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Existence of Positive Solutions for a
State-dependent Hybrid Functional Differential
Equation

EL-Sayed A.M and *Ebead H.R

Abstract—In this paper, we study the existence of positive
solutions for an initial value problem (IVP) of a state-dependent
hybrid functional differential equation. The continuous depen-
dence of the unique solution will be proved. Some special cases
and examples will be given.

Index Terms—Hybrid differential equations, state-dependent,
quadratic integral equation, existence of positive solutions,
continuous dependence, fixed point theorem.

I. INTRODUCTION

N the last years, quadratic perturbations of nonlinear

equations have received a lot of attention from special-
ists. This type of equations called hybrid equations. Many
specialists work on the theory of hybrid equations, see for
example [9], [22], [30].

Usually, the equations of deviating arguments are with
deviation depends only on the time, however, when the devi-
ation of the arguments depend upon both the state variable &
and also the time ¢ is incredibly important theoretically and
practically. This type of equations is named self-reference or
state-dependent equations.

Equations which have state-dependent delays attract the at-
tention of specialists since it have plenty of application mod-
els, like the two-body problem of classical electrodynamics,
also have many applications in the class of problems that
have past memories, for example in hereditary phenomena,
see [15-18]. Several papers have devoted to this category of
equations, see for instance [1], [7]-[16], [19], [20] and [21]-
[29].

One of the first studies in this field was introduced by Eder
[11], the author studied the problem

gt) = £(&()

with the condition £(tp) = &,.
A generalization of Eder’s results was introduced by Feckan
[19], the author worked on the problem

te ACR.

) = te ACR

where ¢ € C1(R).
The problem

git) = ¥ (EED)),
E(O) = &
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P(EE))),

t € [a,b]

was studied by Buica [8] where i satisfied Lipshitz condi-
tion.

EL-Sayed and Ebead [16] relaxed the assumptions of Buica
and generalized their results, they studied the delay-refereed
problem

£t = v, / n(s,£(€())) ds), te[0,T]

where 7 satisfies Carathéodory condition.
El-Sayed and Ebead [14] and [15] studied the delay-refereed
problem

%f(t) = 9 (t,&(n(t,&()))),
£0) = &

under the two cases:

(@) n(t,§) <t
(i) n(t, &) <¢.

a.e. t€ (0,77,

Here we shall study the IVP of a state-dependent hybrid
functional differential equation

4l e Y y
dt {n(tf(ﬁ(ﬂ(t))))} ¥ (t,6(E(0(1)), ae te [o,ﬂ

£(0) = A(0). 2)

Our aim in this work is to prove the existence of positive
solution of (1)-(2). The continuous dependence of the unique
solution on the functions A, ¢ will be proved. To illustrate
our results some examples will be given.

This paper consists of six sections. Section 1 is the in-
troduction and a brief survey of the topic. In Section 2,
we introduce the main theorem (existence). We prove the
uniqueness theorem in Section 3. Continuous dependence of
the solution has been proved in Section 4. Some examples
was introduced by Section 5. Finally, in Section 6; as an
application to our work, we give a numerical example, we
use successive approximation method to give an estimation
for the solution of a problem of this type.

II. EXISTENCE OF SOLUTIONS

First, We provide proof of the existence of positive solu-
tions & € C[0, T for the state-dependent equation

A(t) + n(t, EEW(H)) / b (5, €(E(0(s))) ds,
te[0,T], (3)

£t =

under the following assumptions:
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(1) A : [0,T7] — RT is continuous and there exists a
positive constant ¢ such that:

A(t2) —

(2 n:[0,7] x [0,7] — R* is continuous, non zero
on [0,7] and

n(t2; &) —
n(t,0)] < Ag

A(t1)| S & |t2 7t1|.

n(t1,y)| < kilta — t1] + k)€ — v,

where kq, ko and A, are positive constants.

(3) ¢ :[0,7] x [0,T] — R™" satisfies Carathéodory
condition.
(4) There exists a function m : [0,7] — RT where m is

measurable and bounded with m(¢) < Ay, ¢ € [0,7]
and a constant k3 > 0 such that:

¥ (1,6) <m(t) + ks €.

(5) 9:]0,T] — [0,T7], 9(0) =0 and

[9(t) = 9(s)] <[t = s|.

This assumption implies that ¥(t) < ¢.

(6) There exists a real solution L € (0,1) for the equation
koM TL? — L + (c + My My + ks M T) =0
where My

= Al + kng, M2 = A2 + kQT

(7) LT+|60)| < T

Theorem 2.1. Let the assumptions (1) — (7) be satisfied,
then the state-dependent equation (3) has a positive solution
¢ e Clo,T].

