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Abstract—We present structural properties of linear codes
over the ring Z2m + vZ2m where v2 = v as a generalization of
specific Gao’s results for the ring Z4+vZ4 where v2 = v. First,
we study a structure of the ring Z2m + vZ2m where v2 = v
and properties of linear codes over this ring, via a Gray map.
Further, we consider MacWilliams relations, MDS codes, as
well as Euclidean self-dual codes over this ring.

Index Terms—linear codes, Gray map, euclidean self dual,
MacWilliams relations, character.

I. INTRODUCTION

BLAKE introduced codes over finite rings in the 1970s
in order to find possible good codes (see [1],[2]). In [1],

he studied the construction of codes over Zm, where m is a
product of distinct prime pi, from cyclic codes over GF (pi).
Then, in [2], he studied the structure of codes over ring Zq ,
where q = pr. Blake’s result was generalized by Spiegel in
[3] and [4] to the codes over Zm for any positive integer m.
Codes over finite rings started to become more interesting
through the work of Hammons Kumar, Calderbank, Sloane,
and Solé [5]. Hammons et al. [5] studied a nonlinear binary
code associated with a linear code over Z4. In 2014, Yildiz
and Karadeniz [6] studied linear codes over Z4+uZ4, where
u2 = 0. Among their results are the MacWilliams relations
for Lee, complete, and symmetrized weight enumerators.
Recently, certain similar aspects are also studied by Gao
and his coauthors for linear codes over Z4 + vZ4 and over
Z9 + vZ9, where v2 = v ( [7], [8]).

In this paper, we present the structures and properties of
linear codes over a finite ring Z2m + vZ2m , where v2 = v,
as a generalization of specific results by Gao et al. in [7].
The basic structure of the ring Z2m + vZ2m is presented
in Section 2, meanwhile in Section 3, we consider linear
codes over finite ring Z2m + vZ2m , show the MacWilliams
relations for these codes and study MDS codes over the ring.
In Section 4, we then observe some properties of self-dual
codes over Z2m + vZ2m .

II. LINEAR CODES OVER Z2m + vZ2m

A. Basic Structure of Z2m + vZ2m

From now on, we denote the ring Z2m + vZ2m , where
v2 = v, by R. Ring R is commutative and has characteristic
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2m. Ring R is isomorphic to Z2m [v]/〈v2 − v〉. Any element
r = a + bv ∈ R is unit if and only if a and a + b are both
units in Z2m .

It is shown in Lemma II.1 that R is a principal ideal ring,
and by [9], R is a Frobenius ring.

Lemma II.1. R is a principal ideal ring.

Proof: Consider the following two surjective ring ho-
momorphisms

ϕ : R 3 a+ bv 7−→ a ∈ Z2m ,

and

ψ : R 3 a+ bv 7−→ a+ b ∈ Z2m .

Let I be an ideal in R. Since ϕ(I) = {ϕ(r) : r ∈ I} and
ψ(I) = {ψ(r) : r ∈ R} are ideals in the principal ideal ring
Z2m , then ϕ(I) = 〈c〉 and ψ(I) = 〈d〉 for some c, d ∈ Z2m .

We claim that I = 〈(1 − v)c + vd〉. Let r = a + bv ∈ I .
Since a = ϕ(r) ∈ 〈c〉 and a+ b = ψ(r) ∈ 〈d〉, we can write
a = ce and a+ b = df for some e, f ∈ Z2m . Note that

r = a+ bv

= a(1− v) + (a+ b)v

= ce(1− v) + dfv

= (c(1− v) + dv) (e(1− v) + fv) .

It follows that I ⊆ 〈(1− v)c+ vd〉.
Conversely, since c ∈ ϕ(I) and d ∈ ψ(I) there are c +

sv,m+ nv ∈ I such that ϕ(c+ sv) = c and ψ(m+ nv) =
m+ n = d. Note that

(1− v)c = (1− v)(c+ sv) ∈ I

and

dv = (m+ n)v = (m+ nv)v ∈ I

hence (1− v)c+ dv ∈ I and therefore 〈(1− v)c+ dv〉 ⊆ I .

B. Linear Codes over R

A linear code C of length n over the ring R is an R-
submodule of Rn. Ring R can be represented in another
way as R = vZ2m ⊕ (1− v)Z2m . Following [10], we define
the Lee weight of the elements in Z2m as:

wL(x) =

{
x, if x ≤ 2m−1

2m − x, if x > 2m−1
(1)

First, we define a Gray map φ : R −→ Z2
2m by φ(a+bv) =

(a, a + b). Then we extend this map into a Gray map from
Rn to Z2n

2m by

φ : Rn −→ Z2n
2m

(r0, r1, . . . , rn−1) 7−→ (φ(r0), φ(r1), . . . , φ(rn−1)).
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Definition II.2. The Gray weight for any element of R is
defined by

wG(a+ bv) = wL(a) + wL(a+ b),

where wL(a), wL(a+b) denotes the Lee weight of elements
a, a+ b ∈ Z2m .

By extending the Definition II.2 we could define
the Gray weight on Rn. The Gray weight of
c := (c0, c1, · · · , cn−1) ∈ Rn is defined as

wG(c) =
n−1∑
i=0

wG(ci). For c1, c2 ∈ Rn, the

Gray distance between c1 and c2 is defined by
dG(c1, c2) = wG(c1 − c2); and Hamming distance is
defined by dH(c1, c2) = wH(c1 − c2). Similarly, the
Lee distance between c ∈ Rn and d ∈ Rn is defined by

dL(c,d) = wL(c− d) =
n∑
i=1

wL(ci − di).

