
 

  

 

Abstract—This article aims to present a novel method, namely 

wheel partition technique, for constructing a new cyclic 𝟏𝟐-fold 

triple system called cyclic triple factorization denoted by 

𝑪𝑻𝑭(𝒗). We prove the existence of 𝑪𝑻𝑭(𝒗) for 𝒗 = 𝟏𝟐𝒏+ 𝟏𝟎. 

Then, an arrangement of 𝒗 × 𝟐(𝒗 − 𝟏) triples of 𝑪𝑻𝑭(𝒗) is 

developed using the idea of decomposition of wheel graph into 

triangles (triples). Moreover, the starter triples algorithms of 

𝑪𝑻𝑭(𝒗) are formulated to generate all triples. 

 
Index Terms—complete multigraph, near four factorization, 

triple system, wheel graph. 

I. INTRODUCTION 

hroughout this paper, all graphs are considered 

undirected with vertices in a cyclic group 𝑍𝑣. The 

standard notations of graph theory are used so that 𝜆𝐾𝑣, 𝐶𝑚 

and 𝑊𝑛, respectively, denote the complete multigraph on 𝑣 

vertices, the 𝑚-cycle and the wheel graph of order 𝑛. As usual 

speaking of the wheel graph 𝑊𝑛 = 𝑐0 + (𝑐1, 𝑐2, … , 𝑐𝑛−1), 

means that contains a cycle of order 𝑛 − 1, and  each vertex 

in the cycle is adjacent to another new vertex, 𝑐0, which is 

known as hub. 

A (𝜆𝐾𝑣 , 𝒴)-design is a decomposition of 𝜆𝐾𝑣  into a 

multiset of subgraphs 𝒴 = {𝐻1, … , 𝐻𝑟}. Automorphism 

group of (𝜆𝐾𝑣 , 𝒴)-design 𝛱 is a group of bijections on 

𝑉(𝜆𝐾𝑣) = 𝑍𝑣 fixing 𝒴. If there is an automorphism              

𝛼 ∈ 𝛱 that is a permutation of order 𝑣, it is called cyclic. 

Thus, the automorphism can be expressed by  

𝛼: 𝑖 ⟶ 𝑖 + 1  (𝑚𝑜𝑑 𝑣) or 𝛼: (0, 1, … , 𝑣 − 1). 
A starter of (𝜆𝐾𝑣 , 𝒴)-design is a multiset of 𝒴 that 

generates all the graphs of 𝒴 by repeated addition of 1 

modulo 𝑣 [1]. In particular, the (𝐾𝑣 , 𝒴)-design is called an 𝑚-

cycle system of order 𝑣 if 𝒴 is a collection of 𝑚-cycles. The 

existence question of 𝑚-cycle system of order 𝑣 has been 

solved in [2]-[3]. Recently, Bryant et al. [4] showed the 

necessary and sufficient conditions for the decomposition of 

𝐾𝑣 into cycles of various orders, or into cycles of distinct 

orders and a perfect matching. More recently, the necessary 

and sufficient conditions have been extended to decompose 

𝜆𝐾𝑣 into cycles of varying lengths [5]. 

A 𝑘-factor of a graph 𝐺 is a spanning subgraph whose 

vertices have a degree 𝑘. While a near-𝑘-factor is a spanning 
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subgraph in which all vertices have a degree 𝑘 with exception 

of one vertex (isolated vertex) which has a degree zero. The 

partition of edge set of a graph 𝐺 into 𝑘-factor (respectively, 

near- 𝑘-factor) is called a 𝑘- factorization (respectively, near-

 𝑘- factorization). More general results on near-𝜆-

factorization of  𝜆𝐾𝑣 have been presented in [6]-[7]. 

A balanced incomplete block design is a pair (𝑉, ℬ) where 

𝑉 is a finite set of 𝑣 points and ℬ is a multiset of 𝑘-subsets of 

𝑉 called blocks such that each 2-subset of 𝑉 is contained in 

precisely 𝜆 blocks. Such design is denoted (𝑣, 𝑘, 𝜆)-𝐵𝐼𝐵𝐷. A 

𝜆-fold triple system is (𝑣, 3, 𝜆)-𝐵𝐼𝐵𝐷 and denoted 𝑇𝑆(𝑣, 𝜆). 
On other words, we can say that a 𝜆-fold triple system is a 

decomposition for 𝜆𝐾𝑣  into edge disjoint triangles. The pair 

(𝑉, ℬ) is called a cyclic triple system,  𝐶𝑇𝑆(𝑣, 𝜆), if 𝑉 = 𝑍𝑣 

and if 𝐵 = {𝑐1, 𝑐2, 𝑐3} ∈ ℬ then 𝐵 + 1 = {𝑐1 + 1, 𝑐2 +
1, 𝑐3 + 1} is also in ℬ. The orbit of the triple 𝐵, denoted by 

𝑜𝑟𝑏(𝐵), is the set of all distinct triples in the collection 

{𝐵 + 𝑖| 𝑖 ∈ 𝑍𝑣}. The length of orbit 𝐵 is its cardinality i.e., 

𝑜𝑟𝑏(𝐵) = 𝑘, where 𝑘 is the minimum positive integer such 

that 𝐵 + 𝑘 = 𝐵. If the orbit of 𝐵 is 𝑣, it is called a strictly; 

otherwise it is short. When 𝑣 ≢ 0 (𝑚𝑜𝑑 3) then there is no 

short orbit of block [8]. 

The existence of a 𝜆-fold triple system of order 𝑣 for any 

possible parameters 𝜆 and 𝑣 is considered an interesting 

problem due to its nice combinatorial properties and its 

relationship to optical orthogonal codes [9]. For more, readers 

can refer to [10]-[12]. In [13], Colbourn and Colbourn studied 

the existence of cyclic triple system over 𝑍𝑣 when 𝑣 ≡
1, 3 (𝑚𝑜𝑑 6). While the necessary conditions for the 

existence 𝐶𝑇𝑆(𝑣, 𝜆) have been given by Colbourn and Rosa 

[14]. 

One of the latest triple systems is triad design, which is 

concerned in arranging all triples of 𝑍𝑣 according to some 

constraints. Ibrahim and Wallis employed near-one-

factorization to present a new type of triple system that is 

called compatible factorization which is used in building up 

the triad design. They proved the existence of the triad design 

of 𝑍𝑣 for 𝑣 ≡ 1, 5(𝑚𝑜𝑑 6) [15]. Moreover, the algorithms of 

starter of triad design have been formulated for the cases  𝑣 ≡
1, 5(𝑚𝑜𝑑 6) [16]-[17]. 

On the other hand, a new method for decomposing all 

triples of  𝑍𝑣 into cyclic triple systems for the case of odd 𝑣, 

𝑣 ≡ 1, 3, 5(𝑚𝑜𝑑 6), has been introduced. The large set of 

cyclic triple systems has been defined to be a decomposition 

of all triples of 𝑍𝑣 into indecomposable cyclic systems [8]- 

[9].  

In this paper, a new method is presented to construct a new 

type of cyclic 𝜆-fold triple system of order 12𝑛 + 10, called 

cyclic triple factorization. This method depends on 

employing a cyclic (𝜆𝐾𝑣 , 𝒴)-design when 𝜆 = 4 and 𝒴 is a 

collection of cycles of varying lengths satisfying near-four-
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factorization. 