Proof. Define the set Sy by
1€(t2)

Now define the operator H associated with (3) by:
o [ v

First, we show that { H £} is uniformly bounded on Sy. Let
& € C[0,T7, then

[H @) <

S, ={¢eClo,T) :

HE(t) = At) +n(t, E(&(

te[OT]

D]+ 0t EE€DE))]
/0 (s, EE(9(s)))) lds.

Using Assumptions (2) we can get

n(t2, £(€(WI(t2)))) — n(t1, £(EW(11))))]

ki [t2 — 1] + k2 [£(E(D(t2))) — £(E(D(t1)))]
ki [tz —ta| + k2 L |§(9(t2)) — E(9(t1))]

ky [to — 1] + ko L? |9(t2) — 9(t1)]

ki |te —t1| + ko L? |ta — t1],

VAN VAN VAN VAN

“4)

—&(t)| < Lta—ta]} € C[0,T).

and

[n(t, £€W(1)| < k2l€(€(W(1)))] + In(t,0)]
< kafS(€(W®)))] + Az
and from Assumptions (4) we can deduce that
[ (8. £(EW(1)| < ksl€(EW(1)] +m(t) (6)
< kslE(EW(0))] + Ar (7
Also z € S, implies that
€W ()] < [€(EW(1)))
L@ ())] + [£(0)]
Lt +1£(0)]
LT+E0)<T.
From (5)-(8), we obtain
[H @) <

®)

—&O) + [£(0)]

INIAIA

®)

A ()] + (k2T + As)

/t (ksT + Al) ds
< \)(\)(t)\ + My My T.

Assumption (1) implies that
A®)] IA(E) = A(0)] + [A(0)]

ct+|€(0)]
¢ T+ |£(0)].

INIAIA

Hence

[H &(1)] (¢ + My M) T+ 1£(0)|

<
= (L— (k1 + ko L?)MT) T + [€(0))|
< LT+EO)<T.

This proves that {H &} is uniformly bounded on Sy..

Next, we show that H : S, — Sy, and {H £} is equi-
continuous on the set Sy,.

Let x € Sy, and t1, t5 € [0,T] with |to, —t1] < 4, then

T €(t) — H &(t2)] = | Alta) — A1)
Tt EE(O(12)))) / (s, E(EO(s))) ds

— (L EEOn))) /0 (s, E(€(0(5)))) ds]
| Alt2) = Al >+n(t2,£<sw(t2))>)

/O v(s.£(e)) ds— [ " (5, EE0(5))) d)
+ (n(t2, E(E@( ))))fn(tl,fs(w(tl)))))
/0 1/) s,&(€(V(s) ) ds|

IA(t2) — )\(fl)\+|77(t27 (E(0(t2))))]

|/tt2 b (5, €€W(s))) ds]

b Il e >>>> (e, EE0))))]

| / " (s EE@()))) ds]

A(t2) - (tl)Hln(tm GO

/ (5. £((9(5)))) ds

—~

IN

IN
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+  [n(te, £(6(0(t2)))) — n(t1, E(E(W(1))))] This proves that H is continuous. Now according to ([23]
t1 page (482)), there exist solutions £ € C[0,T] of (3).
/ W)(S’ 5(5(79(5)))) |ds. Also, from our assumptions, we can get
0

From (4)-(8) we can get

) = At)+nt, €Wt Y (s,£(€(9(s)))ds >0,
\H &(ts) — H &(t)] (t) (t) +n( H()))/O (5,£(£(0(5)))

7).
< clta— il + (Ral€(€(0(E2)))] + A2) Lelom
to
/t (ksl€(€(9(s)))| + Ar)ds Theorem 2.2. Let the assumptions (1) — (7) be satisfied,
! ¢ then (1)-(2) has positive solutions £ € C[0,T].
+ (/ﬁ T ks L2) Ity —h\/ (ks\ﬁ(f(ﬂ(s)m +A1)ds Proof. Let & be a solution of (1)-(2). Integrate (1), then
0 substitute by (2), we get (3). Let £ be a solution of (3).
< clta —ta|+ (ko T+ A2) (ks T+ A1) [ta — ta] Differentiate (3) we obtain (1) and the initial value (2).
+ (k1 + ko L2) (k3 T + Al) [ta — t1] t1 This proves the equivalence between (1)-(2) and (3). Then
< ety — t1] + MoMts — 1] (1)-(2) has positive solutions ¢ € C[0,T).
+ (b + ko LA MT [ty —t
( ! 2 ) 1T |t 1|2 The next corollary relax the assumptions and generalize
= (e MM+ (k1 + ke L7)MiT) [tz — 1] the results in [8] and [19].