The following proposition shows that the Gray map is an
isometry.

Proposition II.3. Let φ : Rn → Z2n
2m be the Gray map.

Then φ is linear over Z2mand φ is a distance preserving
map from Gray distance R with length n to Lee distance
Z2m with length 2n.

Proof:
It is clear that φ is linear and by using definition of Gray

weight, we have dG(c,d) = wG(c− d) = wL(φ(c− d)) =
wL(φ(c)− φ(d)) = dL(φ(c), φ(d)).

By using the above proposition, it is easy to prove the
following lemma.

Lemma II.4. If C is an [n,M, dG] linear code over R, then
φ(C) is a [2n,M, dL] linear code over Z2m .

III. THE DUAL AND MACWILLIAMS RELATIONS

In section II, we have already learned about the basic struc-
ture of linear codes over ring R. In this section, we present
the implementation of dual and MacWilliams relations over
ring R.

A. The Dual of Linear Codes over R

First, we define the Euclidean inner product on Rn as
follows:

(x0, x1, · · · , xn−1) · (y0, y1, · · · , yn−1)
= x0y0 + x1y1 + · · ·+ xn−1yn−1.

Moreover, we define the Euclidean dual code of C as:

C⊥ = {x ∈ Rn : x · c = 0 for all c ∈ C}

A code C is called Euclidean self-orthogonal if C ⊆ C⊥,
and C is called Euclidean self-dual if C = C⊥.

Lemma III.1. 1) If C is a linear code, then φ(C)⊥ =
φ(C⊥).

2) If C is Euclidean self-dual, then φ(C) is Euclidean self-
dual.

Proof:
1) Let c = (c0, c1, · · · , cn−1) ∈ C and d = (d0, d1, · · · ,

dn−1) ∈ C⊥, where ci = ai + biv, di = ei + fiv,

ai, bi, ei, fi ∈ Z2m , i = 0, 1, 2, · · · , n− 1.

We see that

c · d = c0d0 + c1d1 + · · ·+ cn−1dn−1

=
n−1∑
i=0

(ai + biv)(ei + fiv)

=
n−1∑
i=0

aiei +
n−1∑
i=0

(eibi + aifi + bifi)v.

Since c · d = 0, then
n−1∑
i=0

aiei = 0 and

n−1∑
i=0

(eibi + aifi + bifi) = 0. So,

φ(c) · φ(d) = φ(c0, · · · , cn−1) · φ(d0, · · · , dn−1)

= φ(a0 + b0v, · · · , an−1 + bn−1v)·
φ(e0 + f0v, · · · en−1 + fn−1v)

= (a0, a0 + b0, · · · , an−1, an−1 + bn−1)·
(e0, e0 + f0, · · · , en−1, en−1 + fn−1)

= (a0e0 + (a0 + b0)(e0 + f0) + · · ·+
an−1bn−1 + (an−1 + bn−1)(en−1 + fn−1)

=
n−1∑
i=0

aiei +
n−1∑
i=0

(eibi + aifi + bifi) +
n−1∑
i=0

aiei

= 0.

Now, φ(d) ∈ φ(C⊥) and φ(c) · φ(d) = 0, hence
φ(d) ∈ φ(C)⊥. Therefore, φ(C⊥) ⊆ φ(C)⊥.

Moreover, it is easy to verify that φ is bijective, and then
we have |φ(C⊥)| = |φ(C)⊥|. Hence, it implies φ(C⊥) =
φ(C)⊥.

2) Let C be Euclidean self-dual, C = C⊥, then φ(C) =
φ(C⊥) ⊆ φ(C)⊥. So φ(C) is self-orthogonal. By Lemma
II.4, we have |φ(C)| = |C| = (2m)n/2. Hence, φ(C) is a
Euclidean self-dual.

Next, we present a MacWilliams relation of linear codes
over the ring R.

B. MacWilliams Relations

Let C be a linear code with length n over R. For all a
in R and c = (c0, c1, ..., cn−1) ∈ Rn, define the weight of
vector c at a to be:

wa(c) = |{i : ci = a}|

Let Ai be the number of elements of Gray weight i in C.
Then, the set of Gray weight distributions of C is

{A0, A1, · · · , A2mn}.
The Gray weight enumerator is defined by:

GrayC(S, T ) =
2mn∑
i=0

AiS
2mn−iT i

=
∑
c∈C

S2mn−wG(c)TwG(c)

IAENG International Journal of Applied Mathematics, 51:1, IJAM_51_1_15

Volume 51, Issue 1: March 2021

 
______________________________________________________________________________________ 



Since Gray map φ is a distance preserving map from the
Gray distance to the Lee distance, we define the Lee weight
enumerator of φ(C) as follows:

Leeφ(C)(S, T ) =
∑

φ(c)∈φ(C)

S2m2n−wL(φ(c))TwL(φ(c)).

Suppose that the elements of R are
{0, v, 2v, 3v, . . . , (2m − 1)v, 1, 1 + v, . . . , 1 + (2m − 1)v,
. . . , (2m − 1) + (2m − 1)v} are indexed with the following
indexing variables:

R = {S0, S1, S2, S3, · · · , S(2m)2−1}.