II. PRELIMINARIES  

This section recalls briefly some definitions, notations and 

preliminary results that we used in the sequel. In this paper, 

we consider 𝑍𝑣 with even order and 𝑍𝑣
∗ = 𝑍𝑣 − {0}. For 𝑎 ≠

𝑏 ∈ 𝑍𝑣, the difference 𝑑 of a pair {𝑎, 𝑏} is defined as               

𝑑 = {𝑚𝑖𝑛{|𝑎 − 𝑏|, 𝑣 − |𝑎 − 𝑏|}}. So, the difference of any 

pair of points in 𝑍𝑣 is not exceeding (
𝑣

2
), (1 ≤ 𝑑 ≤

𝑣

2
). Let 𝐵 

be a 𝑘-subset of 𝑍𝑣, the list of differences from 𝐵 is the 

multiset 𝐷(𝐵) = {𝑚𝑖𝑛{|𝑎 − 𝑏|, 𝑣 − |𝑎 − 𝑏|}, 𝑎 ≠ 𝑏 ∈ 𝐵}. 
Generally, the list of differences of multiset 𝒜 =
{𝐵1 , 𝐵2, … , 𝐵𝑟} of 𝑘-subsets of 𝑍𝑣 is defined as 𝐷(𝒜) =

⋃ 𝐷(𝐵𝑖)
𝑟
𝑖=1 . The following concepts have been presented in 

[18]. 

 

Definition 1. Let 𝒜 be a multiset of 𝑘-subsets of 𝑍𝑣. An 𝒜 

is a (𝑣, 𝑘, 𝜆)-difference family if 𝐷(𝒜) covers each element 

of 𝑍𝑣+2
2

∗  exactly 𝜆 times except for the middle difference (
𝑣

2
) 

appears 
 𝜆

2
 times. 

 

Theorem 1 . Let 𝒜 be a multiset of 𝑘-subsets of 𝑍𝑣. Then 𝒜 

is a starter of cyclic (𝑣, 𝑘, 𝜆)-𝐵𝐼𝐵𝐷 if and only if 𝒜 is a 

(𝑣, 𝑘, 𝜆)-difference family. 

 

Theorem 2 . The existence of cyclic (𝑣, 𝑘, 𝜆)-𝐵𝐼𝐵𝐷 under 𝑍𝑣 

is completely equivalent to the existence of a (𝑣, 𝑘, 𝜆)-
difference family in 𝑍𝑣. 

 

On the other hand, Let 𝐻 be a subgraph of a graph 𝐺 of 

order 𝑣 and let 𝑁𝐻(𝑥) be a multiset of neighbours of 𝑥 in 𝐻. 

Then the list of differences of 𝐻 is 𝐷(𝐻) = {𝑚𝑖𝑛{|𝑥 −
𝑦|, 𝑣 − |𝑥 − 𝑦|}, 𝑥 ∈ 𝑉(𝐻), 𝑦 ∈ 𝑁𝐻(𝑥)}. More generally, 

given a set 𝛿 = {𝐻1, 𝐻2, … , 𝐻𝑟} of subgraphs of 𝐺, the list of 

differences from 𝛿 is defined by 𝐷(𝛿) = ⋃ 𝐷(𝐻𝑖)
𝑟
𝑖=1 . 

 

Definition 2 . Let 𝛿 be a multiset of subgraphs 𝜆𝐾𝑣 . A 𝛿 is a 

(𝐺, 𝒴)- difference family if 𝐷(𝛿) covers each element of 𝑍𝑣+2
2

∗  

exactly 𝜆 times except for the middle difference (
𝑣

2
) appears 

 𝜆

2
 times. 

 

As a particular result of the theory developed in [18], we have 

Theorem 3 . Let 𝛿 be a multiset of subgraphs 𝜆𝐾𝑣 . Then 𝛿 is 

a starter of cyclic (𝐺, 𝒴)- design if and only if  𝛿 is a (𝐺, 𝒴)- 
difference family. 

III. INTRODUCTORY RESULTS 

In this section, we introduce some definitions and results 

required to establish our main aims in the next sections. 

 

Definition 3. A (𝑚1
∗, 𝑚2

∗ , … ,𝑚𝑟
∗)-cycle system of 𝐺 is a 

(𝐺, 𝒴)- design in which 𝒴 is a collection of cycles of length 

{𝑚1, 𝑚2, … ,𝑚𝑟}. 
 

Definition 4. A cyclic (𝑚1
∗ , 𝑚2

∗ , … ,𝑚𝑟
∗)-cycle factorization of 

𝜆𝐾𝑣  is a (𝑚1
∗, 𝑚2

∗ , … ,𝑚𝑟
∗)-cycle system in which the starter 

(briefly 𝛿) is a near-𝜆-factor denoted by 𝐶𝐶𝐹(𝜆𝐾𝑣 , 𝛿). 
 

Following Tian and Wei [9], we use the superscript 

notation to describe a starter set of cyclic design. Therefore, 

𝛿 = {𝐶𝑚1
𝑛1 , 𝐶𝑚2

𝑛2 , … , 𝐶𝑚𝑟
𝑛𝑟 } means that there are 𝑛1 cycles of 

length 𝑚1, 𝑛2 cycles of length 𝑚2, etc., as well as we consider 

that  𝐶𝑚𝑖   be the 𝑖-th  𝑚-cycle in starter set 𝛿. 

 

Lemma 1. Let 𝐺 be graph of order 𝑣. Let 𝑛 > 0 be an even 

integer and 𝒞 be a set of cycles of 𝐺. Then 𝒞 is a near-𝑛-factor 

of 𝐺 if and only if the vertex set of 𝒞 covers every element of 

𝐺 exactly  
𝑛

2
  times except one vertex. 

Proof. Let 𝒞 = {𝐶𝑚1 , 𝐶𝑚2 , … , 𝐶𝑚𝑟} be a set of cycles that 

satisfies a near-𝑛-factor then each vertex of 𝒞 has a degree 𝑛 

except the isolated vertex. Let 𝑥 ∈ 𝑉(𝐺) and 𝑥 is not isolated 

vertex in 𝒞. Then, the degree of 𝑥 in 𝒞 is 

 

𝑑𝑒𝑔𝒞(𝑥) = ∑𝑑𝑒𝑔𝐶𝑚𝑖
(𝑥)

𝑟

𝑖=1

 

 

where 𝑑𝑒𝑔𝒞(𝑥) and 𝑑𝑒𝑔𝐶𝑖(𝑥) denote the degree of 𝑥 in 𝒞 and 

𝐶𝑚𝑖  respectively. Since a cycle graph is a 2-regular graph, 

then 𝑑𝑒𝑔𝐶𝑚𝑖
(𝑥) = 2 or 0 according to whether or not 𝑥 is a 

vertex of 𝐶𝑚𝑖  , 1 ≤ i ≤ 𝑟. Suppose the number of cycles in 𝒞 

that contains 𝑥 is 𝑘. Then, we have: 

 

                 𝑑𝑒𝑔𝐶𝑚𝑖
(𝑥) = 2 + 2 +⋯+ 2, 

                                 = 2 × 𝑘. 

 

Since 𝑑𝑒𝑔𝒞(𝑥) = 𝑛, then 𝑘 =
𝑛

2
.  