L |to —tq].
Corollary 2.1. Using to Theorem 2.1 with n(¢,£) = 1, then

Then we proved that H : S;, — Sr and {H &} is equi- state-dependent equation

continuous on Sy. Applying Arzela-Ascoli Theorem ([24]

page (54)), we deduce that H is compact. .

Next, we show that H is continuous. Let {§,,} C Sy, be such €(t) = A(t +/ W (s, E(EW(s ds. tel0.T
that x, — x, (i.e,|(t) — £(t)] < € ) this implies that () ) 0 (5, £(6(N) ds, 0.7]
[€n,(E(0(F))) —€(€(V(E)))| < €*, then for arbitrary €, €* > 0,

we have has solution £ € C0,T]. Consequently if A(t) = &o, then
6a(Ea(9(0))) — EEW(0)] ,
= Ju(6a(D(0))) — Ea (1)) €' = ¢ (6 EE0W) ae te0T] O
+ EaE1) — EEW D)) §0) = & (10)
< [6a(&n(9(1))) — EnleD®))] o
TG EW))) — EEW®))] has positive solutions & € C[0, 7.
< L [&(9(1) — £((1))]
+  1&(E(0(1))) — €(&(W(1)))]
< Le+¢€ III. UNIQUENESS OF THE SOLUTION

which implies that . .
Here we introduce the uniqueness theorem of (1)-(2). For

En(En(D(1)))) — (E(E(D(1)))) in S this aim, we assume that:

@) g (£,8) =¥ (& y)| < ks [€ -y

Now from assumptions (2-4) and Lebesgues dominated con- @) sup|v (40)] < Ay, te0,T).

vergence Theorem ([10] page(151)), we get

tim iy (t,£(E(0(1)) = n(t.EEWD(1))))
Theorem 3.3. Let the assumptions (1)-(3), (5)-

and (7), (1') and (2') be satisfied, if

lim n(En (D ds = €W ds,

Jim [ (s 66 @)as = [ vs ) kst L T < 1
hence

lim (Hﬁn)(t) _ A+ ngnmn(t, fn(ﬁn(ﬁ(t)))) then The solution of (1) and (2) is unique.

nfoo t Proof. From assumptions (1’) and (2') we can deduce
nh_ﬂnoo ; )(s, € (En(V(s))))ds assumption (4)

= A (t) +n(t W) /0 b(s,€(E(9(5))))ds W (6,E)] < ks €|+ |v (£,0)]

— (H &)(1). < ks g1+ A,

Volume 50, Issue 4: December 2020



TAENG International Journal of Applied Mathematics, 50:4, IJAM_50 4 23

thus using Theorem 2.1, (3) has at least a solution. Now, if
(3) has two solutions ¢ and y, then

ORI
= |n(t.E@®)) / (s, E(E(D(s)))) ds

~ ntyeO0)) [ (s u@)ds|

0

— (s, y(y(9(s))))]ds

IN
3
—~
S+
Iy
7" -
—~
I~
~
S~—
S~—"

IN

(ko T+ As) k’3/ 1363
+ k2 E(E((

My ks / (e (9(s)))|ds
My T <<>>>—y<yw<t>>>|

IN

and

1£EW(1))) — y(y(9(1)))l
= [£(€W(1))) — &(y(9(2)))
+ @) —yy(@)))l
< [EEW®)) — E(y(I())]
+ [E@®)) —yw@@))
< LIEW()) —y(0())]
+  [E(y((1))) — y(y(I(2)))]
< Llg-yll+ 1€ -yl
= (L+DlE—yll,

thus we have

€=yl <

and

(M k3 + My ko) (L+1) T|l¢ -y

(1 — (Maks + Myk)(L + 1)T) || —y|| <0,

since (Msks + Miko)(L 4+ 1)T < 1, then we get £ = y and
the solution of (3) is unique. Consequently the solution of
(1)-(2) is unique.

Corollary 3.2. According to Theorem 3.3, let n(¢,£) = 1
and A(t) = &, then (9) and (10) has a unique positive
solution ¢ € C(0,T].

Now, as in [17] and [18], we introduce the next theorem.
Theorem 3.4. According to Theorem 3.3, we can
approximate the numerical solution of (3) by

£ = lim &,(0)

where &, (t) is constructed by

Ent) = AL+ 1t Ens (Ens (9(1)))
/0 (5, 6t (En1 (9(5)))) ds,
Eo(t) = A1).

