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Abstract— Numerous serious game applications require the 

visualization of fluid flow that contains information about flow 
depth and velocity in wet/dry complex topography areas. Fluid 
flow visualization based on the numerical solutions of shallow 
water equations (SWEs) in wet/dry areas remains a challenging 
problem at present, because most methods are numerically 
unstable. In this work, we propose a stable and efficient 
strategy for visualizing fluid flow in various topography areas 
in the wet/dry domain. In the proposed framework, the 
visualization covers flow depth and velocity. First, we 
transform the commonly used conservative SWE model into the 
proposed non-conservative SWE model. Second, we create an 
algorithm based on the discretization scheme of the proposed 
model. The algorithm involves few numerical operations, and is 
stable and accurate. Finally, we verify the results by comparing 
them with analytical solutions and with the solutions of the 
conservative model. According to the numerical results, the 
solution of the proposed model is close to the analytical 
solutions, and the proposed model can successfully visualize 
fluids in complex topography areas in wet or wet/dry 
conditions. 
 

Index Terms— fluid flow visualization, non-conservative 
model, shallow water equations 
 

I. INTRODUCTION 

XTENSIVE research has explored fluid applications 
[1]. Fluid applications such as water floods and tsunamis 

exert considerable impact on property and life. Reducing the 
impact, requires the development of serious games for flood 
disasters [2]. Serious games are an effective approach to 
engaging people to understand flood disasters [3]. Such 
game requires the visualization of fluid flow which contains 
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information about physical quantities, such as flow depth 
and velocity. Flow visualization can be carried out through 
experiments or by using computational fluid dynamics based 
on Navier-Stokes equations. The visualization of fluid flow 
involves displaying the pattern of fluid flow to obtain the 
qualitative and quantitative information from fluid 
characteristics, such as velocity and pressure [4]. The 
physical information of fluids is crucial in serious game 
applications. 

The Navier-Stokes equations were introduced to simulate 
fluid on computer graphics by Foster et al. [5], and Harlow-
Welch [6]. Stam combined an implicit method and a 
Lagrangian (i.e., a semi-Lagrangian method) to visualize 
fluids [7]. This method is stable in long time steps and 
allows users to interact in real time with three-dimensional 
fluids. However, the two methods do not contain variables 
that represent fluid depth.  
In order to obtain the depth of flow, the Navier-Stokes 
equation was derived into Shallow Water Equations (SWEs). 
SWEs have recently been used to model problems, such as 
river flow [8], [9], dam-break flow [10], [11], ocean wave 
[12], and tsunami [13], [14]. These existing studies focused 
on the wet domain area, or watery domain, but they did not 
consider flow from wet to dry domain areas. Alghosoun et 
al. simulated fluid in dry regions by reformulating the SWEs 
into new systems [15]. Their reformulation focused only on 
tracking the point of interface between the wet/dry region 
and then solving the problem up to that point. Moreover, 
they did not test the new system on various domain areas. 
Hence, the systems have yet to be guaranteed to work on 
complex topography areas. 

Several approaches have been used to simulate the flow in 
wet/dry areas by modifying the computational strategy 
without reformulating the system. Takahashi simulated 
debris flow based on formulation approximated by Euler’s 
continuum equation and by using experimental data [16]. 
Adzkiya and Sanjoyo used Takahashi’s approach to predict 
the  debris flow distribution in a downhill of Merapi volcano 
from a wet area to a dry area on the basis of an SWE with 
sediment transport [17].  This simulation only works on 
specific domain areas or topographies, especially downhill 
areas. Touma and Kanbar recently developed a second-order 
central scheme for the numerical solution of a two-
dimensional system of SWEs featuring wet and dry states 
over varying water beds [18]. However, their approach has 
high computational complexity.  
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This study focuses on developing a stable and efficient 
(low cost) strategy for the visualization of fluid flow in 
wet/dry domain area and complex bed topographies. The 
physical parameters of fluid flow are the depth and velocity 
of flow. Under the proposed strategy, the SWE model is 
changed into a new model that combines conservative and 
non-conservative models. Then, a numerical scheme with 
low-cost computation is selected, and transformed into an 
efficient algorithm. The algorithm is subsequently tested. 
The advantage of the new model is its capability of 
visualizing various types of fluid flow in wet/dry domain and 
complex topography areas.  

