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I. I NTRODUCTION

T H e purpose of this paper is to find the existence of
positive solution to the m-point p-Laplacian fractional

equations with the generalized fractional derivative,

(φp(D
α, ϕ
0+ u(t)))′ + f(t, u(t)) = 0, 0 < t < 1, (1)

Dα, ϕ
0+ u(0) = 0, u(0) = 0, u(1) =

m−2∑

i=1

αiu(ξi), (2)

here 1 < α ≤ 2, Dα, ϕ
0+ is the ϕ-Riemann-Liouville

fractional derivative.φp(s) = |s|p−2s, p > 1, φq =

(φp)−1,
1
p

+
1
q

= 1 andf, ϕ, αi, ξi meet

(H1) f : [0, 1] ∈ C[0,+∞) → [0,+∞) and ϕ :
[0, 1] → R is a function which is strictly increasing and
ϕ ∈ C2[0, 1], ϕ′(x) 6= 0 for all x ∈ [0, 1];

(H2) 0 ≤ αi < 1, 0 < ξi < 1 (i = 1, 2, · · ·,m− 2) meet

0 ≤
m−2∑
i=1

αi < 1, 0 < ξ1 < ξ2 < · · · < ξm−2 < 1.

Because of the theory of fractional derivative itself and
its wide application, the fractional differential equation is
attracting more and more attention from many scholars. Early
research on fractional differential equation focused on the
solvability of linear initial fractional differential equations
in terms of special functions [1-3]. Techniques of nonlinear
analysis were often used by many scholars to discuss the
solution of fractional differential equation [4-9]. The prop-
erties of solutions for fractional differential equation were
discussed in [23]. The solution for mixed-order boundary
value problem was studied in [24].

The following work of Bai [10] was the earlier paper
which gave the positive solution for fractional problem with
the Riemann-Liouville differentiation.

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = u(1) = 0,
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here1 < α ≤ 2.
Since then, there have been fruitful results of fractional

boundary value problems, see [11-15]. Recently, some schol-
ars have begun to study the generalized fractional order
problem.

The authors of paper [16] discussed the followingψ-
Caputo fractional problem

−CDα, ψ
0 u(t) = f(t, u(t)), 0 < t < 1,

u′(0) = 0, βCDα−1, ψ
0 u(1) + u(η) = 0,

here1 < α ≤ 2.
[17] gave the unique results for the fractional initial value

problem involvingϕ-Caputo fractional derivative

CDα, ϕ
a+ x(t) = f(t, x(t)), t ∈ [a, b],

x(a) = xa, x[k]
ϕ (a) = xk

a, k = 1, 2, · · ·, n− 1,

heren− 1 < α < n.
Seemab [18] presented the positive solutions for fractional

problem withinϕ-Riemann-Liouville operators

Dα, ϕ
0+ z(x) + f(x, z(x)) = 0, x ∈ (0, 1),

z(0) = 0, z(1) = βz(η),

where 1 < α ≤ 2, 0 < (ϕ(1) − ϕ(0))α−1 − β(ϕ(η) −
ϕ(0))α−1 < 1.

In [19], the authors established positive solutions and
the Hyers-Ulam stability for Atangana-Baleanu-Caputo frac-
tional differential equations in Banach space

ABC
0 Dβ [φp[ABC

0 Dv0x(t)]] = −y∗1(t, x(t)),

φp[ABC
0 Dv0x(t)]|t=0 = 0, x(1) = 0.

Zhang [20] presented positive solutions for Hadamard
fractional integral problems

Dβ(φp(Dαu(t))) = f(t, u(t)), 1 < t < e,

u(1) = u′(1) = u′(e) = 0,

Dαu(1) = 0,

φp(Dαu(e)) = µ

∫ e

1

φp(Dαu(t))
dt

t
,

whereDα is theαth Hadamard fractional derivative.
Inspired by the literature above, the problem (1), (2) is

investigated in this paper.
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II . DEFINITIONS AND LEMMAS

Definition 2.1 [18] Now suppose thatn − 1 < β < n.
we gave a functiong ∈ [c, d] which is integrable andϕ ∈
Cn[c, d], ϕ′(t) 6= 0 an increasing differentiable function.
The fractional integral for functiong as follows:

Iβ ϕ
c+ g(x) =

1
Γ(β)

∫ x

c

ϕ′(s)(ϕ(x)− ϕ(s))β−1g(s)ds. (3)

It is obvious that whenϕ(t) = t, (3) is the classical Riemann-
Liouville fractional integral.

