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Positive Solution for m-pointp-Riemann-Liouville
Fractional Differential Equations with p-Laplacian
Operator

Yitao Yang, Dehong Ji

Abstract—We investigate an m-point p-Laplacian fractional herel < o < 2.
equations with the generalized fractional derivative, the new Since then, there have been fruitful results of fractional
positive solutions are found by using some theorems. boundary value problems, see [11-15]. Recently, some schol-
Index Terms—m-point -Riemann-Liouville fractional ars have begun to study the generalized fractional order
derivative; Positive solution; Green function; p-Laplacian problem.
operator. The authors of paper [16] discussed the followitlg
Caputo fractional problem
I. INTRODUCTION
H e purpose of this paper is to find the existence of
positive solution to the m-point p-Laplacian fractional
equations with the generalized fractional derivative,
D Put)) + f(tult) =0, 0<t<1, (1) Nerel<a<2
(9p(Di “u(®))' + f(t u(®)) @) [17] gave the unique results for the fractional initial value
problem involvinge-Caputo fractional derivative

—CDg Yu(t) = f(tu(t), 0<t<l,

W' (0)=0, B°D§™" Yu(l) +u(n) =0,

m—2
Dg: #u(0) =0, u(0) =0, u(l)= > au(&), (2
i=1 CD fa(t) = f(t,z(t),  t€ lab],

herel < o < 2, Dg;¥ is the p-Riemann-Liouville

k k
fractional derivative.¢,(s) = [s|P72%s, p > 1, ¢, = z(a) = a, xc[p](a’) =z, k=1,2,---n-1,
((bp)_l, 7+7:1andfa80>ai7€i meet her8n—1<a<n.
(H)) f : %O, 1] € C[0,+00) — [0,400) and ¢ : Seemab [18] presented the positive solutions for fractional

[0,1] — R is a function which is strictly increasing andProblem withiny-Riemann-Liouville operators

v € C?0,1], ¢'(x) # 0 for all z € [0, 1]; a ¢ B
(Hy) 0<a;<1,0<& <1 (i=1,2,---,m—2) meet Dyt "z(@) + f(@,2(2) =0, = €(0,1),
m—2
0< S ai<1,0<& <& < <Em_ag<l. 2(0) =0, =2(1) = Bz(n),
=1
Because of the theory of fractional derivative itself anghere1 < o < 2, 0 < (p(1) — ©(0))*~1 — B(p(n) —
its wide application, the fractional differential equation i§0(0))a*1 < 1.
attracting more and more attention from many scholars. Early|n [19], the authors established positive solutions and

research on fractional differential equation focused on tl'{lﬁe Hyers_U'am Stab|||ty for Atangana_Ba'eanu_Caputo frac-
solvability of linear initial fractional differential equationstjonal differential equations in Banach space
in terms of special functions [1-3]. Techniques of nonlinear

analysis were often used by many scholars to discuss the  § 29 D?[¢,[5 P D™ x(t)]] = —yi(t,2(t)),
solution of fractional differential equation [4-9]. The prop- ABC
erties of solutions for fractional differential equation were Pplo " D (t)]li=0 =0, (1) =0.

discussed in [23]. The _solqtlon for mixed-order boundary Zhang [20] presented positive solutions for Hadamard
value problem was studied in [24]. . :
fractional integral problems

The following work of Bai [10] was the earlier paper
which gave the positive solution for fractional problem with DP(¢,(Du(t))) = f(t,u(t), 1<t<e,
the Riemann-Liouville differentiation.

Dgru(t) + f(t,u(t) =0, 0<t<l,
u(0) = u(1) =0, Du(1) =0,

e
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Il. DEFINITIONS AND LEMMAS

Definition 2.1 [18] Now suppose that — 1 < § < n.
we gave a functiory € [c,d] which is integrable ang €
C"[e,d],
The fractional integral for functiog as follows:

1

T'(B) /T ¢ () (@) — ¢(5))*g(s)ds. (3)

Icﬁ+¢g($) =

It is obvious that wherp(t) = ¢, (3) is the classical Riemann-

Liouville fractional integral.