IV. CONTINUOUS DEPENDENCE
A. Continuous dependence on the function A
Definition 4.1. The solution of (1) and (2) continuously
depends on X if Ve; > 0 3 §1(e;) > 0 such that:

A=A <h=[¢-& <ea

where
dLEO-NO ey
{(5( ()))} Bs.EE ), ae te(0.T]
(11)
with the initial data
£°(0) = A*(0). (12)

Theorem 4.5. According to Theorem 3.3, the solution of
(1) and (2) continuously depends on .

Proof. Assume that the functions £ and &* are the
two unique solutions of (1)-(2) and (11)-(12) respectively,
thus we have

€t — € (1) t
INE) + (6 EEW (L)) / (s, £(€(0(s)))) ds

t

_ e V(5,767 (9(s)))) ds|

—n(ee o) [
IACE) = X(0) + n(t, EE0(1))))
[ v ctcwemas - [ vfs.e € o)as)
(n(t,€EW®)))) —n(t € (€ (D(1)))))
/0 t (s, (€ (9(s))))ds
AH) - ()Hln( E(E0®)))]
/ (s, (¢ — (s, €7 (€7 (9(5))) ds
o e (()))) (tﬁ(f(())))!
/ (s, €% (€ (9(5)))Ids
Bt k2|5<5<19<t>>>|+A2>
( / B E(E(0(s)) — £ (€ (9(s)))Ids)
+BIEEDW) - € (€ 0)
(¢

(/Ou«g\g “(0(3))] + A1)ds)

+ —~ |l

IN

IA

< 614 (ke T+ As) ks / E(EW(s))) — €€ (0(5)))\ds
b RlEED(s)) — € (€' ()] (ks T+ Ay) / s

< by My ks(D 4 1€~ €7 ¢

+ ok My(L+ D) - €7 ¢
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< A+ My ks(L+1)E-&7 T
+ ke My(L+1)[E-E T
= 014 (kg My + k3 M) (L+1) T ||€ =&

thus
1€ — €°1(1 = (ko My + Ma ks) (L+1) T) <6
and
* 51 _

since (ko My + Mz k3) (L+1) T < 1, then the solution of
(3) continuously depends on the functions A. Consequently
the solution of (1) and (2) continuously depends on A.

B. Continuous dependence on the function

Definition 4.2. The solution of (1) and (2) continuously
depends on the function ¢, if V ea > 0 3 da(ea) >
0 such that :

[ —o*[|[ <= |lz =& < e
where
L{EOA0Y_ e o
i {TlEs e @), ae e
(13)
with the initial data
£°(0) = \(0). (14)

Theorem 4.6. According to Theorem 3.3, the solution of
(1) and (2) continuously depends on the function .

Proof. Assume that ¢ and £* are the two unique solutions
of (1)-(2) and (13)-(14) respectively, then we get

() — € 1) t
— A + (L EE@)) / b (5, E(E(0()))) ds
— @) - n(

/ 5 (5,6 (6" (9(5))) ) ds|
= |77(f££(19( >>>)

( /ot¢<svf<£<ﬂ<s>>>>d5
- /ot“&f*(f*(ﬂ(s))))ds)

IN

3
—
\.@F

I
—~
722%
—~

~
—~

o~
~—
~~
~~
SN—

£ (&5 (0(s)))) — ¥* (5,7 (E°((s))))|ds)
)| + Az)

IN
—
I
~
Iy
—
AN
—
—~ -

([ el - & (€ sl
4 RIEEO0) ~ € (€ 000)
([ taler € @I+ Ay

© (bal€ (€ (0(1))] + Ao) / 5ads

IN

t
(ks T + As) / ka(L+ 1)[j€ — €7]|ds

t
oL+ Dl =€) [ (s T Avys
(ko T + Ay) td
Ms k3(L+1)[|€ =& t
ko Mi(L+1)|§ —&*|| t + My Tdo
My ks(L+ 1[I =& T
ko Mi(L+D||E =& T+ Mz To
(ke My +ks Mo) (L4+1) T ||€—=&"||+ My T bo,

I+ IAN + IN + +

thus
1€ —&[(1 = (ke My+ Ms k3) (L+1)T) < My T 6,

and
My T b9
1— (ke My + Ms k3) (L+1) T)

= €9

§-¢ <
I I (

since (ko My + M ks) (L+1) T < 1, then the solution of
(1) and (2) continuously depends on .