Let ai denote the elements of Table 1 that relate to Si.
Define the complete weight enumerator of C over R as

follows:

cweC(S0, S1, S2, · · · , S22m−1)

=
∑
c∈C

S
wa0

(c)
0 S

wa1
(c)

1 · · ·S
wa

22m−1
(c)

22m−1

=
∑
c∈C

∏
a∈R

Swa(c)
a .

We say that wai(c) is the complete weight composition of
vector c in ai.

Define the number of elements with Gray weight i in
codeword c of C as:

αi(c) =
∑
a∈R,

wG(a)=i

wa(c), i = 0, 1, 2, 3, · · · , 2m

Then the Gray weight wG(c) of c ∈ C is equal to:

wG(c) =
2m∑
i=0

iαi(c).

Define the symmetrized weight enumerator of C over R as
follows:

sweC(T0, T1, T2, T3, . . . , T2m) =
∑
c∈v

2m∏
i=0

T
αi(c)
i ,

where T0, T1, T2, T3, . . . , T2m represent the elements in R
with weights 0, 1, 2, 3, . . . , 2m, respectively.

The Hamming weight enumerator of C is defined as
follows:

HamC(S, T ) =
∑
c∈C

Sn−wH(c)TwH(c)

where wH(c) denotes the Hamming weight of a codeword
c.

Lemma III.2. Let C be a linear code with length n over R.
Then we have:

1) GrayC(S, T ) = sweC(S
2m , S2m−1T, S2m−2T 2,

· · · , S2m/2T 2m/2, · · · , S2T 2m−2, ST 2m−1, T 2m)
2) HamC(S, T ) = sweC(S, T, T, · · · , T︸ ︷︷ ︸

2m

)

3) GrayC(S, T ) = Leeφ(C)(S, T )

Proof:
1) GrayC(S, T ) =

∑
c∈C

S2mn−wG(c) TwG(c)

=
∑
c∈C

S2m(α0+α1+···+α2m )−(0α0+1α1+···+2mα2m )·

T (0α0+1α1+2α2+···+2mα2m )

=
∑
c∈C

S2mα0+(2m−1)α1+(2m−2)α2+···+α(2m−1) ·

T (0α0+1α1+2α2+···+2mα2m )

=
∑
c∈C

S2mα0 (S2m−1T )α1 (S2m−2T 2)α2 · · ·

(S2m/2T 2m/2)α2m/2 · · · (S3T 2m−3)α2m−3

(S2T 2m−2)α2m−3 (ST 2m−1)α2m−1 Tα2m

= sweC(S
2m , S2m−1T, S2m−2T 2, S2m−3T 3, · · · ,

S2m/2T 2m/2, · · · , S2T 2m−2, ST 2m−1, T 2m)

2) HamC(S, T ) =
∑
c∈C

Sn−wH(c) TwH(c)

=
∑
c∈C

S(α0+α1+α2+α3+···+α2m )−(α1+α2+α3+···+α2m )·

T (α1+α2+α3+···+α2m )

=
∑
c∈C

Sα0 T (α1+α2+α3+···+α2m )

=
∑
c∈C

Sα0 Tα1 Tα2 Tα3 · · · Tα2m

= sweC(S, T, T, · · · , T︸ ︷︷ ︸
2m

)

3) GrayC(S, T ) =
∑
c∈C

S2mn−wG(c) TwG(c)

=
∑

φ(c)∈φ(C)

S2m2n−wL(φ(c)) TwL(φ(c))

= Leeφ(C)(S, T )

Let R̂ = {ϕ : character of R} and χ ∈ R̂. Define θ1 :
R −→ R̂ and θ2 : R −→ R̂ induced by χ as θ1(r) = χr

and θ2(r) = rχ, where χr(s) = χ(sr) and rχ(s) = χ(rs).
The character χ is a generating character if θ1 or θ2 is an
R-module isomorphism.

Proposition III.3. Let π : R −→ C∗ be a character of R.
Then ∑

r∈R
π(r) =

{
|R|, if π = 1
0, if π 6= 1

Proof: The similar proof as in Proposition 2.14 [11].

Lemma III.4. For every ideal I in R, there exist I1, I2
ideals in Z2m such that I = vI1 ⊕ (1− v)I2.

Proof: We define I1 and I2 by

I1 = {a ∈ Z2m : ∃b ∈ Z2m , va+ (1− v)b ∈ I}
I2 = {b ∈ Z2m : ∃a ∈ Z2m , va+ (1− v)b ∈ I}

Let a+vb ∈ I, and write a+vb = v(a+ b)+(1−v)a. This
implies that a + b ∈ I1 and a ∈ I2, then we get a + vb ∈
vI1+(1−v)I2. Therefore it implies that I ⊆ vI1+(1−v)I2.
Let va + (1 − v)b ∈ vI1 + (1 − v)I2. We will prove that
va + (1 − v)b ∈ I. Since a ∈ I1, and b ∈ I2, then there
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TABLE I
GRAY WEIGHT OF ELEMENTS Z2m + vZ2m

i Element Gray image Gray Corresponding
ai weight variable

0 0 (0, 0) 0 S0

1 v (0, 1) 1 S1

2 2v (0, 2) 2 S2

3 3v (0, 3) 3 S3

4 4v (0, 4) 4 S4

...
...

...
...