Definition 2.2 [18] Now suppose thatn− 1 < β < n. ϕ
is given just as definition 2.1. Here’s the definition forϕ-
Riemann-Liouville fractional derivative as follows

Dβ ϕ
a+ g(x) =

(
1

ϕ′(x)
d

dt

)n

In−β ϕ
a+ g(x)

=
1

Γ(n− β)

(
1

ϕ′(x)
d

dt

)n

∫ x

a
ϕ′(s)(ϕ(x)− ϕ(s))n−β−1g(s)ds.

heren = [α] + 1.

Let α, β > 0, then the relation

Iα ϕ
a+ Iβ ϕ

a+ h(x) = Iα+β ϕ
a+ h(x)

holds.
Definition 2.3 [18] Let β > 0. ϕ ∈ Cn[c, d], ϕ′(t) >

0 andϕ′(t) 6= 0, t ∈ [c, d]. Supposeh ∈ Cn−1[c, d], here’s
the definition forϕ-Caputo fractional derivative ofh

CDβ ϕ
c+ h(x) = Dβ ϕ

c+

[
h(x)−

n−1∑

k=0

h
[k]
ϕ (c)
k!

(ϕ(x)− ϕ(c))k

]
,

heren = [β] + 1 if β 6∈ N, n = β if β ∈ N.

Remark 2.4 [18] The relationship between theϕ-Caputo
and theϕ-Riemann-Liouville is:

CDα, ϕ
a+ f(t) = Dα, ϕ

a+

[
f(s)−

n−1∑

k=0

f
[k]
ϕ (a)
k!

(ϕ(s)−ϕ(a))k

]
(t),

heret > a andn = [α] + 1 for α 6∈ N, n = α for α ∈ N.

Theorem 2.1 [18] Let g is a function defined on[c, d].
The following results are right.
1. Supposeg ∈ C[c, d], we haveCDβ ϕ

c+ Iβ ϕ
c+ g(x) = g(x).

2. Supposeg ∈ Cn−1[c, d], just we get

Iβ ϕ C
c+ Dβ ϕ

c+ g(x) = g(x)−
n−1∑

k=0

g
[k]
ϕ (c)
k!

(ϕ(x)− ϕ(c))k.

Let

µ = (ϕ(1)− ϕ(0))α−1 −
m−2∑

i=1

αi(ϕ(ξi)− ϕ(0))α−1.

Lemma 2.1 If 0 ≤ ∑m−2
i=1 αi < 1, f ∈ C[0, 1] and 1 <

α ≤ 2. Consequently,

u(t) = − 1
Γ(α)

∫ t

0

ϕ′(s)(ϕ(t)− ϕ(s))α−1

φq

(∫ s

0
f(τ)dτ

)
ds

+
(ϕ(t)− ϕ(0))α−1

µΓ(α)

∫ 1

0

ϕ′(s)(ϕ(1)− ϕ(s))α−1

φq

(∫ s

0
f(τ)dτ

)
ds

−

m−2∑
i=1

αi(ϕ(t)− ϕ(0))α−1

µΓ(α)∫ ξi

0
ϕ′(s)(ϕ(ξi)− ϕ(s))α−1

φq

(∫ s

0
f(τ)dτ

)
ds.

(4)
is theunique solution for

(φp(D
α, ϕ
0+ u(t)))′ + f(t) = 0, 0 < t < 1, (5)

Dα, ϕ
0+ u(0) = 0, u(0) = 0, u(1) =

m−2∑

i=1

αiu(ξi). (6)

Proof:

φp(D
α, ϕ
0+ u(t)) = −

∫ t

0

f(s)ds

can be got by integrating both sides of (5) on[0, t], i.e.,

Dα, ϕ
0+ u(t) = −ϕq

(∫ t

0

f(s)ds

)
. (7)

For (7), we apply the Theorem 2.1, there have

u(t) = c1(ϕ(t)− ϕ(0))α−1 + c2(ϕ(t)− ϕ(0))α−2

− 1
Γ(α)

∫ t

0

ϕ′(s)(ϕ(t)− ϕ(s))α−1

φq

(∫ s

0
f(τ)dτ

)
ds.

Making useof the condition thatu(0) = 0, we havec2 = 0.
Thus

u(t) = c1(ϕ(t)− ϕ(0))α−1

− 1
Γ(α)

∫ t

0

ϕ′(s)(ϕ(t)− ϕ(s))α−1

φq

(∫ s

0
f(τ)dτ

)
ds.