The flow visualization based on the proposed model is 
implemented using MATLAB to verify the reliability of the 
model and its numerical scheme. To verify the results, we 
compare the numerical results and the analytical steady-state 
solutions for subcritical flow, trans-critical flow, and super-
critical flow. The visualization of fluid flow in wet and dry 
domains with flat, bumps, sabo, blocks, and other complex 
topographies is also conducted.  

II. MODELING AND VISUALIZATION STRATEGY 

A. Fluid Flow Model 

The essential concepts in fluid visualization are the fluid 
flow model, numerical simulation, and realistic visualization 
of fluid flow. Fluid movement is governed by a fluid flow 
model called the Navier-Stokes equation as in (1)-(2) [19]. 

0U    (1) 

2( )t
p

U U U U g



       

 
 
 

 (2) 

where  , ,x y z    is a differential operator with respect to 

space, / ,t t   ,/x x   / ,y y   / ,z z      

 ( , , , ) , ,
T

x y z tU U u v w  is the velocity flow vector, p is 

flow pressure,  is fluid density,  is kinematic viscosity, 
and g is the force vector working on flow (e.g.,  gravity 
force). The variable u, v, and w are the velocity components 
with respect to x, y, and z, respectively. Equations (1)-(2) 
describe an incompressible free surface fluid. The solution 
of (1)-(2) provides information about the pressure and 
velocity of flow at each node position and at a certain time. 
The Navier-Stokes equation does not contain a variable 
representing flow depth. Thus, it is not suitable for 
visualizing shallow waters, such as rivers, lakes, and coastal 
flows. 

 
Fig. 1.  Flow schema of shallow water 

 
Rivers, lakes, or coastal flows can be viewed as shallow 

waters, as shown in Fig. 1. The notation H=H(x, t) is the 
height of bed/topography in meters (m), h=h(x, t) denotes 
the water depth in meters (m), u=u(x, t) denotes the velocity 

of water flow in m/s, [0, ]x L R  denotes the horizontal 
space variable in meters (m), and 0t  is time variable in 
seconds (s). If (1)-(2) are applied to a shallow water and 
integrated over the depth of the river, then the one 
dimensional continuum equation (1) becomes (3). The 
notation ( , )q q x t hu  is the flow discharge in m2/s.  

0t xh q     (3) 

The one dimensional momentum equation (2) also 
becomes (4). 

21( )2
x

ft x xHq qu g gh ghSh

         (4) 

where x is stress in the x-direction, and the term Sf is the 
friction term. We can use Manning’s law or Darcy-
Weisbach’s friction law for Sf. 

Then, we rewrite the mathematical models of shallow 
water flow (3) and (4) into a conservative form, as in (5) and 
(6). 

t xh q     (5) 

21( )2 f
x

t x xg H ghhq qu gh S 
              (6) 

In a steady state flow condition, 0.t th u     Therefore, 

(5) becomes 0t q   or 
0

,q q  where 
0

(0, )q q t is the 

flow discharge in the initial condition. With the same 
approach, the momentum equation in (6) becomes (7). 

2
( )1 fx x

q
h gghH S       (7) 

If we assume the absence of friction in the bed topography and 
integrate (7), then the flow model in steady state can be obtained 
as follows: 

2 2
0 0

2
0

0
23( ) ( ) ( ) 0.22

( )
q q

x H x h xh ggh
h       (8) 

Equation (8) is the analytical solution of fluid flow in steady 
state. The equation is used to verify the flow visualization. If the 
initial discharge is zero, or 0 0,q  then we obtain a horizontal 

fluid surface as in (9). 
( ) ( ) constantH x h x       (9) 

Otherwise, if the initial discharge of flow is not zero, then 
the depth of fluid flow h(x) is a polynomial cubic solution in 
(8) which depends on the values of 0q and .0h  

Let us express (3) and (4) in vector notation as follows: 

( )t xU F U S      (10) 

where 
h

U
q

 
   
 

is the conserved vector variable,    

2 ,1
2

( )
q

F U
qu gh

 
   
 


and 

x
fx

q
S

gh H ghS 


 
 

   
 
  

 is the vector of the source 

terms that depend on the elevation of the bed topography. 
Equation (10) is analogous to the one-dimensional linear 

convection equation. It is well-known that the Lax-Friedrich 
numerical scheme is conditionally stable in such a system. This 

scheme has an accuracy of order 2,( ),O tx  and also has low 

IAENG International Journal of Applied Mathematics, 51:1, IJAM_51_1_04

Volume 51, Issue 1: March 2021

 
______________________________________________________________________________________ 



 

computational complexity in terms of the number of works done 
[20].  