...
2m − 3 (2m − 3)v (0, 2m − 3) 3 S2m−3

2m − 2 (2m − 2)v (0, 2m − 2) 2 S2m−2

2m − 1 (2m − 1)v (0, 2m − 1) 1 S2m−1

2m 1 (1, 1) 2 S2m

2m + 1 1 + v (1, 2) 3 S2m+1

2m + 2 1 + 2v (1, 3) 4 S2m+2

2m + 3 1 + 3v (1, 4) 5 S2m+3

2m + 4 1 + 4v (1, 5) 6 S2m+4

...
...

...
...

...
2m + (2m − 2) 1 + (2m − 2)v (1, 1 + (2m − 2)) 2 S2m+(2m−2)

2m + (2m − 1) 1 + (2m − 1)v (1, 1 + (2m − 1)) 1 S2m+(2m−1)

2(m+1) 2 (2, 2) 4 S2(m+1)

2(m+1) + 1 2 + v (2, 3) 5 S2(m+1)+1

2(m+1) + 2 2 + 2v (2, 4) 6 S2(m+1)+2

2(m+1) + 3 2 + 3v (2, 5) 7 S2(m+1)+3

2(m+1) + 4 2 + 4v (2, 6) 8 S2(m+1)+4

...
...

...
...

...
2(m+1)+(2m−2) 2 + (2m − 2)v (2, 2 + (2m − 2)) 2 S2(m+1)+(2m−2)

2(m+1)+(2m−1) 2 + (2m − 1)v (2, 2 + (2m − 1)) 1 S2(m+1)+(2m−1)

...
...

...
...

...

22m−1 2(m−1) (2(m−1), 2(m−1)) 2 · 2(m−1) S22m−1

...
...

...
...

...
22m − 1 2m − 1+(2m − 1)v (2m − 1, 2 · 2m − 2) 3 S22m−1

exists c such that va+ (1− v)c ∈ I and there exists d such
that vd+ (1− v)b ∈ I , respectively. Therefore,

va+ (1− v)b = v(va+ (1− v)c) + (1− v)(vd+ (1− v)b)
∈ I

Hence, va+(1−v)b ∈ I. Thus, we can conclude that vI1+
(1− v)I2 = I.
Let w ∈ vI1 ∩ (1− v)I2, we get

w = va = (1− v)b, for a ∈ I1, b ∈ I2
va− (1− v)b = 0

−b+ v(a+ b) = 0

Hence, b = 0, a = 0, and w = 0. So, we conclude that
I = vI1 ⊕ (1− v)I2.

Lemma III.5. For every I 6= 0. If
∑
r∈I

π(r) = 0, then π is

a generating character.

Proof: Let θ : R −→ R̂ defined as θ(r) =r π, where
rπ(s) = π(rs) for all s ∈ R. Suppose π is not a generating
character, then

Ker(θ) = {r ∈ R : θ(r) = 1} = {r ∈ R : rπ = 1} 6= {0}

Hence, there is an r 6= 0, where rπ = 1, rπ(x) = π(rx) =
1, for all x ∈ R. Thus rx ∈ Ker(π), for all x ∈ R. In other
words, rR ⊆ Ker(π).

Suppose I = rR.∑
a∈rR

π(a) = π(a1) + π(a2) + · · ·+ π(ak)

= 1 + 1 + · · ·+ 1︸ ︷︷ ︸
k

= 1 · k 6= 0,

which contradicts
∑
a∈I

π(a) = 0 for all I nonzero ideals.

Theorem III.6. Let π : R −→ C∗ be a character of R. Then
the following are equivalent:

1) for every nonzero ideal I , then I 6⊆ Ker(π),

2) for every nonzero ideal I , then
∑
r∈I

π(r) = 0.

Proof:
(1)⇒ 2)) Let I be a nonzero ideal with I 6⊆ Ker(π). We

will prove that
∑
r∈I

π(r) = 0. Since I 6⊆ Ker(π), there exist

r0 ∈ I, π(r0) 6= 1. By Proposition III.3,
∑
r∈I π(r) = 0.
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(2) ⇒ 1)) Let I 6= 0 and
∑
r∈I

π(r) = 0. We will prove

that I 6⊆ Ker(π). Suppose that I ⊆ Ker(π). This implies
that π(I) = 1. However this leads to a contradiction, since∑
r∈I

π(r) = |I| 6= 0 by Proposition III.3.

Now, let us consider the function

f : Rn −→ C[S0, S1, ..., S22m−1].

The Hadamard transform of f, denoted by f̂ , is defined
by:

f̂(x) =
∑
y∈Rn

χ(x · y)f(y), for any x ∈ Rn,

where for any r = a + bv, χ(a + bv) = ξ2a+b, for any
a+ bv ∈ R, and ξ = e2πi/2

m

is the primitive 2m-th root of
unity in the complex field C.

Lemma III.7. Let χ : R −→ C∗ be a character of R
defined by χ(a + bv) = ξ2a+b and I be a nonzero ideal of
R. Then χ is a generating character.