V. EXAMPLES

Example 5.1. Consider the state-dependent problem
§(t) _ 142t

i e e )

_ L et g€ )]
= 5_t|bln(5(t+1))|+175m
(15)
with the initial data
£0) = 5. (16)
where ¢t € (0,2] and 8 € (0, 1]. Here we have: 9(t) = 5 t,
14 2¢
A(t) = 3727
t v(t = 1 > t
n(t,E€WM0)) = (55t + 356(EB D)),
D (8 EEW()))
R et (B 1)
- (5—t |51n(5(t+1))|+T5 1+|§(§(5 t))‘)v
thus we have: c = &, A1 =4 Ay =31 ki =L, ky =
B e e S S D e

15> 15
1andLT+\£( ) ~080<T=2.

Using Theorem 2.2, then (15)-(16) has positive solutions
¢ e Clo,T].
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Example 5.2. Consider the state-dependent problem

d &) - 1715(1 _ t2) = } sin e}
{( £(&(at))]) } = g (t+sin (£((ar))])

dt
a7
with the initial data
1
- . 1
£(0) 15 (18)
where ¢ € (0, 3] and a € (0,1]. Here: 9(t) = a t,
1 2
AD) = £ (1-12)

1
(it + §|§(§(a 1),

bl eemy) = )]

n(t, £(E(W(1))))

8
thuswehav c=24, A =24, A =14, k1:i7
k’g kjg_l M].:% M2:73
L~01079 < 1 and LT+ [£(0)] = 0121 < T =

Also we have
(ke My +ks My) T (L+1)~0.020 < 1.

Now form Theorem 3.3, the solution of (17)-(18) is unique.

VI. APPLICATION

Finally, we introduce an application of Theorem 3.4 in
the next numerical example.

Example 6.3. Consider the state-dependent problem

4 [ - <t—mt3)}:1t_ o
i\ L ey} 2t seon o
where ¢ € (0,1] with the initial data
£(0) =0. (20)
with
€0 = (3¢5t
1 ‘1
+ gl [ G- le)as
te0,1].
The exact solution of (19)-(20) is £(t) = £t. Here: 9(t) =
1 5
A(t) = (it — Et?’y

n(t, (§(6@0(1))) =
bt (£(601))))

271 Al —

214(t+\s( €0)).
S~ le))),

then we have c= 23, , Ay = 57, k1 = ko =
I k=1 M =1, My= 5. L~0673< Land LT+
1€(0)] ~0673§T*1 Also we have

(ke My + ks My) T

l\.’)\»—t [\3‘

(L+1)~0.139 < 1.

Now using Theorem 3.3, the solution of (19)-(20) is unique.

TABLE 1
COMPARISON BETWEEN THE EXACT SOLUTION AND APPROXIMATE
SOLUTION

t First approximation Second approximation Error 1 Error 2
0.1 | 0.0499999999205326 | 0.049999999999999 | 7.945E-11 1.006E-15
0.2 | 0.0999999974575626 | 0.099999999999812 2.54E-09 | 1.880 E-13
0.3 | 0.149999980699926 0.149999999996796 1.93E-08 3.204E-12
0.4 [ 0.199999918708124 0.199999999976014 8.13E-08 2.398E-11
0.5 | 0.249999752066693 0.249999999885713 2.48E-07 1.143E-10
0.6 | 0.299999383513753 0.299999999590865 6.16E-07 | 4.0914E-10
0.7 | 0.349998668669012 0.349999998797650 1.33E-06 1.202E-09
0.8 | 0.399997406877573 0.399999996941931 2.59E-06 3.058E-09
0.9 | 0.449995332181913 0.449999993034889 4.67E-06 6.965E-09

1 0.499992104428274 0.499999985459222 7.90E-06 1.454E-08

Now, we use the method of successive approximation
(Picard Method) to estimate the solution of (19)-(20).

) = (31— 555t + 55 (1+ 601 (602(0)
t
%(s — &1 (n—1(s)))ds 1)
0
&) = (%t — %t?’). (22)
and
f(t) = nlﬂ{loo §7L(t)'

(19)-(20) was programmed using Matlap software and the
results are shown in Table 1.

Table 1 shows the values of the solution obtained
in the first and the second iterations for different
values of ¢t. We also calculated the error (

|Exact solution— Approximated solution| ) at every step.
Columns 4 and 5 in Table 1 give the errors corresponding
to the first and the second iterations respectively.

We deduce that the error will be very small when the
number of iterations increase. So, when n — oo the
approximated solution and the exact solution will coincide.
Here we calculated the error for the first and the second
iterations only since the error is very small in the next
iterations.

VII. CONCLUSION

In this paper, we have proved the existence, the unique-
ness, and the continuous dependence of the unique solution
of a state-dependent hybrid differential equation under suit-
able assumptions. Here we have generalized the results in [7],
[8], [17], and [18]. Some examples, to illustrate the obtained
results, have been given. Also, the method of successive
approximation has been used to estimate the solution of a
given example.
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