The solution of the systems in (10) is (h, q). The velocity flow u 
can be obtained from the quantity q, that is, u=q/h. The range 
value of flow depth is 0.h   In the case of dry area, h=0 or 

0,h  we obtain / 0u q or 
0

lim /
h

u q h


 , respectively. 

Hence, the value of flow velocity  becomes undefined or blows 
up to infinity. In such the case, the flow velocity is unacceptable 
and numerically unstable [15], [21]. 

To avoid zero or near-zero divisors, we propose to change (4) 
into another equation. Specifically, we substitute q hu into (3) 

and expand the derivative using the product rule to obtain (11).  

t x xh u h h u       (11) 

We use the same approach for (4) to obtain (12). 
2 ( )x x xt th u hu u gh h u h u h             

            x
fxgh H ghS 

                         (12) 

If we ignore the stress x and substitute (11) into (12), the we 
obtain (13). 

21( )2 ft x xgh H ghuu g S       (13) 

We still use (3) because we want to preserve the flow 
discharge in the unit variable q. Hence, we propose another 
form of SWE systems, which is a combination of 
conservative and non-conservative forms. In compact form, 
we express the new system of SWE in (14).  

( )t xU F U S      (14) 

Where 
h

U
u

 
   
 

 is the conserved vector variable, 

2 ,1
2

( )
gh

hu
F U

u

 
   
 

and .
0

fx
S

g H ghS

 
     

For simplicity, 

we call the proposed SWE system in (14) the non-conservative 
SWE system.  

From (14), we can obtain the solution ( , )h u  numerically. 

The computation process of obtaining flow depth h and flow 
velocity u does not involve the variable divisor h. 
Numerically, the SWE systems in (14) is more stable than 
the SWE system in (10). The Jacobian matrix of  (15) is 

/F F UJ    with eigenvalues 1 ghu    and 2 u    

.gh  As in linear advection equation, 1 and 2 are the 

speeds of advection. 

B. Computational Strategy 

In computing flow visualization, the computational cost is 
the main factor, but the accuracy of the results is still 
considered. Several finite difference schemes, such as Lax-
Friedrichs, Lax-Wendroff, and leapfrog, are available to 
solve partial differential equations. Although, the three 
numerical schemes have the same order of time complexity, 

( ),O N  in each time step, the number of works done by Lax-

Friedrichs scheme is only half of those of the Lax-Wendroff 
and leapfrog schemes. Therefore, we choose the Lax-
Friedrichs discretization scheme because it is more efficient 
in terms of the number of works done in each time step. 
Furthermore, it has a low computational cost and the order 
of accuracy is quadratic in space and linear in time, i.e., 

2,( ).O tx   

In Lax-Friedrichs scheme, time and space discretization is 
achieved using the forward time, centered space scheme 

[22]. To stabilize this scheme, Lax-Friedrichs defines k
iU  as 

the average of 1
k
iU   and 1

k
iU   or 1 1

1
2 ( ).k k k

i i iU U U      

Thus, the time derivative in (14) becomes (15). 
1

1 1
1( )
2

k k k
i i i

t

U U U

tU


  

                                 (15) 

The space discretization uses the central difference scheme 

as in (16), to obtain an accuracy of order 2( ).O x  

1 1( 2)
k k

i i
x

F F
F xU  

                                              (16) 

The calculation of flow parameter ( )TU h u is based on 

(14). As the left-hand side of (14) is the derivative of U with 

respect to time t, the strategy of obtaining the values of 
1k

iU


 

at time t = k+1 is based on (17). 
1

1 1( ) / 2 ( ( ) )
k k k
i i i xt F U SU U U 


       (17) 

Here, the initial values of variable 0 00( , )T
U uh are set. 

The stability of the scheme is achieved when the CFL  is 

less than or equal to 1, that is, 1,t
xc   where 

1 2
,max{ }.c    Hence, we obtain inequality in (18)  

1..
max { , }

i
i i i i

i N

x
u gh u gh

t




 

  (18) 

In order to measure the error of numerical solution, we use 
the L1 norm error as in (19). 