Proof:
Because R can be represented by R = vZ2m+(1−v)Z2m ,

by Lemma III.4, then for any ideal I ∈ R there are I1, I2
ideals in Z2m such that I = vI1⊕(1−v)I2. Let r = a+vb =
v(a+ b) + (1− v)a, then we have∑

r∈I
χ(r) =

∑
a+bv∈I

χ(a+ bv)

=
∑

v(a+b)+(1−v)a∈I

χ(v(a+ b) + (1− v)a)

=
∑

a+b∈I1,a∈I2

χ(v(a+ b)) χ((1− v)a)

=
∑

a+b∈I1,a∈I2

ξa+b ξa

=
∑

a+b∈I1

ξa+b
∑
a∈I2

ξa

Since I is nonzero, then at least one of I1 or I2 is nonzero.
Let
χ : R −→ C∗

r 7−→ χ(r) where χ(r) = χ(a+ vb) = ξ2a+b

Suppose I2 ⊆ Ker(χ) ideal in Z2m , I2 = 〈2i〉, for i. Let
r ∈ I2, then r = t·2s, for t ∈ Z2m . Since χ(t·2s) = ξ2t·2

s

=
ξt·2

s+1

= 1 and ξ2
m

= 1, then this leads to a contradiction,
because 2m - t · 2s+1. So we get I2 6⊆ Ker(χ), therefore,
this concludes that

∑
a∈I2

χ(a) = 0 by Theorem III.6. Since∑
a∈I2

ξa = 0, we conclude that
∑
r∈I

χ(r) = 0 by Proposition

III.3.

Lemma III.8. If C be a linear code of length n over R, then∑
x∈C⊥

f(x) =
1

|C|
∑
x∈C

f̂(x).

Proof:
By using the Hadamard transform of f(x), we have∑

x∈C
f̂(x) =

∑
x∈C

∑
y∈Rn

χ(x·y)f(y) =
∑
y∈Rn

f(y)
∑
x∈C

χ(x·y).

Next we consider two cases:

(i) If y ∈ C⊥, then x ·y = 0. Therefore, χ(x ·y) = χ(0) =
1 because ξ = e0 = cos(0) + i sin(0) = 1. So we
get
∑
x∈C

χ(x · y) = |C|;

(ii) If y ∈ Rn\C⊥, then {x ·y : x ∈ C} is a nonzero ideal
in R. By Lemma III.7, we get

∑
x∈C

χ(x · y) = 0.

Therefore, we conclude∑
x∈C⊥

f(x) =
1

|C|
∑
x∈C

f̂(x).

A famous topic in linear code is the MacWilliams re-
lations, which relates the weight enumerators between a
linear code and its dual code. Wood have proven the re-
lations with respect to Hamming weight as well as complete
weight enumerators for any linear codes over Frobenius rings
([12],[13]). Here we prove relations for complete weight
enumerator explicitly in the following lemma.

Lemma III.9. Let C be a linear code with length n over R
and C⊥ be its Euclidean dual. Then

cweC⊥(S0, S1, S2, S3, . . . , S22m−1)

=
1

|C|
cweC(M · (S0, S1, S2, S3, . . . , S22m−1)

T ),

where Mij = (χ(ai aj))22m×22m for i, j = 0, 1, 2,
3, ..., 22m − 1 and ai denotes the elements of Table 1 that
relate to Si and the symbol (S0, S1, · · · , S22m−1)

T denotes
the transpose of vector (S0, S1, S2, S3, . . . , S22m−1).

Proof:

Let f(y) = S
wa0 (y)
0 S

wa1 (y)
1 · · ·S

wa
22m−1

(y)

22m−1 , where y =
(y0, y1, · · · , yn−1) ∈ Rn and wai(y) is the complete weight
composition of vector y in ai.

f̂(x) =
∑
y∈Rn

χ(x · y)f(y)

=
∑
y∈Rn

χ(x · y)Swa0 (y)
0 · · ·S

wa
22m−1

(y)

22m−1 .

For any r ∈ R, we have wr(y) = δr,y0 +δr,y1 + ...+δr,yn−1 ,
where δ is the Kronecker delta. So we get

f̂(x) =
∑
y∈Rn

(χ(x0y0 + · · ·+ xn−1yn−1))·(
S
∑n−1

i=0 δa0,yi
0 · · ·S

∑n−1
i=0 δa

(22m−1)
,yi

(22m−1)

)

=
∑
y∈Rn

n−1∏
j=0

χ(xjyj)

 ·
22m−1∏

k=0

S
∑n−1

i=0 δak,yi

k


=
∑
y∈Rn

χ(x0y0) 22m−1∏
k=0

S
δak,y0

k

 · · ·
χ(xn−1yn−1) 22m−1∏

k=0

S
δak,yn−1

k


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=

∑
y0∈R

χ(x0y0)
22m−1∏
k=0

S
δak,y0

k

 · · ·
 ∑
yn−1∈R

χ(xn−1yn−1)
22m−1∏
k=0

S
δak,yn−1

k


=

22m−1∑
k=0

χ(x0ak) Sk

22m−1∑
k=0

χ(x1ak) Sk


· · ·

22m−1∑
k=0

χ(xn−1ak) Sk


=

22m−1∏
i=0

22m−1∑
j=0

χ(aiaj) Sj

wai
(x)

.