Definition 2.2 [18] Now suppose that — 1 < 8 < n. ¢
is given just as definition 2.1. Here's the definition for
Riemann-Liouville fractional derivative as follows

heren = [a] + 1.
Let o, 8 > 0, then the relation
19910 $h(z) = 177 #h(x)
holds.
Definition 2.3 [18] Let 3 > 0. ¢ € C™[c,d], ¢'(t) >

0 andy¢/(t) # 0, t € [c,d]. Supposeh € C"t[c,d], here’s
the definition forp-Caputo fractional derivative of

D2, #h(e) = D |hta) - @) - #(e)"]

k=0

heren=[5]+1if 8¢ N, n=p1if g€ N.
Remark 2.4 [18] The relationship between the-Caputo
and thep-Riemann-Liouville is:

nol k]
“’[f(S)— fe (@)
k=0

heret > a andn =[a]+1fora ¢ N, n =« fora € N.
Theorem 2.1[18] Let g is a function defined ofje, d].

The following results are right.

1. Supposg € Cle, d], we have® D?.?1% ?g(x) = g(x).

2. Supposgy € C" ¢, d], just we get

CDGLf(t) =

>—w<a>>k} (o),

[k]

%9 Cpiey Z gvk' (p(z) — p(e))k.
Let
m—2
p=(p(1) = @(0)*7 = > ai(p(&) — (0)*".

Lemma 2.11f 0 < 3" %a; < 1, f € C[0,1] and1 <

©'(t) # 0 an increasing differentiable function.

a < 2. Consequently,

u(t) ! / o (5) (o () — pls))*!

T(a) Jo
bq (fo f(r dT)dS
(p(t) — p(0))*!

1
HEEE [ o)) - et
oq| f5 F(7 dT> ds
5 it - pl0)"
- pl(a)
I5 @ (5) (&) — (s))*?
bq (f(; f(r)dr )ds
4)
is the unique solution for
(6p(DG: u(®)) + f(t) =0, 0<t<l, (5
m—2
Dg; Pu(0) =0, u(0) = 1) = Z au(&).  (6)
=1
Proof:
®p ( o+ U / f
can be got by integrating both sides of (5) pnt], i.e
D u(t) =~ / )i ). ™

For (7), we apply the Theorem 2.1, there have
u(t) ©(0 ))“ ! +C2( (t) = ¢(0)*2
—p(s)*!

—61 (t) —

o, 7

¢>q<f fr)d )

Making useof the condition that:(0) = 0, we havec; = 0.
Thus

In particular

u(1)

and
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By (6), we get rewritten as