The next task is to show that if each vertex of 𝐺 appears 
𝑛

2
 

times except one vertex in 𝒞 = {𝐶𝑚1 , 𝐶𝑚2 , … , 𝐶𝑚𝑟} then the 

cycles of 𝒞 satisfy near-𝑛-factor. Consider 𝑦 is a vertex of 𝐺 

that does not appear in 𝒞 and 𝑥 ∈ 𝑉(𝐺), 𝑥 ≠ 𝑦. So, 𝑥 occurs 
𝑛

2
 times in the cycles of 𝒞. Hence, the degree of 𝑥 in 𝒞 is 

calculated as 

𝑑𝑒𝑔𝒞(𝑥) = ∑𝑑𝑒𝑔𝐶𝑚𝑖
(𝑥)

𝑟

𝑖=1

 

such that 

𝑑𝑒𝑔𝐶𝑚𝑖
(𝑥) = {

2,    𝑥 ∈ 𝐶𝑚𝑖 ,

0,    𝑥 ∉ 𝐶𝑚𝑖 .
 

 

Since 𝑥 appear 
𝑛

2
 times in the cycles of  𝒞 then 

  

𝑑𝑒𝑔𝒞(𝑥) = 2 + 2 +⋯+ 2⏟        
𝑛

2
  𝑡𝑖𝑚𝑒𝑠 

= 2 ×
𝑛

2
= 𝑛. 

 

Therefore, 𝒞 = {𝐶𝑚1 , 𝐶𝑚2 , … , 𝐶𝑚𝑟} forms a near-𝑛-factor 

with isolated 𝑦.                                                                                   □ 

 

Remark 1. The set of cycles cannot fulfill a near-𝑛-factor 

when 𝑛 is odd since the cycle is a 2-regular graph. Thus, the 

degree of any vertex in the cycle will be even. 

Consistent with the definition of wheel graph, the edge set 

of wheel graph of order 𝑛, 𝑊𝑛 = 𝑐0 + (𝑐1, … , 𝑐𝑛−1), is 
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divided into two sets as follows: 

 

𝐸(𝑊𝑛) = 𝐸(𝐾(1,𝑛−1)) ∪ 𝐸(𝐶𝑛−1). 

 

Where  

   𝐸(𝐾(1,𝑛−1)) = {𝑐0𝑐𝑖  |1 ≤ 𝑖 ≤ 𝑛 − 1}; 

       𝐸(𝐶𝑛−1)  = {𝑐𝑖𝑐𝑖+1 |1 ≤ 𝑖 ≤ 𝑛 − 1} where 𝑐𝑛 = 𝑐1. 

 

Definition 5. Let 𝑊𝑛 be a wheel of a graph 𝐺 of order 𝑣. The 

list of differences of 𝑊𝑛, denoted by 𝐷(𝑊𝑛), is the multiset  

𝐷(𝑊𝑛) = 𝐷(𝐶𝑛−1) ∪ 𝐷(𝐾(1,𝑛−1)) such that  

𝐷(𝐶𝑛−1) =
{𝑚𝑖𝑛{|𝑐𝑖 − 𝑐𝑖−1|, 𝑣 − |𝑐𝑖 − 𝑐𝑖−1|}|1 ≤ 𝑖 ≤ 𝑛}, 𝑐𝑛 = 𝑐0; 

𝐷(𝐾(1,𝑛−1)) =

{𝑚𝑖𝑛{|𝑐𝑖 − 𝑐0|, 𝑣 − |𝑐𝑖 − 𝑐0|}|1 ≤ 𝑖 ≤ 𝑛 − 1}. 
 

We call 𝐷(𝐶𝑛−1) and 𝐷(𝐾(1,𝑛−1)) the cycle differences 

(𝐶𝐷) and internal differences (𝐼𝐷), respectively.  

 

Lemma 2. Let 𝑣 be an even integer and 𝒲 be a set of wheels 

of a graph of order 𝑣. If the associated cycles with wheels in 

𝒲 form a near-four-factor, then the internal 

differences, (𝐼𝐷), of 𝒲 covers each element in  𝑍𝑣+2
2

∗   four 

times except the middle difference 
𝑣

2
  twice.  

Proof. Let 𝒲 = {𝑐0 + 𝐶𝑚1 , 𝑐0 + 𝐶𝑚2 , … , 𝑐0 + 𝐶𝑚𝑟} be a set 

of wheels of graph of order 𝑣 such that the set of cycles 

{𝐶𝑚𝑖 , 1 ≤ 𝑖 ≤ 𝑟} form a near-four-factor with isolated 𝑐0. 

Then, the internal differences of 𝒲, (𝐼𝐷), is determined as 

follows: 

 

𝐷(𝐾(1,𝑚𝑖)) =  

{𝑚𝑖𝑛{|𝑐𝑗 − 𝑐0|, 𝑣 − |𝑐𝑗 − 𝑐0|}|𝑐𝑗 ∈ 𝐶𝑚𝑖 , 1 ≤ 𝑖 ≤ 𝑟, 1 ≤ 𝑗 ≤ 𝑚𝑖} 

 

𝐷(𝐾(1,𝑚𝑖)) =

{
|𝑐𝑗 − 𝑐0|, |𝑐𝑗 − 𝑐0| ≤

𝑣

2
,  𝑐𝑗 ∈ 𝐶𝑚𝑖 , 1 ≤ 𝑖 ≤ 𝑟, 1 ≤ 𝑗 ≤  𝑚𝑖;      

𝑣 − |𝑐𝑗 − 𝑐0|, |𝑐𝑗 − 𝑐0| >
𝑣

2
, 𝑐𝑗 ∈ 𝐶𝑚𝑖 , 1 ≤ 𝑖 ≤ 𝑟, 1 ≤ 𝑗 ≤  𝑚𝑖 .

  

 

Since the cycles {𝐶𝑚𝑖 , 1 ≤ 𝑖 ≤ 𝑟} form a near-4-factor, 

then the vertex set of cycles {𝐶𝑚𝑖 , 1 ≤ 𝑖 ≤ 𝑟} covers each 

element of 𝑍𝑣 twice except 𝑐0 based on Lemma 1. 

Now if we label 𝑐0 by "0", then every vertex of the 

following set: 

 

{1, 2, … , ( 
𝑣

2
− 1) ,

𝑣

2
, ( 
𝑣

2
+ 1) ,… , (𝑣 − 2), (𝑣 − 1)} 

will appear as 𝑐𝑗 ∈ 𝐶𝑚𝑖  twice. Therefore, (𝐼𝐷) can be written 

as:  

 

𝐷(𝐾(1,𝑚𝑖)) = {
𝑐𝑗 ,            𝑐𝑗 ≤

𝑣

2
, 𝑐𝑗 ∈ 𝐶𝑚𝑖 , 1 ≤ 𝑖 ≤ 𝑟;

𝑣 − 𝑐𝑗 ,    𝑐𝑗 >
𝑣

2
, 𝑐𝑗 ∈ 𝐶𝑚𝑖 , 1 ≤ 𝑖 ≤ 𝑟.