For c ∈ C, f(c) = S
wa0

(c)
0 S

wa1
(c)

1 · · ·S
wa

22m−1
(c)

22m−1 .
By Lemma III.8, we get:

cweC⊥ (S0, S1, S2, S3, · · · , S22m−1)

=
∑
c∈C⊥

S
wa0 (c)
0 S

wa1 (c)
1 · · ·S

wa
22m−1

(c)

22m−1

=
∑
c∈C⊥

f(c)

=
1

|C|
∑
c∈C

f̂(c)

=
1

|C|
∑
c∈C

22m−1∏
i=0

22m−1∑
j=0

χ(ai aj) Sj

wai
(c)

=
1

|C|
∑
c∈C

22m−1∑
j=0

χ(a0 aj) Sj

wa0
(c)

× · · ·×

22m−1∑
j=1

χ(a22m−1 aj) Sj

wa
22m−1

(c)

=
1

|C|
cweC

22m−1∑
j=1

χ(a0 aj) Sj , . . . ,

22m−1∑
j=1

χ(a22m−1 aj)Sj

 .

C. MDS Codes over R

Let C be an [n,M, d] linear code over R. For any Frobenius
ring R, the Singleton bound to a code C with length n over
R express as:

dH(C) ≤ n− log|R||C|+ 1,

where dH(C) denotes the minimum Hamming distance of
a linear code of C.

A maximum distance separable (MDS) code is another
important class of linear codes over R. A code that
meets the Singleton bound is called MDS, namely if
dH(C) = n− log|R||C|+ 1 is fulfilled.

By using a similar argument as in the proof of Lemma
III.4, we can decompose C into C = vC1 ⊕ (1− v)C2, where

C1 = {x ∈ Zn2m : ∃y ∈ Zn2m , vx+ (1− v)y ∈ C}, (2)
and
C2 = {y ∈ Zn2m : ∃x ∈ Zn2m , vx+ (1− v)y ∈ C}. (3)

Theorem III.10. Let C = vC1 ⊕ (1− v)C2, with C1 and C2
in (2) and (3) be a linear code with length n over R. Then:

1) dG(C) = min{dL(C1), dL(C2)}, where dG, dL are the
Gray distance and the Lee distance, respectively.

2) dH(C) = min{dH(C1), dH(C2)}, where dH is the Ham-
ming distance;

3) Code C with parameter [n,M, d] is an MDS code over
R if and only if C1 and C2 with parameters [n,

√
M,d]

are MDS code over Z2m .

Proof:
1) Since C = vC1 ⊕ (1− v)C2, then the minimum Gray

distance is dG(C) = min{dG(vC1), dG(1− v)C2}.
By Proposition II.3, we have dG(C) =
min{dL(φ(vC1)), dL(φ((1− v)C2))}.

Denote the component-wise multiplication of two vec-
tors with operation ∗ as follows:
(x1, x2) ∗ (y1, y2, · · · , yn)
= (x1y1, x2y1, x1y2, x2y2, · · · , x1yn, x2yn)
Recall the Gray map

φ : Rn −→ Z2n
2m

(a0 + vb0, · · · , an−1 + vbn−1) 7−→ (a0, a0 + b0, · · · ,
an−1, an−1 + bn−1).

We will show that φ(vC1) = (0, 1) ∗ C1. Let c′ ∈
φ(vC1), where

c′ = φ(vx),with x = (x0, x1, · · · , xn−1) ∈ Ci.Then

φ(vx) = φ(vx0, vx1, · · · , vxn−1)
= (0, x0, 0, x1, · · · , 0, xn−1)
∈ (0, 1) ∗ C1,

so we get φ(vC1) ⊆ (0, 1) ∗ C1.
Let c′ = (0, 1) ∗ x ∈ (0, 1) ∗ C1. Then

c′ = (0, 1) ∗ (x0, x1, · · · , xn−1)
= (0, x0, 0, x1, · · · , 0, xn−1)
∈ φ(vC1),

hence we get (0, 1) ∗ C1 ⊆ φ(vC1).
So we conclude that φ(vC1) = (0, 1) ∗ C1.
Next we will show that
φ((1− v)C2) = (1, 0) ∗ C2. Let c′ ∈ φ((1− v)C2),
where c′ = φ((1− v)y), y = (y0, y1, · · · , yn−1) ∈ C2.

Then

φ((1− v)y) = φ((1− v)y0, (1− v)y1, · · · , (1− v)yn−1)
∈ (1, 0) ∗ C2.
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And hence φ((1− v)C2) ⊆ (1, 0) ∗ C2.

Let c′ = (1, 0) ∗ y ∈ (1, 0) ∗ C2. Then

c′ = (1, 0) ∗ (y0, y1, · · · , yn−1)
= (y0, 0, y1, 0 · · · , yn−1, 0)
∈ φ((1− v)C2).

Then we get (1, 0) ∗ C2 ⊆ φ((1− v)C2).
So we conclude that φ((1− v)C2) = (1, 0) ∗C2, which
implies that

dG(C) = min{dG(vC1), dG(1− v)C2}
= min{dL(φ(vC1)), dL(φ((1− v)C2))}
= min{dL(C1), dL(C2)}.

2) It is easy to see that

dH(C) = min{dH(vC1), dH(1− v)C2}.

Moreover, since ∀c = vc1 + (1 − v)c2 ∈ C, we have
c = 0 if and only if c1 = 0 = c2, then

dH(C) = min{dH(C1)), dH(C2)}.

3) Let C is an MDS code of parameter [n,M, d]. Denote
dH(C1) as the minimum Hamming distance of C1 and
dH(C2) as the minimum Hamming distance of C2.
Suppose

d = dH(C) = dH(C1) and from point 2,
dH(C) = min{dH(C1), dH(C2)}, then
dH(C2) ≥ dH(C1).

Since

d = n− log22m M+1 = n− log2m
√
M+1 = dH(C1)

So we get that C1 is MDS with parameter [n,
√
M,d].