1 ! / a—1 m—2
“ =i )/ ¢ (s)(p(1) — p(s)) t{ > aj(e(&) — p(0)t
ut) = | | 2=
oq| [ F(r)dT |ds ul ()
( ) > o(h) = p(s)*"
Z: @i & /LF @ a—1 a—1
o / & () (&) — pl(s))* () — #(s)) Fgw)m —p(0))
dq| 3 f(r)dr )ds. (p(t) = (0)* (1) = p(s))**
( ) o e
Z a;j(p(&) — (5)*H(p(t) — p(0))*
. |
Lemma 2.2 We presumed that < 37" *«; < 1, then
the Green’s function for the problem (8)¢q (fo dT) ds
/ [( ©(0)* (1) = p(s)* !
( )
—(6p(DGz Pu(t))) =0, 0<t<1, ® "’; a;(p(&)) — () (p(t) — (0)* !
- pl () ]
¢ 610 f7)ar ) as
oo 00 _ = m=2 6 () — p(0))
Dji 7u(0) =0, () =0, u(t) = 3 aw(s) ) R
(p(1) = p(s))>*
m,Q“P(O‘)
Is described as ; a;j(p(&) — () He(t) — p(0))*~!
. - T (@) ]
> ai(p&) — (0)*Hp(t) — p(s) ¢'(5)dq (fcf f(r)dr |ds
= LT (elt) — (00 (p(1) — p(s))° !
pl(a) +
—((t) — ()" (1) — p(0))* ! /smi ul () }
ul(a) "(8)pg | [5 f()dr )ds
Fp(t) — ()71 (p(1) — p(s))*! e (f° o )
. ul(e)
= 2 a;(p(&) — w(s)*Hep(t) — (0))* ! _
j=i If &1 <t<¢&., 2<r<m-2,the functionG(¢,s) can
ul () be rewritten as
Gt s) = 0<t<1, & 1 <s<min{&,t}
i=1,2-m—1 -
> aj(p(&) — p(0)*t
(6(t) = (0" (o) — (s))"~ a - [[F e
pI () 0 pl(e)
m=2 p(t) — p(s) !
= 2 (&) = () Hep(t) — p(0)) e
- ) (1) = () (1) = p(0)*!
()
0<t<1, max{&_1,t} <s <&, +(%0(t) —0(0))* L (p(1) — p(s))*1
i=1,2,--m— 1. L pI' (o)
s (10) > a;(p(&) = 9(5)* L () — p(0))*7
Here, we markéy = 0,&,_1 = 1 and Y. f; = 0 for =1 ds
ma < mi. = pul'(a)
Proof: If 0 < t < &, the function G(t,s) can be #'(5)0q (f(; f(T)dT>dS'
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o E lole) - st =) gt
r—1 = , wl'(a
" z‘(zz(tfl_-ll(s))a_l ul(a) X as((&) = 9(3)* ! (elt) = el0)
pr@ » - I (a) o
_(plt) ~ ¢ls)) ng)(” —¢() o (56 (f; f<T>dT> ds
L (0 = 0(0)* T (1) = p(s)* e ’"Z’Q aj(0(&;) — @(0))71
() = [J—l
m—2 + Z T
a5 (plE) — 9(5)* " (p(t) — p(0))* ! = el o #)
=i ds ((t) — ©(s))
pur () ple) -
4,0/(S>¢q (f(; f(T)dT) ds _ (Q&(t) — 50(3)) FEZ)(D — 90(0))
TS ey (o)t (o(t) = #(0))* 1 (p(1) — p(s))* "
+/t [JZ:I a;(p(§;) — »(0)) "‘m_2 AT ()
g H (@) 2 aj(p(&) = 9(s)* () — p(0))
,U/F(Oé) a—1 a—1 ) NF(Q) "
(p(t) — ©(s)) FEz)(l) —¢(0)) & (5), <f0s f(T)dT) ds
(p(t) = (0)* 1 (p(1) — (s))** S o
> a(p(€) — ¢(5)* (1) — 9(0)* ! gual - #l(@)
= s (p(t) — ©(s))
pul () ] pur () . X
& ()04 Jy £(7 dT)ds (1) = o(s))* E@)“) —p(O)*
e I'a
T (1) = 9(0)* (1) — p(s))" (o) = 9(0)* (1) — (s)* "
+/t2 | e i a0 ]
> i (p(&) = #(5)* 7 (p(t) = p(0) ¥ ()¢ (fos f(r)dr |ds
- ) ] +/1 {(sﬁ(t) - so(O))“*Fl(@(l) - @(5))”‘1]
o 614 s s 6o (12 s )5 “
mer 6 [l - pl0) ! S T
* 1:21 /51_1 { pl (o) Therefore,
(p(1) = p(s)) ! s
@) u(t) = /0 G(t, 5)¢ (56, ( /0 f(r)d7-> s
= a;((&) = @(5))* " (t) — ()" is the unique solution of (5), (6). n
- 1l () ] Lemma 2.3 We presumed tha(H;), (H2) hold. The
) s function G(t,s) described in (10) matches the following
©'(5)dq <fo f(r)dr |ds relationshipG(t, s) > 0 for all t,s € (0,1).
+/1 {(@(t) — (0))=1(p(1) —@(s))“‘l} Proof: For0 <t < 1, &1 < s < min{¢;,t},i =
s uI(a) baenme L
¢ 61y s(ryar ) Glt:5) = =y (#0006l ()"

If £&n—2 <t <1, the functionG(t,s) can be rewritten as

e —n(plt) = (o))"~ | as
o W) RO _ (o) — (o)
w - [ - [EEEES)
(¢(t) _pf(ﬁ))a_l — % a;((&) — e(s) !
P (e =
() = () 1) = p(0))> ! () = e(s)\ .
(o) ' o(Si=sw) e
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Consider
o) = (1) =~ 0l = as(p(6y) — o(s)) "
o(t) — o(s)\ "
‘“(w) - w(0)> '
Then weget
e =
‘?(0 ) <o,

(() (0))?