11
N

i

c e
i iu u
NL



    (19) 

where c
iu denotes the numerical solution,  e

iu  denotes the 

analytical solution both on node i.  

C. Flow Visualization Algorithm  

Based on the discretization results, the algorithm for 
visualizing fluid flow can be stated as follows. 

Input : Time of visualization t and initial discretization 
time t0, the height of topography Hi, and the 

initial values of the fluid flow parameters ,0
ih  and 

,0
iu  

Output : Fluid flow parameters ,
1k

ih   ,
1k

ih   and the 

visualization of fluid flow. 
Algorithm: 
1. Initialization step: 

- Variable geometric grids, ,
i

H  and dH/dx. 

- Variable flow height ,
0
ih and flow velocity .

0
iu  

2. For each time step do: 
- Calculate ti using (18), which must satisfy CFL 

condition.  

- Calculate vector 1k
iU   using (17). 

- Apply the boundary conditions. 

- Visualize the flow variables 1k
ih  and .

1k
ih   

End of time loop 
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In each time step, the number of works done by the 
algorithm is linear in space, i.e. ( )O N where N is the 

number of nodes in the grid depending on x. Furthermore, 
the time interval ti is adaptive with respect to space 
discretization, flow velocity, and the flow depth parameters 
as shown in (18).  

III. ANALYSIS OF VISUALIZATION RESULTS  

As stated in the Introduction, a serious game is used as an 
educational platform to recognize and understand the 
characteristics and distribution of flood. Therefore, we 
choose a number of complex topographies that are close to 
those in the real world. These topographies include flat, flat 
with bumps, downhill with blocks, parabolic, downhill with 
sabo, and coastal area topographies. To verify the 
correctness of the proposed model, we visualize the 
following various types of flow:   
1. Fluid flow in a wet area consists of lake at rest under 

steady state, transcritical flow under steady state, and 
supercritical flow under steady state. In this case, we 
compare the numerical results of the proposed model 
(non-conservative SWE model) and the analytical 
solutions in (8) and (9). We also compare the proposed 
model and the conservative SWE model. 

2. Fluid flow in wet/dry area consists of dam-break flow 
over the dry domain, wet/dry domain in parabolic areas, 
and flow in semi-natural wet/dry area. 

A. Lake at rest under steady state  

Lake at rest under steady state is a subcritical fluid flow in 
domain area that is totally immersed. The domain 
topographies are flat, flat with bumps or blocks, and 
downhill with blocks. As the results of some cases are 
similar, we only show the fluid flow visualizations for flat 
topography and flow in a downhill with blocks. Fig. 2 
presents the fluid flow visualization for flat topography. We 
have domain [0, ],x L  15 ,L m flat topography (H(x) = 0 

m), and no discharge at the boundary or 2
0 15

0 / .smq q   

Initially, we set the dam-break at location 5 .x m  The flow 

depth in domain 0 5m x m  is ( ) 5h x m  and that in the 

right side of the dam 5 15m x m  , ( ) 2 .h x m  The dam 

break at time 0 .t s  The solid line graphs depict the flow 

depth and velocity according to the conservative SWE 
model. The graphs with light dashed lines depict the flow 
depth and velocity based on the non-conservative SWE 
model. As shown in Fig. 2 (a) and Fig. 2 (b), the graphs of 
flow depth and velocity are almost the same at 

0 ,t s 0.47 ,t s  1.43 ,t s  and 472.37t s  in the 

conservative and non-conservative SWE models. The flow 
depths and velocities at 472.37t s (see Fig. 2 (b)) and 

beyond are constant, and the flow velocity ( ) 0 / .u x m s  

This result means that the water flow is at rest and is 
consistent with (9). 

Fig. 3 presents the fluid flow visualization for a downhill 
with block topography. The domain is [0, 25].  The 

topography is downhill and has a block at the right end. The 

boundary has no discharge, 2
0 25

0 / .smq q   Initially, we 

set the dam break at location x=10m. The flow depth on the 

left side of the dam is h=5m, and that on the right side of the 
dam is h=2m. Fig. 3 (a) depicts this initial condition. The 
dam break is set at time t=0s. The solid line graphs depict 
the flow depth and velocity based on the conservative SWE 
model. The graphs with light dashed lines depict the flow 
depth and velocity based on the non-conservative SWE 
model. The graphs of flow depth and velocity are almost the 
same at t=2.89 s, and t=1621.70 s in the conservative and 
non-conservative SWE models, as shown in Fig. 3 (b). After 
a long period, the flow depth is almost constant and the flow 
velocity ( ) 0 / .u x m s  Hence, the water flow is at rest and 

is consistent with (9). 
 