Since dH(C1) ≤ dH(C2), then we get

n−log2m
√
M+1 = dH(C1) ≤ dH(C2) ≤ n−log2m

√
M+1.

From this equation, so we get dH(C2) =
n − log2m

√
M + 1. The consequence are C1

and C2 are MDS codes.

Now suppose C1 and C2 with parameters [n,
√
M,d]

are MDS codes, then dH(C1) = n − log2m
√
M + 1

and dH(C2) = n− log2m
√
M + 1.

Assume by point 2 of dH(C) = dH(C1), then dH(C) =
n− log2m

√
M + 1 = n− log22m M + 1. As a result,

C is an MDS code.
Therefore, we conclude that code C with parameter
[n,M, d] is an MDS code over R if and only if C1, C2
with parameter [n,

√
M,d] are MDS codes over Z2m .

IV. SELF-DUAL CODE OVER R

A. Self-Dual Codes

In this section, the properties of self-dual linear codes over
R will be studied. The codes C1 and C2 are linear code over
Z2m with length n. A linear code C with length n over R
can be stated uniquely as:

C = vC1 ⊕ (1− v)C2

Proposition IV.1. Let C be a linear code with length n over
R, then C⊥ = vC⊥1 ⊕(1−v)C⊥2 . The code C is Euclidean self-
dual if and only if C1 and C2 are both Euclidean self-dual
over Z2m .

Proof:
Define:

Ĉ1 = {x ∈ Zn2m : ∃y ∈ Zn2m , vx+ (1− v)y ∈ C⊥}

and

Ĉ2 = {y ∈ Zn2m : ∃x ∈ Zn2m , vx+ (1− v)y ∈ C⊥}

We will prove C⊥ = vĈ1 + (1 − v)Ĉ2. Let c′ ∈ C⊥, where
c′ = a + vb. We can represent c′ = v(a + b) + (1 − v)a.
Then (a + b) ∈ Ĉ1 and a ∈ Ĉ2. So c′ ∈ vĈ1 + (1 − v)Ĉ2.
As a result C⊥ ⊆ vĈ1 + (1− v)Ĉ2.

Let va+(1−v)b ∈ vĈ1+(1−v)Ĉ2, where a ∈ Ĉ1 meaning
that there is y1 such that va+ (1− v)y1 ∈ C⊥, and b ∈ Ĉ2
meaning that there is x1 such that vx1 + (1− v)b ∈ C⊥.

v(va+ (1− v)y1) = va ∈ vC⊥ ⊆ C⊥

va ∈ C⊥

and

(1− v)(vx1 + (1− v)b) = (1− v)b ∈ (1− v)Ĉ2 ⊆ C⊥

(1− v)b ∈ C⊥

Then we get va+(1−v)b ∈ C⊥. Hence C⊥ = vĈ1+(1−v)Ĉ2.
Let z ∈ vĈ1∩ (1− v)Ĉ2, meaning that z ∈ vĈ1 with z = va,
where a ∈ Ĉ1; and z ∈ (1− v)Ĉ2 with z = (1− v)b, where
b ∈ Ĉ2. Thus

va = (1− v)b
va− (1− v)b = 0
−b+ v(a+ b) = 0

implying that a = 0 and b = 0. Then z = 0. So we
conclude C⊥ = vĈ1 ∩ (1− v)Ĉ2.

Now, we will prove Ĉ1 = C⊥1 . Let â1 ∈ Ĉ1, there is a
b1 ∈ Zn2m such that vâ1 + (1 − v)b1 ∈ C⊥. Let x ∈ C1,
there is a y ∈ Zn2m such that vx + (1 − v)y ∈ C. Then,
(vâ1 + (1 − v)b1) · (vx + (1 − v)y) = 0, which implies
that â1 · x = 0. Since â1 ∈ Ĉ1 and â1 · x = 0, then â1 ∈ Ĉ⊥1
and we get Ĉ1 ⊆ C⊥1 . Let c1 ∈ C⊥1 , since for x ∈ C1
there is a y ∈ Zn2m such that vx + (1 − v)y ∈ C, then
c1 ·(vx+(1−v)y) =vc1 ·x+(1−v)c1 ·y = 0+(1−v)c1y.

Let c = vx+(1−v)y ∈ C, with x ∈ C1 and y ∈ C2. Then
we multiply both sides, vc1 · c = vc1 · (vx+ (1− v)y = 0.
So we get vc1 ∈ C⊥.

Since C⊥ = vĈ1 + (1− v)Ĉ2, then c1 ∈ Ĉ1 and C⊥1 ⊆ Ĉ1.
Therefore, we conclude that Ĉ1 = C⊥1 . In the same way, we
may prove that Ĉ2 = C⊥2 . Therefore C⊥ = vC⊥1 + (1− v)C⊥2 .

Next, we will prove that if C1 and C2 are Euclidean
self-dual over Z2m , then C is Euclidean self-dual. From
C = vC1 ⊕ (1− v)C2 and the proof C⊥ = vC⊥1 + (1− v)C⊥2 ,
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and because of C1 = C⊥1 and C2 = C⊥2 , then C = C⊥. So C

must be Euclidean self-dual.