In particular,

u(1) = c1(ϕ(1)− ϕ(0))α−1

− 1
Γ(α)

∫ 1

0

ϕ′(s)(ϕ(1)− ϕ(s))α−1

φq

(∫ s

0
f(τ)dτ

)
ds

and

u(ξi) = c1(ϕ(ξi)− ϕ(0))α−1

− 1
Γ(α)

∫ ξi

0

ϕ′(s)(ϕ(ξi)− ϕ(s))α−1

φq

(∫ s

0
f(τ)dτ

)
ds.
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By (6), we get

c1 =
1

µΓ(α)

∫ 1

0

ϕ′(s)(ϕ(1)− ϕ(s))α−1

φq

(∫ s

0
f(τ)dτ

)
ds

−

m−2∑
i=1

αi

µΓ(α)

∫ ξi

0

ϕ′(s)(ϕ(ξi)− ϕ(s))α−1

φq

(∫ s

0
f(τ)dτ

)
ds.

Lemma 2.2 We presumed that0 ≤ ∑m−2
i=1 αi < 1, then

the Green’s function for the problem

−(φp(D
α, ϕ
0+ u(t)))′ = 0, 0 < t < 1, (8)

Dα, ϕ
0+ u(0) = 0, u(0) = 0, u(1) =

m−2∑

i=1

αiu(ξi) (9)

is described as

G(t, s) =





m−2∑
j=1

αj(ϕ(ξj)− ϕ(0))α−1(ϕ(t)− ϕ(s))α−1

µΓ(α)
−(ϕ(t)− ϕ(s))α−1(ϕ(1)− ϕ(0))α−1

µΓ(α)
+(ϕ(t)− ϕ(0))α−1(ϕ(1)− ϕ(s))α−1

µΓ(α)

−
m−2∑
j=i

αj(ϕ(ξj)− ϕ(s))α−1(ϕ(t)− ϕ(0))α−1

µΓ(α)

0 ≤ t ≤ 1, ξi−1 ≤ s ≤ min{ξi, t},
i = 1, 2, · · ·,m− 1;

(ϕ(t)− ϕ(0))α−1(ϕ(1)− ϕ(s))α−1

µΓ(α)

−
m−2∑
j=i

αj(ϕ(ξj)− ϕ(s))α−1(ϕ(t)− ϕ(0))α−1

µΓ(α)

0 ≤ t ≤ 1, max{ξi−1, t} ≤ s ≤ ξi,
i = 1, 2, · · ·,m− 1.

(10)

Here, we markξ0 = 0, ξm−1 = 1 and
m2∑

i=m1

fi = 0 for

m2 < m1.

Proof: If 0 ≤ t ≤ ξ1, the function G(t, s) can be

rewritten as

u(t) =
∫ t

0

[
m−2∑
j=1

αj(ϕ(ξj)− ϕ(0))α−1

µΓ(α)
(ϕ(t)− ϕ(s))α−1

µΓ(α)

− (ϕ(t)− ϕ(s))α−1(ϕ(1)− ϕ(0))α−1

µΓ(α)

+
(ϕ(t)− ϕ(0))α−1(ϕ(1)− ϕ(s))α−1

µΓ(α)

−

m−2∑
j=1

αj(ϕ(ξj)− ϕ(s))α−1(ϕ(t)− ϕ(0))α−1

µΓ(α)

]

ϕ′(s)φq

(∫ s

0
f(τ)dτ

)
ds

+
∫ ξ1

t

[
(ϕ(t)− ϕ(0))α−1(ϕ(1)− ϕ(s))α−1

µΓ(α)

−

m−2∑
j=1

αj(ϕ(ξj)− ϕ(s))α−1(ϕ(t)− ϕ(0))α−1

µΓ(α)

]

ϕ′(s)φq

(∫ s

0
f(τ)dτ

)
ds

+
m−2∑
i=2

∫ ξi

ξi−1

[
(ϕ(t)− ϕ(0))α−1

µΓ(α)
(ϕ(1)− ϕ(s))α−1

µΓ(α)

−

m−2∑
j=i

αj(ϕ(ξj)− ϕ(s))α−1(ϕ(t)− ϕ(0))α−1

µΓ(α)

]

ϕ′(s)φq

(∫ s

0
f(τ)dτ

)
ds

+
∫ 1

ξm−2

[
(ϕ(t)− ϕ(0))α−1(ϕ(1)− ϕ(s))α−1

µΓ(α)

]

ϕ′(s)φq

(∫ s

0
f(τ)dτ

)
ds.