 
(a) 

 
(b) 

Fig. 2.  Fluid flow from dam break to steady-state for flat 
topography 

 

B. Transcritical flow under steady state 

In the case of transcritical flow under steady state, we use 
the flow condition set by Lundgren [14]. When fluid flows 
over a flat area with a bump (see Fig. 4) and given hL = 0.66 
m, and q0 = 1.53 m2/s, the flow achieves a steady state with 
flow depth as in (20). 

2 2
0 0

2

23 022
( ) ( ) ( )( )

c
c M

q q
ggh

x H x h H h xh          (20) 
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where 
[0, ]

max ( ),
x LM

H H x


  hc is the fluid depth above HM, 

and H(x) is described in (21).   

2 if 8 12 ,0.2 0.05( 10)( )
0 otherwise

m x mxH x
  


      (21) 

 

 
(a) 

 
(b) 

Fig. 3.  Fluid flow from dam break to steady-state for a 
downhill with block topography 

 
Fig. 4 depicts the visualization of steady-state transcritical 

flow over a flat area with bumps. The initial flow depth is 
0.66 m, and the discharge is 1.53 m2/s. The solid line graph 
depicts the flow depth and velocity from the steady-state 
analytical solution. The graphs with dotted lines depict the 
flow depth and velocity based on the non-conservative SWE 
model. The graphs with dashed-dotted lines depict the flow 
depth and velocity based on the conservative SWE model. 
From Fig. 4 (a), the flow depths and velocities obtained from 
the conservative and non-conservative models show the 
same pattern and close to each other for 1.02t s . 

However, for 10t s , the non-conservative model is closer 

to the steady-state analytical solution than the conservative 

model as shown in Fig. 4 (b). When time t > 30 s, they move 
toward the steady-state analytical solution with L1 error less 
than 0.1 m or less than 15% as shown in Fig. 5. 

 

 
(a) 

 
(b) 

Fig. 4.  Transcritical flow in steady state over a flat area 
with bumps 

 

 
Fig. 5.  L1 Error of flow depth based on conservative and 
non-conservative SWE for steady-state transcritical flow 
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C. Supercritical flow under steady state  

In the case of supercritical flow, steady-state occurs over a 
flat area with bumps (see Fig. 6). The flow depth hL = 0.33 
m, and the discharge q0 =0.103 m2/s. In this case, the flow 
over 0 m ≤ x ≤ 8 m is subcritical, the flow above the bumps 
is supercritical, and the flow over 12 m ≤ x ≤ 25 m  becomes 
subcritical [23]. The flow near the upper right of the bumps 
is a hydraulic jump. Thus, the analytical solution in domain 
0 m ≤ x ≤ 8 m is (20), and the analytical solution on domain 
12 m ≤ x ≤ 25 m is (8), where hL substitutes h0.  

 
(a) 

 
(b) 

Fig. 6.  Steady-state supercritical flow over a flat area with 
bumps 

 
In Fig. 6, the solid line graph depicts the flow depth and 

velocity from the steady-state analytical solution. The graphs 
with dotted lines depict the flow depth and velocity based on 
the non-conservative SWE model. The graphs with dashed-
dotted lines depict the flow depth and velocity based on the 
conservative SWE model. Fig. 6 (a) depicts the initial 
condition for conservative and non-conservative SWE model 
and also the analytical solution. The solution (h, u) based on 
the non-conservative model is considerably close to the 
analytical solution after time t = 97.8 s as shown in Fig. 6 

(b). By contrast, the solution (h,u) based on the conservative 
SWE model is far from the analytical solution. Next, we 
compare the L1 error of flow depth for conservative and non-
conservative SWE model in supercritical flow as shown in 
Fig. 7. When the flow tend to steady-state condition, t > 40 
s, it can be seen that the solution of non-conservative SWE 
model is considerably close to the analytical solution, with 
L1 error less than 0.02 m or less than 6%. By contrast, the L1 

error of conservative SWE model is approximately 0.1 m or 
30%. From the above comparison, we conclude that only the 
non-conservative SWE model can visualize supercritical 
flow. 