  

 

Thus, every element in the multiset of 

{1, 2, … , (
𝑣

2
− 1) ,

𝑣

2
, (
𝑣

2
− 1) ,… , 2, 1} 

will be shown twice. Then 𝐷(𝐾(1,𝑚𝑖)) covers all the nonzero 

elements of  𝑍𝑣+2
2

∗  four times except the middle difference 
𝑣

2
 

occur twice.                                                                            □ 

IV.  CYCLIC TRIPLE FACTORIZATION 

In this section we propose a new type of triple system, 

namely cyclic triple factorization, which contributes to 

arrange 𝑣 × 2(𝑣 − 1) triples into 𝑣 rows. 

 

Definition 6. A cyclic triple factorization of order 𝑣, denoted 

by 𝐶𝑇𝐹(𝑣), is a way of arranging  𝑣 × 2(𝑣 − 1) triples into 

𝑣 rows such that it satisfies the following conditions:  

(i) Object 𝑟 appears precisely 2(𝑣 − 1) times in each row 𝑟. 
(ii) Each object except 𝑟 appears four times in each row 𝑟. 

(iii) The triples associated with row 𝑟 contains no repetitions. 

 

In order to construct the cyclic triple factorization, the 

starter of cyclic (𝑚1
∗ , … ,𝑚𝑟

∗)-cycle factorization of 4𝐾𝑣  is 

employed. Let us provide an example to illustrate the 

construction method of 𝐶𝑇𝐹(𝑣) by exploiting cycles set. 

 

Example 1.  Let  𝐺 = 4𝐾22 and 𝛿 = {𝐶4
5, 𝐶11

2 } is a set of 

cycles of 𝐺 such that: 

𝐶41 = (1, 21, 12, 10); 𝐶42 = (2, 20, 13, 9); 𝐶43 =

(3, 19, 14, 8); 𝐶44 = (4, 18, 7, 15); 𝐶45 = (5, 17, 16, 6); 

𝐶111 = ( 21, 2, 11, 3, 10, 4, 9, 6, 8, 7, 17);  

𝐶112 = (1, 20, 11, 19, 12, 18, 13, 16, 14, 15, 5).  

 

Easily, it can be observed that the differences list of 𝛿 

covers each nonzero element of 𝑍12 four times except the 

middle difference 11 which appears twice. Thus, 𝛿 is 

considered a starter of cyclic (4∗, 11∗)-cycle system based on 

Theorem 3. Furthermore, it could be noticed that each 

nonzero element in 𝑍22 occurs twice in the cycles of 𝛿. From 

Lemma 1, the cycles of 𝛿 form a near-four-factor with focus 

zero element. Consequently, the cyclic (4∗, 11∗)-cycle 

factorization of 4𝐾22, 𝐶𝐶𝐹(4𝐾22, 𝛿), is (22 × 7) array in 

which 𝛿 = {𝐶4
5, 𝐶11

2 } generates all of its cycles by repeated 

addition of 1 modulo (22). 

To construct 𝐶𝑇𝐹(22) using the construction of 

𝐶𝐶𝐹(4𝐾22, 𝛿), we set the isolated vertex in the first column, 

then we partition the edges of the cycles in each row of 

𝐶𝐶𝐹(4𝐾22, 𝛿) into separated edges by placing each edge in a 

specific column. Here we have 22 rows and 42 columns 

(number of edges set of 𝛿) with a column that has an isolated 

vertex as shown in Table I. 
 

TABLE I 

 PARTITION OF EDGE SET OF THE CYCLES IN 𝐶𝐶𝐹(4𝐾22, 𝛿) INTO SEPARATED 

EDGES 

 To construct 𝐶𝑇𝐹(22), append the isolated vertex 𝑟 to the 

endpoints of each edge in row 𝑟 for 0 ≤ 𝑟 ≤ 21. Since the 

𝑪𝒐𝒍𝟏 𝑪𝒐𝒍𝟐 𝑪𝒐𝒍𝟑 ⋯ 𝑪𝒐𝒍𝟒𝟏 𝑪𝒐𝒍𝟒𝟐 𝑪𝒐𝒍𝟒𝟑 

0 1, 21 21, 12 ⋯ 14, 15 15, 5 5, 1 

1 2, 0 0, 13 ⋯ 15, 16 16, 6 6, 2 

2 3, 1 1, 14 ⋯ 16, 17 17, 7 7, 3 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

20 21, 19 19, 9 ⋯ 12, 13 13, 3 3, 21 

21 0, 20 20, 10 ⋯ 13, 14 14, 4 4, 0 
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cycles in each row of the construction of 𝐶𝐶𝐹(4𝐾22, 𝛿) form 

a near-four-factor, then every vertex has a degree four except 

the isolated vertex. Thus, every vertex will appear four times 

except the isolated vertex 𝑟 in each row 𝑟 for 0 ≤ 𝑟 ≤ 21. 

Moreover, all triples in each row are distinct because there is 

no identical edges in each row 𝑟 for  0 ≤ 𝑟 ≤ 21 as shown in 

Table II. 

 
TABLE II 

𝐶𝑇𝐹(22) 

 

 

The construction of starter 𝛿 of cyclic (4∗, (6𝑛 + 5)∗)-
cycle factorization of 4𝐾12𝑛+10 , 𝐶𝐶𝐹(4𝐾12𝑛+10, 𝛿), has been 

introduced in [19] as shown in Fig. 1 and 2, in which the 

cycles of order 6𝑛 + 5 were formulated as connected paths. 

The starter of 𝐶𝐶𝐹(4𝐾12𝑛+10, 𝛿) will be used mainly to 

construct a starter of cyclic triple factorization of order 12𝑛 +
10.  

In the following, we prove the existence of 𝐶𝑇𝐹(𝑣) for the 

general case when 𝑣 = 12𝑛 + 10. 

 

Theorem 4. Let 𝑛 be an integer. There exists a cyclic triple 

factorization of order 12𝑛 + 10. 

Proof. Let 𝛿 = {𝐶4
3𝑛+2, 𝐶6𝑛+5

2 } be the set of cycles of 

4𝐾12𝑛+10 as shown in Fig. 1 and 2 then 𝛿 is a starter of 

𝐶𝐶𝐹(4𝐾12𝑛+10, 𝛿) [19]. The construction of  

𝐶𝐶𝐹(4𝐾12𝑛+10, 𝛿) is ((12𝑛 + 10) × |𝛿|) an array such that 

is generated by 𝛿 = {𝐶4
3𝑛+2, 𝐶6𝑛+5

2 } with a property that the 

cycles in each row 𝑟 form a near-four-factor with isolated 𝑟 

for 0 ≤ 𝑟 < 12𝑛 + 10.  

To construct 𝐶𝑇𝐹(12𝑛 + 10), we need to have 12𝑛 + 10 

rows and 2 (12𝑛 + 9) columns based on Definition 6. In 

𝐶𝐶𝐹(4𝐾12𝑛+10, 𝛿) construction, we partition the edge set of 

the cycles in each row into separated edges by setting every 

edge in a column. Thus, the number of columns in 

𝐶𝑇𝐹(12𝑛 + 10) is equal to the number of edges in                  

𝛿 = {𝐶4
3𝑛+2, 𝐶6𝑛+5

2 }. Since 𝛿 = {𝐶4
3𝑛+2, 𝐶6𝑛+5

2 } has (3𝑛 + 2) 
cycles of order four and two cycles of order (6𝑛 + 5), then 

the number of edges in 𝛿 = {𝐶4
3𝑛+2, 𝐶6𝑛+5

2 } is calculated by 

the following equation: 

 

4 × (3 + 2) + 2 × (6𝑛 + 5) = 2(12𝑛 + 9)                      (1) 

 

In order to form triples, append the isolated vertex 𝑟 with 

the endpoints of every edge in row 𝑟 for 0 ≤ 𝑟 ≤ 10𝑛 + 9. 