If ξr−1 ≤ t ≤ ξr, 2 ≤ r ≤ m− 2, the functionG(t, s) can
be rewritten as

u(t) =
∫ ξ1

0

[
m−2∑
j=1

αj(ϕ(ξj)− ϕ(0))α−1

µΓ(α)
(ϕ(t)− ϕ(s))α−1

µΓ(α)

− (ϕ(t)− ϕ(s))α−1(ϕ(1)− ϕ(0))α−1

µΓ(α)

+
(ϕ(t)− ϕ(0))α−1(ϕ(1)− ϕ(s))α−1

µΓ(α)

−

m−2∑
j=1

αj(ϕ(ξj)− ϕ(s))α−1(ϕ(t)− ϕ(0))α−1

µΓ(α)

]
ds

ϕ′(s)φq

(∫ s

0
f(τ)dτ

)
ds.
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+
r−1∑
i=2

∫ ξi

ξi−1

[
m−2∑
j=1

αj(ϕ(ξj)− ϕ(0))α−1

µΓ(α)
(ϕ(t)− ϕ(s))α−1

µΓ(α)

− (ϕ(t)− ϕ(s))α−1(ϕ(1)− ϕ(0))α−1

µΓ(α)

+
(ϕ(t)− ϕ(0))α−1(ϕ(1)− ϕ(s))α−1

µΓ(α)

−

m−2∑
j=i

αj(ϕ(ξj)− ϕ(s))α−1(ϕ(t)− ϕ(0))α−1

µΓ(α)

]
ds

ϕ′(s)φq

(∫ s

0
f(τ)dτ

)
ds

+
∫ t

ξr−1

[
m−2∑
j=1

αj(ϕ(ξj)− ϕ(0))α−1

µΓ(α)
(ϕ(t)− ϕ(s))α−1

µΓ(α)

− (ϕ(t)− ϕ(s))α−1(ϕ(1)− ϕ(0))α−1

µΓ(α)

+
(ϕ(t)− ϕ(0))α−1(ϕ(1)− ϕ(s))α−1

µΓ(α)

−

m−2∑
j=r

αj(ϕ(ξj)− ϕ(s))α−1(ϕ(t)− ϕ(0))α−1

µΓ(α)

]
ds

ϕ′(s)φq

(∫ s

0
f(τ)dτ

)
ds

+
∫ ξr

t

[
(ϕ(t)− ϕ(0))α−1(ϕ(1)− ϕ(s))α−1

µΓ(α)

−

m−2∑
j=r

αj(ϕ(ξj)− ϕ(s))α−1(ϕ(t)− ϕ(0))α−1

µΓ(α)

]

ϕ′(s)φq

(∫ s

0
f(τ)dτ

)
ds

+
m−2∑

i=r+1

∫ ξi

ξi−1

[
(ϕ(t)− ϕ(0))α−1

µΓ(α)
(ϕ(1)− ϕ(s))α−1

µΓ(α)

−

m−2∑
j=i

αj(ϕ(ξj)− ϕ(s))α−1(ϕ(t)− ϕ(0))α−1

µΓ(α)

]

ϕ′(s)φq

(∫ s

0
f(τ)dτ

)
ds

+
∫ 1

ξm−2

[
(ϕ(t)− ϕ(0))α−1(ϕ(1)− ϕ(s))α−1

µΓ(α)

]

ϕ′(s)φq

(∫ s

0
f(τ)dτ

)
ds.

If ξm−2 ≤ t ≤ 1, the functionG(t, s) can be rewritten as

u(t) =
∫ ξ1

0

[
m−2∑
j=1

αj(ϕ(ξj)− ϕ(0))α−1

µΓ(α)
(ϕ(t)− ϕ(s))α−1

µΓ(α)

− (ϕ(t)− ϕ(s))α−1(ϕ(1)− ϕ(0))α−1

µΓ(α)
.

+
(ϕ(t)− ϕ(0))α−1(ϕ(1)− ϕ(s))α−1

µΓ(α)

−

m−2∑
j=1

αj(ϕ(ξj)− ϕ(s))α−1(ϕ(t)− ϕ(0))α−1

µΓ(α)

]
ds

ϕ′(s)φq

(∫ s

0
f(τ)dτ

)
ds

+
m−2∑
i=2

∫ ξi

ξi−1

[
m−2∑
j=1

αj(ϕ(ξj)− ϕ(0))α−1

µΓ(α)
(ϕ(t)− ϕ(s))α−1

µΓ(α)

− (ϕ(t)− ϕ(s))α−1(ϕ(1)− ϕ(0))α−1

µΓ(α)

