i jC
 is 

obtained. After that, the desired surface is illustrated by 

blending the control net for membership, non-membership 

and uncertainty with the Bernstein polynomials using (12)–

(16) as in Fig. 1 until Fig. 3. The red star in Fig. 1 until Fig. 

3 represent control points ,i jC
 and the line connecting the 

control points is called the intuitionistic control polygon. 

Fig. 1 until Fig. 3 shows the 3-TBS interpolation for 

membership, non-membership, and uncertainty surface, 

respectively. The figures give a surface that follows the 

condition ( ) ( ), ,0 1C i j C i jC C   +   and ( ),T i jC  =  

( ) ( )( ), ,1 C i j C i jC C  − + .  

 

The black dot in Fig. 1 until Fig. 3 represent the data 

points where the surfaces interpolate. The 3-TBS 

interpolation and its respective data points is shown 

separately in a better view as in Fig. 4 until Fig. 6. 
 

 

 

 

Finally, the 3-tuple Bézier surface interpolation is 

illustrated in Fig. 7 until Fig. 9 with different view and 

perspective. 

 
Fig. 1. 3-TBS interpolation with its respective data points, control points and 
control polygon (membership). 

  

 
Fig. 2. 3-TBS interpolation with its respective data points, control points and 

control polygon (non-membership). 

  

 
Fig. 3. 3-TBS interpolation with its respective data points, control points and 
control polygon (uncertainty). 

  

 
Fig. 4. 3-TBS interpolation with its respective data points (membership). 
  

 
Fig. 5. 3-TBS interpolation with its respective data points (non-membership). 

  

 
Fig. 6. 3-TBS interpolation with its respective data points (uncertainty). 

  

IAENG International Journal of Applied Mathematics, 50:4, IJAM_50_4_16

Volume 50, Issue 4: December 2020

 
______________________________________________________________________________________ 



 

 

 

 

In this paper, we only considered relation of point from 

two universal sets where the third universe is the strength of 

relation or membership function. 

VI. 3-TUPLE BÉZIER SURFACE PROPERTIES 

     3-TCNR is a geometric coefficient of surface that are set 

in bidirectional of a net with n m . The 3-TCNR can gives 

many valuable information for early analysis as the shape 

and properties of 3-TBS depends on 3-TCNR. Therefore, 

some of the 3-TCNR and its respective surface properties 

are listed as follow: 

 

i) The degree of 3-TBS in each parametric direction is one 

less than the number of 3-TCNR vertices in that direction.  

ii) The 3-TBS generally follows the shape of 3-TCNR. 

iii) The corner point of 3-TCNR and the resulting 3-TBS are 

coincident. 

iv) The 3-TBS generally follows the shape of the 3-TCNR. 

v) The 3-TBS is contained within the convex hull of 3-

TCNR for ( )    , 0,1 0,1u v   . 

vi) The continuity of the 3-TBS in each parametric direction 

is two less than the number of 3-TCNR vertices in that 

direction. 

vii) The 3-TBS is invariant under an affine transformation. 

viii) The 3-TBS does not exhibit the variation-diminishing 

property. The variation-diminishing property for bivariant 3-

TBS is both undefined and unknown. 

VII. CONCLUSION 

This paper has introduced 3-TBS interpolation model by 

defining 3-TCNR.  This research can be extended by using 

B-spline and non-uniform rational B-splines (NURBS) 

function for surfaces to obtain better results. The introduced 

model has potentials in overcome surface data visualization 

problems such as modelling spatial regions with 

indeterminate boundary in geoinformation systems (GIS), 

remote sensing, object reconstruction from airborne laser 

scanner, bathymetric data visualization and much more. By 

using 3-TBS interpolation model, problems with uncertainty 

characteristic can be handled and overcame. The 3-TCNR 

and 3-TBS interpolation model can give complete analysis 

and description of modelling problem where each surface is 

visualized consists of membership, non-membership and 

uncertainty that have its own meaning and reasoning. 
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