 

 
Fig. 7.  L1 error of flow depth based on conservative and 

non-conservative SWE model for steady-state condition in 
supercritical flow over a flat area with bumps 

 

D. Dam-break flow over dry domain  

Let us test the non-conservative model for fluid flow in the 
wet to dry domains. In the case of fluid flow in the dry 
domain, the conservative SWE model cannot work directly 
using the Lax-Friedrich scheme. We use flat topography 
(H(x)=0) and the dam-break flow over the topography at 

location 0 .x m  The initial condition of the flow depth is in 

(22). 

0

0

0 , if 0
( )

0 , if 25
Lh m m x x m

h x
m x m x m

 



 


 
        (22) 

and u(x) = 0 m/s. In this case, the result of the non-
conservative SWE model is compared with Ritter’s 
analytical solution for an ideal dam-break [24]. Initially, hL 
= 5 m and x0 = 10 m.  

Fig. 8 visualizes the solution of this dam-break flow. The 
solid line graphs depict the flow depth and velocity from the 
analytical solution. The graphs with dotted lines depict the 
flow depth and velocity based on the non-conservative SWE 
model. The initial condition and the solution at 

0.74t s are depicted in Fig. 8 (a). Fig. 8 (b) shows the 

solution at 1.92t s and 20.04 .t s During the time of 

visualization, the solution ( , )h u  from the non-conservative 

SWE model is always close to the analytical solution with L1 
error shown in Fig. 9. When t ≥ 10 s, the L1 error is less than 
1%. When the flow tends to steady-state condition, the L1 
error is less than 0.3%. 
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E. Flow in wet and dry parabolic area 

This section presents the capability of the non-
conservative SWE model to visualize shallow water flow 
oscillations in a parabolic basin. In this case, the fluid moves 
to right and left through the wet/dry part of the parabolic 
basin area. The non-conservative SWE solution is compared 
with Thacker’s analytical solution [25] and Sampson’s 
analytical solution [26] of parabolic flow. Thacker’s 
analytical solution is a sinusoidal periodic function that 
oscillates during visualization. Sampson’s analytical solution 
is a sinusoidal periodic function with friction damping. 

We compare Thacker’s analytical solution with numerical 
result of the non-conservative SWE model. We use 
topography area, initial condition, and other physical 
parameters set by Delestre [24]. The parabolic topography is 
defined in (23).  

 

 
(a) 

 

 
(b) 

Fig. 8.  Dam break flow over wet/dry flat area 
 

2

2
0

1( ( ) 1)2( ) Lxh
a

H x          (23) 

The initial fluid velocity is u(x) = 0 m/s, and the initial 
fluid depth is given in (24). 

2
1 20

1(( ) 1)
2

, if
( )

0 , otherwise     

x Lh a a
x x x

h x
m

  



 
   (24) 

where h0 = 0.5 m, a = 1 m, and L=4 m. 
 

Fig. 9.  L1 error of flow depth based on non-conservative 
SWE model for dam break flow over wet/dry flat area 

.   

 
(a) 

 

 
(b) 

Fig. 10.  Comparison between non-conservative SWE 
solution and Thacker’s solution for shallow water 

oscillations  
 

Fig. 10 (a) presents the parabolic topography and initial 
condition of flow depth and flow velocity. Fig. 10 (b) 
depicts graphical results of flow depth and velocity at t = 
0.32 s, and t = 1.22 s. The solid lines are the graphs of flow 
depth and velocity from Thacker’s analytical solution. The 
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dotted lines are the graphs of flow depth and velocity from 
the non-conservative SWE model. Both graphs move to the 
right and left almost simultaneously for three periods. 
However, after a long visualization, the non-conservative 
SWE solution moves toward a steady-state condition, and 
Thacker’s analytical solution continues to move periodically 
without damping.   

The second test case for shallow water oscillations uses 
long parabolic topography as in (23) with h0 = 10 m, a = 
3,000 m, and L=10,000 m. The initial flow velocity is u(x) = 
0 m/s, and the initial flow depth uses the setting in [23]. Fig. 
11 (a) presents the parabolic topography, the initial 
condition, and the solution at t=557.76 s of flow depth and 
flow velocity. The graphical results of flow depth and 
velocity at t=941.19 s, and t=150,362.54 s are shown in Fig. 
11 (b). The solid lines are the graphs of flow depth and 
velocity from Sampson’s analytical solution. The dotted 
lines are the graphs of flow depth and velocity from the non-
conservative SWE model. Both graphs move to the right and 
left simultaneously. After t >150,362.54 s, they converge to 
the steady-state condition.  