Then, from Equation (1), we can see that the isolated vertex 

will appear in 2(12𝑛 + 9) triples and other vertices will 

appear four times since the cycles of each row form a near-

four-factor with isolated 𝑟. Since there no edges have the 

same endpoints in each row 𝑟 of 𝐶𝐶𝐹(4𝐾12𝑛+10, 𝛿), then all 

the associated triples in each row 𝑟 of 𝐶𝑇𝐹(12𝑛 + 10) will 

be distinct.                                                                                □                                                            

 

Now, it is natural to ask if the construction of cyclic triple  

factorization forms the cyclic 𝜆-fold triple system, 𝐶𝑇𝑆(𝑣, 𝜆). 
In order to prove that 𝐶𝑇𝐹(𝑣) is 𝐶𝑇𝑆(𝑣, 𝜆), we must show 

that 𝐶𝑇𝐹(𝑣) has a balanced property, namely every pair of 

distinct elements of 𝑣  belongs to exactly 𝜆  triples. In this 

way, the difference set method will be employed. 

V. WHEEL PARTITION TECHNIQUE 

In this section, we develop a novel technique, namely a 

wheel partition technique denoted by 𝑊𝑃𝑇(𝑣), to prove that 

cyclic triple factorization of order 𝑣 is 𝐶𝑇𝑆(𝑣, 12). In 

addition, 𝑊𝑃𝑇(𝑣)  will be utilized to formulate an algorithm 

for starter triples of 𝐶𝑇𝐹(𝑣).  
The strategy of 𝑊𝑃𝑇(𝑣) for constructing 𝐶𝑇𝐹(𝑣) is 

divided into four steps as follows: 

 

Step 1. Construct the starter of 𝐶𝐶𝐹(4𝐾𝑣 , 𝛿). 
Step 2. Generate wheel graphs by employing the cycles in 

            Step 1               

Step 3. Partition the wheel graphs in Step 2 into triples. 

 Step 4. Use the triples from Step 3 as a starter triples of     

         𝐶𝑇𝐹(𝑣) to enumerate all the triples by adding one  

          modular 𝑣. 

Fig. 3 shows the strategy of implementing the wheel 

partition technique on a set of cycles of 𝑍9 which satisfies a 

near-two-factor. 

The wheel partition technique is exploited to demonstrate 

that the starter of  𝐶𝑇𝐹(𝑣) is a starter of a cyclic 12-fold triple 

system of order 𝑣 for 𝑣 = 12𝑛 + 10. 

 

Theorem 5. For 𝑣 = 12𝑛 + 10, there exists a 12-fold cyclic 

triple factorization of order 𝑣.  

 

Proof. We will prove this theorem by employing 𝑊𝑃𝑇 as 

follows: 

Step 1. Construct the starter 𝛿 of 𝐶𝐶𝐹(4𝐾12n+10, 𝛿). 
 

Consider 𝛿 = {𝐶4
3𝑛+2, 𝐶6𝑛+5

2 } is a starter set of 

𝐶𝐶𝐹(4𝐾12n+10, 𝛿) as shown in Fig. 1 and 2. Then, the cycles 

of 𝛿 form a near-four-factor of 4𝐾12n+10 with isolated zero 

integer. Moreover, the list of differences of 𝛿  covers each 

element in 𝑍6𝑛+5
∗  four times and the middle difference 6𝑛 +

5 occurs twice based on Theorem 3. 

 

Step 𝟐. Employ the cycles of 𝛿 = {𝐶4
3𝑛+2, 𝐶6𝑛+5

2 } in Step 1 to 

construct wheel graphs. 

 

To do this, we will append the isolated vertex, zero integer, 

to each cycle in 𝛿 = {𝐶4
3𝑛+2, 𝐶6𝑛+5

2 } by connecting it to all 

vertices of each cycle in 𝛿. At this step, a set of wheels 𝒲 =
{𝑊5

3𝑛+2,𝑊6𝑛+6
2 } will be represented as follows: 

 

           𝑊5
3𝑛+2 = {0 + 𝐶4𝑖 ,             1 ≤ 𝑖 ≤ 3𝑛 + 2}, 

            𝑊6𝑛+6
2 = {0 + 𝐶(6𝑛+5)𝑖 ,    1 ≤ 𝑖 ≤ 2}. 

 

Furthermore, the list of differences from 𝒲 =

𝑪𝒐𝒍𝟏 𝑪𝒐𝒍𝟐 ⋯ 𝑪𝒐𝒍𝟒𝟏 𝑪𝒐𝒍𝟒𝟏 𝑪𝒐𝒍𝟒𝟐 

{0, 1, 21} {0, 21, 12} ⋯ {0, 14, 15} {0, 15, 5} {0, 5, 1} 

{1, 2, 0} {1, 0, 13} ⋯ {0, 15, 16} {1, 16, 6} {1, 6, 2} 

⋮ ⋮ ⋯ ⋮ ⋮ ⋮ 

{21, 0, 20} {21, 20, 11} ⋯ {0, 13, 14} {21, 14, 4} {21, 4, 0} 
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{𝑊5
3𝑛+2,𝑊6𝑛+6

2 } is calculated as  

                                

𝐷(𝒲) = 𝐶𝐷(𝑊𝑖  ) ∪ 𝐼𝐷(𝑊𝑖  ),       𝑊𝑖  ∈ 𝒲. 

where  

𝐶𝐷(𝑊𝑖  ) =  

{𝐷(𝐶4𝑖) ∪ 𝐷 (𝐶(5𝑛+5 )𝑗) , 1 ≤ 𝑖 ≤ 3𝑛 + 2 , 1 ≤ 𝑗 ≤ 2 }.                

𝐼𝐷(𝑊𝑖  ) =  

{𝐷(𝐾(1,4)𝑖) ∪ 𝐷 (𝐾(1,5𝑛+5)𝑗) , 1 ≤ 𝑖 ≤ 3𝑛 + 2, 1 ≤ 𝑗 ≤ 2 }. 

 

Since  𝛿 = {𝐶4
3𝑛+2, 𝐶6𝑛+5

2 } forms a near-four-factor, then 

the internal differences of 𝒲, 𝐼𝐷(𝒲 ), cover 𝑍6𝑛+6
∗  four 

times except the middle difference 6𝑛 + 5 occurs twice based 

on Lemma 2. Hence, from Step 1, it can be noticed that  

 

𝐶𝐷(𝒲 ) = 𝐼𝐷(𝒲 ). 

Therefore, the list of differences of  𝒲 = {𝑊5
3𝑛+2,𝑊6𝑛+6

2 } 
covers 𝑍6𝑛+6

∗  eight times except the middle difference 6𝑛 +
5 occurs four times. 

 

Step 𝟑. Partition the wheel graphs of 𝒲 = {𝑊5
3𝑛+2,𝑊6𝑛+6

2 } 
in Step 2 into separated triangles (triples).  