which impliesthat ¢(¢) is a decreasing function fdr < ¢ <

1, &-1 < s <min{&;,t},i=1,2,---,m—1.
Moreover, we note that
g1) = (1) — ()™ =S ayelE) — o)
() — ()
“(M = ¢<o>> ) o)
_7n72a N o1 © — (s a—1
- Jgé J((p(fj) L)0(0)) (90(1) o QD(O))Q71
— X aj(p(&) — els)° !
_N 3 a1 (p(1) = p(s) !
m—2 N o1 (Pfj — (s a—1
- = a](@(&]) (p(O)) (@(fj) . 99(0))0471
From
(1) = ()" (&) — ()"
(p(1) = p(0))o1 ™ (p(&) — (0))>—1"
we getg(1) > 0. Hence,G(t,s) >0for0 <t <1, &1 <
s <min{&,t},i=1,2,---,m— 1.
For0 <t¢ <1, max{&_1,t} <s<¢&,i=1,2,---,m—1,

G(t,) —Mrlm) [wu) — p(0)* (1) — ()
=8 (el - 9o (0 - 9(0) |
1 a—1 a—1
= @0 =) (9(1) = o)
=S et - el | >0
Hence,G(t,s) > 0 for all t,s € (0,1). [

Lemma 2.4[21] We presumed thak is a normal cone of
the Banach spac®. < vy, ug >€ E. Furthermore, there is

an increasing and completely continudlis< vy, ug >—<
v, ug > . We can getl’ has a fixed poiniu* €< vy, ug > .
Lemma 2.5[22] Let E be an order Banach spad€,C F

is a cone, and suppose tiat, 2, are bounded open subsetd (6 u(t)) = ¢(b) > ¢,(bB) for (t,u)

of Ewith0 e Q, Cc Q C Qy, and letT : K — K bea
completely continuous operator such that either

(C1) |[Tull < [Jull, v € KNOQ and [|Tul| = |ull, u €
K N oQsy; or

(C2) |[Tul| = [Jull, v € KN and |[Tul| < |ull, u €
K NoQs.

ThenT has a fixed point ink N Q5 \ Q.

I11. EXISTENCE OF POSITIVE SOLUTION
We define the norm

Jul = ma u(®)].

Thus we haveE = C[0,1] is a Banach space in the above

norm case. Lef{ C E defined by
K={ueFE: u(t)>0, 0<t<1}.
Lemma 3.1Let T : K — E is given by the following

relation
= /01 G(t, )¢ (s)pq (/05 f(T,U(T)dT) ds. (11)

ThenT : K — K is a completely continuous operator.
Denote

o1 o) = p(0)e

1
/ &(5)(p(1) — pls))*ds,

ul(e)
/ G(1, )¢/ (5)g(5)ds,
®(1) = max{f(t,u), (t,u)€0,1] x [0,1]},
¢(1) = min{ f(¢,u), (t,u) € [0,1] x [0,1]}.

Theorem 3.1 We presumed tha(H;), (Hz) hold. In
addition, we can find two positive constanis> b such
that
(12)

®(a) < ¢p(aA), w(b) > ¢p(bB)~

Thus there has at least one positive solution for equation

1).(2).
Proof: In order to apply Lemma 2.5, we divide this
Theorem in two steps.
Step 1. LetQ), = {u € K| ||u|| < a}. For anyu € 09,,
there are||u| = a and

f(t,u(t)) < ®(a) < ¢p(ad) for (t,u) € [0,1] x [0, al.
Thus
[Tu(t)] < /o ’G(t,s)@’(S()()QZ;;gé f(T,u(T)dT> ds

T — ey
< / s ) (p(1) ~ (s))

$) g fo T)dT | |ds

1 (%(1)*@9(0))”"1 e
< / PO o0) - ot

$) g (fo op aA)dT>}
_ alp) = p(0))*
- 1A ul(a)
| (p(1) = ()" '/ (s)ds = a.
So,||Tu| < [Jull,  Vu € 0.

Step 2. We defing), = {u € K| ||u|| < b} . We choose
URS c’)Qb, thus|ju|| = b and

€ [0,1] x [0,8].

So

)¢ () (/0 f(r, u(T)dT) ds
¢ 610( [ 3y )
)¢’ (s)

s)pq(s)ds =b.
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This is equivalent to,||Tu| > |lu|| for u € 9. At least
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