 

 

(a) 

 

(b) 

Fig. 11.  Comparison between non-conservative SWE 
solution and Sampson’s solution for shallow water 

oscillations 

F. Flow in semi natural wet/dry area 

The first case is fluid flow in a long and dry downhill area 
as in Fig. 12. Domain x = [0, 200] m and the topography has 
two elevations. The first slope area has two sabo dams or 
bumps, similar to a downhill area in a mountain. The fluid 
flows from the top left side to the bottom right side. Initially, 
we have a dam break at the top left, x = 0 m, fluid depth h0 = 
4 m, discharge q0 = 14 m2/s. The discharge q0 decreases 
exponentially with respect to time t. The colored solid lines 
show the fluid depth and fluid velocities. They flow down 
over the dry area. After t = 8.85 s, the fluid passes through 
two sabo dams before finally leaving the domain area after   
t = 21.70 s. 

In the second case, the fluid flow in a semi natural wet/dry 
area is characterized as the coastal hydrodynamics of ocean 
waves on a beach. Fig. 13 shows that domain x = [0, 200] m. 
Initially, the water level is a dam break with u(x)=0 m/s as 
shown in Fig. 13 (a). Every 3 s, a sea wave is generated at 
the right boundary with negative velocity. When time t 
increases, the seawater starts moving to the left with flow 
velocities u(x) ≤ 0 m/s. Fig. 13 (b) shows the sea level 
h(x)+H(x) and flow velocities u(x) at time t = 1.76 s. When 
seawater reaches the top of the shoreline, some of its flows 
to the left, and the rest returns to the sea (to the right). 
Furthermore, sea water continues to oscillate in the shoreline 
area forever.  

 

 

Fig. 12.  Fluid flow in a downhill topography with sabo 
 

G. Summary of visualization results 

The capabilities of the conservative SWE model and the 
proposed SWE model (non-conservative model) to visualize 
fluid flow are summarized in Table I. The term “very good” 
means that the model can visualize the flow, and that the 
result is close to the analytical solution. The term “good” 
means that the model can visualize the flow and that it is 
stable. The term “poor“ means that the model can visualize 
the flow but that the result is still far from the analytical 
solution. The notation “-“ means that the model can not 
visualize the flow. 

The conservative model can visualize subcritical flow and 
transcritical flow in wet areas only. However, the 
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conservative model cannot visualize supercritical flow, 
oscillation flow, flow in a dry downhill area, and coastal 
hydrodynamics. In summary, the proposed model can 
visualize fluid flow in many situations, such as rivers, dams, 
and volcanic areas under wet and wet-dry conditions. These 
situations are required in serious game applications. 
Therefore, the proposed model is suitable for serious game 
applications. 

 

Table I. Summary of visualization capabilities 

 Conservative 
model 

Proposed  
Model 

Subcritical flow in a wet 
area 

Very good Very good 

Transcritical flow in a 
wet area 

Very good Very good 

Supercritical flow in a 
wet area 

Poor Very good 

Oscillation flow in a 
wet/dry area  

- Very good 

Flow in a dry downhill 
area 

- Good 

Coastal hydrodynamics - Good 

 

IV. CONCLUSIONS 

The proposed non-conservative SWE model is simpler, 
more stable, and more efficient (has lower complexity) than 
the widely available conservative SWE model. According to 
the test cases, the proposed model is able to visualize 
subcritical flow in certain complex topographies of wet 
areas. Moreover, the proposed model can visualize 
transcritical and supercritical flows. It is also able to 
visualize flow in wet/dry areas, such as dam break flow in a 
dry and flat topography, oscillation flow in a parabolic 
topography, flows in a dry and long downhill area, and 
coastal hydrodynamics of ocean waves on a beach. Hence, 
the proposed model could potentially be used to visualize 
fluid flow or flood distribution for serious game 
applications.   

In the future, we will extend the proposed model to three-
dimensional cases. In this way, it can be used to visualize 
fluid flows for serious game applications in real 
environments. Furthermore, we are also interested in 
modeling time-varying bed topographies. In this case, the 
model can be used to visualize sedimentation and bed 
erosion.  
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