 

The generated triples from dividing of wheels graph will 

be formed by joining every two internal edges with an edge 

of the cycle  that connected them. 

According to the generated triangles at this phase, each 

internal edge of the wheels in 𝒲 = {𝑊5
3𝑛+2,𝑊6𝑛+6

2 } shall 

appear twice as the edges for generated triangles, whilst the 

edge of the associated cycles with the wheels in 𝒲 =
{𝑊5

3𝑛+2,𝑊6𝑛+6
2 } will occur once.   

Therefore, the differences list of generated triples 

possesses of the cycles differences (𝐶𝐷) once whereas the 

internal differences (𝐼𝐷) twice. From the Steps 1 and 2, the 

differences list of generated triples at this step covers every 

nonzero element in 𝑍6𝑛+6 twelve times except the middle 

difference 6𝑛 + 5 appears six times. Thus, the set of 

generated triples is (12𝑛 + 10, 3, 12)-difference family, then 

it is considered a starter triples of 𝐶𝑇𝑆(12𝑛 + 10, 12) based 

on Theorem 1. 

 

Step 4. Generate all triples of 𝐶𝑇𝑆(12𝑛 + 10, 12).  
 

To generate all the triples of 𝐶𝑇𝑆(12𝑛 + 10, 12), the starter 

triples will be placed in the first row and then repeated 

addition of 1 modular 12𝑛 + 10.                                                       □ 

 

As a consequence result from Theorem 5, we have the 

following corollary.  

                                                                                                                              

Corollary 1. For 𝑣 = 12𝑛 + 10. There exists a cyclic 

(8𝐾𝑣 ,𝒲)-design where 𝒲 is a set of wheel graphs. 

 

Proof.  Let 𝒲 = {𝑊5
3𝑛+2,𝑊6𝑛+6

2 } be the set of wheel graphs 

of 8𝐾12𝑛+10 that constructed in Step 2 of Theorem 5, then 𝒲 

is a starter set of cyclic (8𝐾12𝑛+10,𝒲)-design based on the 

Theorem 3.                                                                           □                                                                                                                                                                         

 

The starter triples are the essential tool to construct 

the 𝐶𝑇𝐹(𝑣). Thus, the developing of the starter construction 

of 𝐶𝑇𝐹(𝑣) will be discussed in the next section. 

VI. ALGORITHM FOR STARTER TRIPLES OF 𝐶𝑇𝐹(12𝑛 + 10) 

In this section, the starter of 𝐶𝑇𝐹(𝑣) is formulated and 

developed by performing the wheel partition technique on the 

starter of 𝐶𝐶𝐹(4𝐾12n+10, 𝛿).  
Based on the starter construction of 𝐶𝐶𝐹(4𝐾12n+10, 𝛿), we 

have two cases which depend on whether 𝑛 is odd or even. 

The process of generating the starter set of 𝐶𝑇𝐹(12𝑛 + 10) 
is demonstrated as follows: 

 

Case 1. 𝑛 is odd. 

Consider 𝛿 = {𝐶4
3𝑛+2, 𝐶6𝑛+5

2 } be the starter set of 

𝐶𝐶𝐹(4𝐾12𝑛+10, 𝛿) which has been constructed in Fig. 1. 

Then, the wheel partition technique is implemented on 𝛿 =
{𝐶4

3𝑛+2, 𝐶6𝑛+5
2 } to generate the starter triples of 𝐶𝑇𝐹(12𝑛 +

10) as shown in Fig. 4.  

From Fig. 4, the generated triple from the wheels that 

associated with 4-cycles will be expressed as subsets below: 

𝑆1 = {{0,
5𝑛+3

2
,
19𝑛+17

2
} , {0,

19𝑛+17

2
,
7𝑛+7

2
} , {0,

7𝑛+7

2
,
17𝑛+13

2
} ,

            {0,
17𝑛+13

2
,
5𝑛+3

2
}}, 

𝑆2 = {{0, 𝑖, 12𝑛 + 10 − 𝑖},      1 ≤ 𝑖 ≤ 3𝑛 +  2, 𝑖 ≠
5𝑛+3

2
}, 

𝑆3 =  

 {{0, 12𝑛 + 10 − 𝑖, 6𝑛 + 5 + 𝑖}, 1 ≤ 𝑖 ≤ 3𝑛 + 2, 𝑖 ≠
5𝑛+3

2
},  

𝑆4 =  

{{0, 6𝑛 + 5 − 𝑖, 6𝑛 + 5 + 𝑖},   1 ≤ 𝑖 ≤ 3𝑛 + 2, 𝑖 ≠
5𝑛+3

2
},   

𝑆5 = {{0, 6𝑛 + 5 − 𝑖, 𝑖}, 1 ≤ 𝑖 ≤ 3𝑛 + 2, 𝑖 ≠
5𝑛+3

2
}. 

 

While, the produced triples from wheel associated with 

𝐶6𝑛+5
∗ , will be expressed as subsets below 

𝑆6 = {{0, 𝑖 + 1, 6𝑛 + 6 − 𝑖}, 1 ≤ 𝑖 ≤ 2𝑛 + 1},  

𝑆7 = {{0, 𝑖 + 2, 6𝑛 + 6 − 𝑖}, 1 ≤ 𝑖 ≤ 2𝑛},  

𝑆8 = {{0, 9𝑛 + 7 + 𝑖, 9𝑛 + 5 − 𝑖}, 1 ≤ 𝑖 ≤ 𝑛 − 1},  

𝑆9 = {{0, 9𝑛 + 8 + 𝑖, 9𝑛 + 5 − 𝑖}, 1 ≤ 𝑖 ≤ 𝑛 − 1},  

𝑆10 = { {0, 3𝑛 + 3, 3𝑛 + 5}, {0, 3𝑛 + 4, 3𝑛 + 5}, {0, 12𝑛 +

          9, 2}, {0, 4𝑛 + 5, 3𝑛 + 3}, {0, 3𝑛 + 3, 9𝑛 +

          8}, {0, 10𝑛 + 7, 12𝑛 + 9}}.   

As shown above, the triples of {𝑆6 ∪ 𝑆7} and {𝑆8 ∪ 𝑆9} 
were generated by linking the edges of path 𝑃4𝑛+2

∗  and path 

𝑃2𝑛−1
∗  of 𝐶6𝑛+5

∗ , respectively, with the isolated vertex {0}, 
while the set 𝑆10 contained generated triples by linking the 

edges of 𝑃3
∗ with the isolated vertex {0}. Additionally, the 

triples are produced by joining the edges that connect of paths 

of 𝐶6𝑛+5
∗  together with isolated {0}, along with linking the 

edges that connected the paths of 𝐶6𝑛+5
∗  and the 𝑒0

∗ = 12𝑛 +
9 with isolated vertex {0}. 