Vice versa, we will prove that if C is Euclidean self-
dual, then C1 and C2 are Euclidean self-dual over Z2m . By
hypothesis C = C⊥, then vC1+(1−v)C2 = vC⊥1 +(1−v)C⊥2 .
Hence, we have to prove that C1 = C⊥1 and C2 = C⊥2 .

Let c1 ∈ C1, then

vc1 ∈ C = C⊥ = vC⊥1 ⊕ (1− v)C⊥2
vc1 = vx+ (1− v)y, for x ∈ C⊥1 ,y ∈ C⊥2

So y = 0, then we get vc1 = vx ∈ C⊥1 and hence C1 ⊆ C⊥1 .
In the same way we get C2 ⊆ C⊥2 .

Let a ∈ C⊥1 , then there is y ∈ C⊥2 such that
va+ (1− v)y ∈ C⊥. Since C⊥ = C, then a ∈ C1. Hence
C⊥1 = C1. In the same way, we get C⊥2 = C2. As a result C1
and C2 are both Euclidean self-dual.

V. EXAMPLES

In this section, we will give four examples. First, let C =
{(0, 1), (2v, 1 + v)} be a linear code over R1 = Z4 + vZ4,
where v2 = v.

1) The length, number of codewords and minimum Gray
distance of C respectively, are [2, 2, 2]. By using Gray
map, then we get φ(C) = {(0, 0, 1, 1), (0, 2, 1, 2)} is a
linear code with parameter [4, 2, 2] over R1.

2)

GrayC(S, T ) =

8∑
i=0

AiS
8−iT i

= S6T 2 + S3T 5.

Leeφ(C)(S, T ) =
16∑
i=0

AiS
8−iT i

= S12T 4 + S6T 10.

3)

cweC(S0, S1, S2, · · · , S15) = S0S4 + S2S5.

sweC(T0, T1, T2, T3, T4) = T0T2 + T2T3.

HamC(S, T ) = ST + T 2.

4)

GrayC(S, T ) = S4(S2T 2) + (S2T 2)(ST 3).

HamC(S, T ) = sweC(S, T, T, T, T ).

GrayC(S, T ) = Leeφ(C)(S, T ).

The second, let C = {(0, 0), (4v, 4+4v)} be a linear code
over R2 = Z8 + vZ8, where v2 = v.

1) The length, number of codewords and minimum Gray
distance of C respectively, are [2, 2, 2]. By using Gray
map, then we get φ(C) = {(0, 0, 0, 0), (0, 4, 4, 0)} is a
linear code with parameter [4, 2, 2] over R2.

2)

GrayC(S, T ) =
16∑
i=0

AiS
16−iT i

= S16 + S8T 8.

Leeφ(C)(S, T ) =
32∑
i=0

AiS
32−iT i

= S32 + S8T 24.

3)

cweC(S0, S1, S2, · · · , S64) = S2
0 + S4S36.

sweC(T0, T1, T2, · · · , T8) = T 2
0 + T 2

4 .

HamC(S, T ) = S2 + T 2.

4)

GrayC(S, T ) = S16 + (S4T 4)2.

HamC(S, T ) = sweC(S, T, T, T, T, T, T, T, T ).

GrayC(S, T ) = Leeφ(C)(S, T ).

The third, let C = {(0, 0, 0, 1, 2), (2v, v, 0, 0, 1),
(2, 1, 1, v, 1 + v)} be a linear code over R1 where v2 = v.

1) The length, number of codewords and minimum
Gray distance of C respectively, are [5, 3, 4].
By using Gray map, then we get φ(C) =
{(0, 0, 0, 0, 0, 0, 1, 1, 2, 2), (0, 2, 0, 1, 0, 0, 0, 0, 1, 1),
(2, 2, 1, 1, 1, 1, 0, 1, 1, 2)} is a linear code with
parameter [10, 3, 4] over R1.

2)

GrayC(S, T ) =
20∑
i=0

AiS
20−iT i

= S15T 5 + S14T 6 + S8T 12.

Leeφ(C)(S, T ) =

40∑
i=0

AiS
40−iT i

= S30T 10 + S28T 12 + S16T 24.

3)

cweC(S0, S1, S2, · · · , S64) = S3
0S4S8

+ S2S1S
2
0S4

+ S8S
2
4S1S5.

sweC(T0, T1, T2, · · · , T8) = T 3
0 T1T4

+ T 2
2 T1T

2
0

+ T4T
2
2 T1T3.

HamC(S, T ) = S3T 2 + S2T 3 + T 5.

4)

GrayC(S, T ) = S12 + (S2T 2)T 4+

S8(S2T 2)2(S3T )+

T 4(S2T 2)2(S3T )(ST 3).

HamC(S, T ) = sweC(S, T, T, T, T, T, T, T, T )

GrayC(S, T ) = Leeφ(C)(S, T )
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The fourth, let R1 = Z4 + vZ4 and C = v(2, 1) ⊕
(1− v)(1, 1) be a linear code over R1. By Theorem III.10,
then we have C1 = (2, 1), C2 = (1, 1) are linear codes with
length 2 over Z4 and we get:

1) dG(C) = 2 = min dL(C1), dL(C2).
2) dH = 2 = min dH(C1), dH(C2).

VI. CONCLUSION

Structure of linear codes over R are investigated through a
Gray map from Rn to Z2n

2m . MacWilliams relations for both a
Gray weight enumerators and a complete weight enumerator
of linear codes over R are given. Necessary and sufficient
condition to the MDS as well as self-dual codes over R are
also provided.
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