Similarly, it would be expressed of the generated triples 

from the wheel that associated with  𝐶6𝑛+5
∗∗  as subsets below 

𝑆11 = {{0, 12𝑛 + 9 − 𝑖, 6𝑛 + 4 + 𝑖}, 1 ≤ 𝑖 ≤ 2𝑛 + 1}, 

𝑆12 = {{0, 12𝑛 + 8 − 𝑖, 6𝑛 + 4 + 𝑖}, 1 ≤ 𝑖 ≤ 2𝑛}, 

𝑆13 = {{0, 3𝑛 + 3 − 𝑖, 3𝑛 + 5 + 𝑖}, 1 ≤ 𝑖 ≤ 𝑛 − 1},  

𝑆14 = {{0, 3𝑛 + 2 − 𝑖, 3𝑛 + 5 + 𝑖}, 1 ≤ 𝑖 ≤ 𝑛 − 1},  
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𝑆15 = { {0, 1, 12𝑛 + 8}, {0, 8𝑛 + 5, 9𝑛 + 7}, {0, 9𝑛 +

           6, 3𝑛 + 2}, {0, 2𝑛 + 3, 1}, {0,9𝑛 + 7, 9𝑛 +

            5}, {0, 9𝑛 + 5, 9𝑛 + 6}}  

For the sake simplicity, the starter of cyclic triple 

factorization of order 12𝑛 + 10, can be represented as  

𝒜 = 𝒜1 ∪𝒜2 

such that  

 

𝒜1 =  

{
 
 
 
 
 
 

 
 
 
 
 
 
{0, 𝑖, 12𝑛 + 10 − 𝑖}, 1 ≤ 𝑖 ≤ 6𝑛 + 4,                                         

{0,12𝑛 + 10 − 𝑖, 6𝑛 + 5 + 𝑖}, 1 ≤ 𝑖 ≤ 3𝑛 + 2, 𝑖 ≠
5𝑛 + 3

2
,

{0, 6𝑛 + 5 − 𝑖, 𝑖}, 1 ≤ 𝑖 ≤ 3𝑛 + 2, 𝑖 ≠
5𝑛 + 3

2
,                        

{0, 𝑖 + 1, 6𝑛 + 6 − 𝑖}, 1 ≤ 𝑖 ≤ 2𝑛 + 1,                                      
{0, 12𝑛 + 9 − 𝑖, 6𝑛 + 4 + 𝑖}, 1 ≤ 𝑖 ≤ 2𝑛 + 1                          
{0, 𝑖 + 2, 6𝑛 + 6 − 𝑖}, 1 ≤ 𝑖 ≤ 2𝑛,                                              
{0, 12𝑛 + 8 − 𝑖, 6𝑛 + 4 + 𝑖}, 1 ≤ 𝑖 ≤ 2𝑛,                                 
{0, 9𝑛 + 6 + 𝑖, 9𝑛 + 6 − 𝑖}, 1 ≤ 𝑖 ≤ 𝑛,                                       
{0, 3𝑛 + 4 − 𝑖, 3𝑛 + 4 + 𝑖},    1 ≤ 𝑖 ≤ 𝑛,                                   
{0, 9𝑛 + 8 + 𝑖, 9𝑛 + 5 − 𝑖}, 1 ≤ 𝑖 ≤ 𝑛 − 1,                               
{0, 3𝑛 + 2 − 𝑖, 3𝑛 + 5 + 𝑖},    1 ≤ 𝑖 ≤ 𝑛 − 1.                           

 

 

𝒜2 = {{0,
19𝑛+17

2
,
7𝑛+7

2
} , {0,

7𝑛+7

2
,
17𝑛+13

2
} , {0, 3𝑛 + 4, 3𝑛 +

5}, {0, 12𝑛 + 9, 2}, {0, 4𝑛 + 5, 3𝑛 + 3}, {0, 3𝑛 + 4, 9𝑛 +

8}, {0, 10𝑛 + 7, 12𝑛 + 9}, {0, 1, 12𝑛 + 8}, {0, 8𝑛 + 5, 9𝑛 +

7}, {0, 9𝑛 + 6, 3𝑛 + 2}, {0, 2𝑛 + 3, 1}, {0, 9𝑛 + 5, 9𝑛 + 6}}. 

 

Case 2. 𝑛 is even. 

Consider that 𝛿 = {𝐶4
3𝑛+2, 𝐶6𝑛+5

2 } is be the starter set of 

𝐶𝐶𝐹(4𝐾12𝑛+10, 𝛿) which has been constructed in Fig. 2. 

Then, Fig. 5 shows the starter triples of 𝐶𝑇𝐹(12𝑛 + 10) by 

applying wheel partition technique on 𝛿 = {𝐶4
3𝑛+2, 𝐶6𝑛+5

2 }.  
From Fig. 5, all generated triples will be analyzed. We 

begin with produced triples from wheels that associated with 

4-cycles as follows:  

𝑆1 = {{0,
𝑛

2
,
11𝑛+10

2
} , {0,

11𝑛+10

2
,
23𝑛+20

2
} , {0,

23𝑛+20

2
,
13𝑛+10

2
},  

           {0,
13𝑛+10

2
,
𝑛

2
}},  

𝑆2 = {{0, 𝑖, 12𝑛 + 10 − 𝑖}, 1 ≤ 𝑖 ≤ 3𝑛 + 2, 𝑖 ≠
𝑛

2
},  

𝑆3 = {{0,12𝑛 + 10 − 𝑖, 6𝑛 + 5 + 𝑖}, 1 ≤ 𝑖 ≤ 3𝑛 + 2, 𝑖 ≠
𝑛

2
},  

𝑆4 = {{0, 6𝑛 + 5 − 𝑖, 6𝑛 + 5 + 𝑖}, 1 ≤ 𝑖 ≤ 3𝑛 + 2, 𝑖 ≠
𝑛

2
},  

𝑆5 = {{0, 𝑖, 6𝑛 + 5 − 𝑖}, 1 ≤ 𝑖 ≤ 3𝑛 + 2, 𝑖 ≠
𝑛

2
}.   

Note that the generated triples of 𝑆5 and 𝑆3 are  

𝑆3 = {{0, 12𝑛 + 9, 6𝑛 + 6}, {0, 12𝑛 + 8, 6𝑛 + 7}, …,   

            {0, 9𝑛 + 8, 9𝑛 + 7}} − {0,
23𝑛+20

2
,
13𝑛+10

2
}.  

𝑆5 = {{0, 6𝑛 + 4, 1}, {0, 6𝑛 + 3, 2}, … , {0, 3𝑛 + 3, 3𝑛 +

             2}} − {0,
𝑛

2
,
11𝑛+10

2
}.   

Since {{0,
𝑛

2
,
11𝑛+10

2
} , {0,

23𝑛+20

2
,
13𝑛+10

2
}} ∈ 𝑆1, then 𝑆3 and 

𝑆5 could be represented as: 

𝑆3 = {{0, 12𝑛 + 10 − 𝑖, 6𝑛 + 5 + 𝑖}, 1 ≤ 𝑖 ≤ 3𝑛 + 2}. 

𝑆5 = {{0, 6𝑛 + 5 − 𝑖, 𝑖}, 1 ≤ 𝑖 ≤ 3𝑛 + 2}. 

Clearly, it can be observed that the generated triples from 

the (6𝑛 + 5)-cycles in Fig.5 are almost the same as generated 

triples in Fig. 4 with a slight difference. Fig. 6 shows the 

difference between the generated triples from (6𝑛 + 5)-

cycles in Fig. 4 and 5. Thus, we need to change some of triples 

as follows: 

{0, 3𝑛 + 3, 4𝑛 + 5} → {0, 3𝑛 + 5, 4𝑛 + 5} 

{0, 3𝑛 + 4, 3𝑛 + 5} → {0, 3𝑛 + 3, 3𝑛 + 4} 

{0, 9𝑛 + 7, 8𝑛 + 5} → {0, 9𝑛 + 5, 8𝑛 + 5} 

{0, 9𝑛 + 6, 9𝑛 + 5} → {0, 9𝑛 + 7, 9𝑛 + 6} 

Therefore, the starter triples algorithm of the cyclic triple 

factorization of order 12𝑛 + 10 is formulated when 𝑛 is even 

as follows: 

𝒜 = 𝒜1 ∪𝒜2 

such that  

𝒜1 =  

{
 
 
 
 
 
 

 
 
 
 
 
 
{0, 12𝑛 + 10 − 𝑖, 6𝑛 + 5 + 𝑖}, 1 ≤ 𝑖 ≤ 3𝑛 + 2,        
{0, 6𝑛 + 5 − 𝑖, 𝑖}, 1 ≤ 𝑖 ≤ 3𝑛 + 2,                               

{0, 𝑖, 12𝑛 + 10 − 𝑖}, 1 ≤ 𝑖 ≤ 3𝑛 + 2, 𝑖 ≠
𝑛

2
,               

{0, 6𝑛 + 5 − 𝑖, 6𝑛 + 5 + 𝑖}, 1 ≤ 𝑖 ≤ 3𝑛 + 2, 𝑖 ≠
𝑛

2
,

{0, 𝑖 + 1, 6𝑛 + 6 − 𝑖}, 1 ≤ 𝑖 ≤ 2𝑛 + 1,                       
{0, 12𝑛 + 9 − 𝑖, 6𝑛 + 4 + 𝑖}, 1 ≤ 𝑖 ≤ 2𝑛 + 1,         
{0, 𝑖 + 2, 6𝑛 + 6 − 𝑖}, 1 ≤ 𝑖 ≤ 2𝑛,                               
{0, 12𝑛 + 8 − 𝑖, 6𝑛 + 4 + 𝑖}, 1 ≤ 𝑖 ≤ 2𝑛,                   
{0, 9𝑛 + 6 + 𝑖, 9𝑛 + 6 − 𝑖}, 1 ≤ 𝑖 ≤ 𝑛,                        
{0, 3𝑛 + 4 − 𝑖, 3𝑛 + 4 + 𝑖}, 1 ≤ 𝑖 ≤ 𝑛,                        
{0, 9𝑛 + 8 + 𝑖, 9𝑛 + 5 − 𝑖}, 1 ≤ 𝑖 ≤ 𝑛 − 1,                
{0, 3𝑛 + 2 − 𝑖, 3𝑛 + 5 + 𝑖}, 1 ≤ 𝑖 ≤ 𝑛 − 1.                

  

  

𝒜2 = {{0,
11𝑛+10

2
,
23𝑛+20

2
} , {0,

13𝑛+10

2
,
𝑛

2
} , {0, 3𝑛 + 4, 3𝑛 +

3}, {0, 12𝑛 + 9, 2}, {0, 4𝑛 + 5, 3𝑛 + 5}, {0, 3𝑛 + 4, 9𝑛 +

8}, {0, 10𝑛 + 7, 12𝑛 + 9}, {0, 1, 12𝑛 + 8}, {0, 8𝑛 + 5, 9𝑛 +

5}, {0, 9𝑛 + 6, 3𝑛 + 2}, {0, 2𝑛 + 3, 1}, {0, 9𝑛 + 6, 9𝑛 + 7}}. 

 

Example 2. Based on the above algorithm of 𝐶𝑇𝐹(12𝑛 +
10) when 𝑛 is even, the starter triples 𝒜 = 𝒜1 ∪𝒜2 of 

𝐶𝑇𝐹(34) can be formed as follows: 

 

𝒜1 = {{0, 33, 18}, {0, 32, 19}, {0, 31, 20}, {0, 30, 21},  

{0, 29, 22}, {0, 28, 23}, {0, 27, 24}, {0, 26, 25}{0, 16, 1},  
{0, 15, 2}, {0, 14, 3}, {0, 13, 4}, {0, 12, 5}, {0, 11, 6}, {0, 10, 7},   
{0, 9, 8}, {0, 2, 32}, {0, 3, 31}, {0, 4, 30}, {0, 5, 29}, {0, 6, 28},  
{0, 7, 27}, {0, 8, 26}, {0, 15, 19}, {0, 14, 20}, {0, 13, 21},   

{0, 12, 22}, {0, 11, 23}, {0, 10, 24}, {0, 9, 25}, {0, 2, 17},   

{0, 3, 16}, {0, 4, 15}, {0, 5, 14}, {0, 6, 13}, {0, 32, 17},   

{0, 31, 18}, {0, 30, 19}, {0, 29, 20}, {0, 28, 21}, {0, 3, 17},    

{0, 4, 16}, {0, 5, 15}, {0, 6, 14}, {0, 31, 17}, {0, 30, 18},    

{0, 29, 19}, {0, 28, 20}, {0, 25, 23}, {0, 26, 22}, {0, 9, 11},   

{0, 8, 12}, {0, 27, 22}, {0, 7, 12}}. 

𝒜2 = {{0, 16, 33}, {0, 18, 1}, {0, 10, 9}, {0, 33, 2},  

{0, 13, 11}, {0, 10, 26}, {0, 27, 33}, {0, 1, 32}, {0, 21, 23},  

{0, 24, 8}, {0, 7, 1}, {0, 24, 25}}. 
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VII. CONCLUSION  

 

This article introduced a new type of cyclic triple system 

called cyclic triple factorization, 𝐶𝑇𝐹(𝑣), which satisfies 

some restrictions. Then, a new method, wheel partition 

technique, has been developed to prove that 𝐶𝑇𝐹(𝑣) 
represents a cyclic 12-fold triple system by exploiting cyclic 

(𝐶4
3𝑛+2, 𝐶6𝑛+5

2 )-cycle factorization of 4𝐾𝑣  when 𝑣 = 12𝑛 +
10. Finally, the algorithms of the starter triples of 

𝐶𝑇𝐹(12𝑛 + 10) have been formulated. We expect the 

construction of 𝐶𝑇𝐹(𝑣) can be developed and extended for 

𝑣 ≡ 2, 6(𝑚𝑜𝑑 12). 
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Fig. 1. Construction of cycles set 𝛿 = {𝐶4
3𝑛+2, 𝐶6𝑛+5

2 } of 4𝐾12𝑛+10, when 𝑛 is odd 

IAENG International Journal of Applied Mathematics, 50:4, IJAM_50_4_25

Volume 50, Issue 4: December 2020

 
______________________________________________________________________________________ 



 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2. Construction of the cycles set 𝛿 = {𝐶4
3𝑛+2, 𝐶6𝑛+5

2 } of 4𝐾12𝑛+10, when 𝑛 is even 

 

 
Fig. 3. Performing the wheel partition technique on a set of cycles. 
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Fig. 4. Starter triples of 𝐶𝑇𝐹(12𝑛 + 10) when 𝑛 is odd 
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Fig. 5.  Starter set of 𝐶𝑇𝐹(12𝑛 + 10) when 𝑛 is even 
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Fig. 6. The difference between the generated triples from the cycles of order (6𝑛 + 5) in Fig 4 and 5. 
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