+
(ϕ(t)− ϕ(0))α−1(ϕ(1)− ϕ(s))α−1

µΓ(α)

−

m−2∑
j=i

αj(ϕ(ξj)− ϕ(s))α−1(ϕ(t)− ϕ(0))α−1

µΓ(α)

]
ds

ϕ′(s)φq

(∫ s

0
f(τ)dτ

)
ds

+
∫ t

ξm−2

[
m−2∑
j=1

αj(ϕ(ξj)− ϕ(0))α−1

µΓ(α)
(ϕ(t)− ϕ(s))α−1

µΓ(α)

− (ϕ(t)− ϕ(s))α−1(ϕ(1)− ϕ(0))α−1

µΓ(α)

+
(ϕ(t)− ϕ(0))α−1(ϕ(1)− ϕ(s))α−1

µΓ(α)

]

ϕ′(s)φq

(∫ s

0
f(τ)dτ

)
ds

+
∫ 1

t

[
(ϕ(t)− ϕ(0))α−1(ϕ(1)− ϕ(s))α−1

µΓ(α)

]

ϕ′(s)φq

(∫ s

0
f(τ)dτ

)
ds.

Therefore,

u(t) =
∫ 1

0

G(t, s)ϕ′(s)φq

(∫ s

0

f(τ)dτ

)
ds

is the unique solution of (5), (6).
Lemma 2.3 We presumed that(H1), (H2) hold. The

function G(t, s) described in (10) matches the following
relationshipG(t, s) > 0 for all t, s ∈ (0, 1).

Proof: For 0 ≤ t ≤ 1, ξi−1 ≤ s ≤ min{ξi, t}, i =
1, 2, · · ·,m− 1,

G(t, s) =
1

µΓ(α)

[
(ϕ(t)− ϕ(0))α−1(ϕ(1)− ϕ(s))α−1

−
m−2∑
j=i

αj(ϕ(ξj)− ϕ(s))α−1(ϕ(t)− ϕ(0))α−1

−µ(ϕ(t)− ϕ(s))α−1

]
ds

=
(ϕ(t)− ϕ(0))α−1

µΓ(α)

[
(ϕ(1)− ϕ(s))α−1

−
m−2∑
j=i

αj(ϕ(ξj)− ϕ(s))α−1

−µ

(
ϕ(t)− ϕ(s)
ϕ(t)− ϕ(0)

)α−1]
ds.
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Consider

g(t) = (ϕ(1)− ϕ(s))α−1 −
m−2∑
j=i

αj(ϕ(ξj)− ϕ(s))α−1

−µ

(
ϕ(t)− ϕ(s)
ϕ(t)− ϕ(0)

)α−1

.

Then weget

g′(t) = −µ(α− 1)
(

ϕ(t)− ϕ(s)
ϕ(t)− ϕ(0)

)α−2

ϕ′(t)(ϕ(s)− ϕ(0))
(ϕ(t)− ϕ(0))2

< 0,

which impliesthat g(t) is a decreasing function for0 ≤ t ≤
1, ξi−1 ≤ s ≤ min{ξi, t}, i = 1, 2, · · ·,m− 1.
Moreover, we note that

g(1) = (ϕ(1)− ϕ(s))α−1 −
m−2∑
j=i

αj(ϕ(ξj)− ϕ(s))α−1

−µ

(
ϕ(1)− ϕ(s)
ϕ(1)− ϕ(0)

)α−1

=
m−2∑
j=1

αj(ϕ(ξj)− ϕ(0))α−1 (ϕ(1)− ϕ(s))α−1

(ϕ(1)− ϕ(0))α−1

−
m−2∑
j=i

αj(ϕ(ξj)− ϕ(s))α−1

=
m−2∑
j=1

αj(ϕ(ξj)− ϕ(0))α−1 (ϕ(1)− ϕ(s))α−1

(ϕ(1)− ϕ(0))α−1

−
m−2∑
j=i

αj(ϕ(ξj)− ϕ(0))α−1 (ϕ(ξj)− ϕ(s))α−1

(ϕ(ξj)− ϕ(0))α−1
.

From

(ϕ(1)− ϕ(s))α−1

(ϕ(1)− ϕ(0))α−1
>

(ϕ(ξj)− ϕ(s))α−1

(ϕ(ξj)− ϕ(0))α−1
,

we getg(1) > 0. Hence,G(t, s) > 0 for 0 ≤ t ≤ 1, ξi−1 ≤
s ≤ min{ξi, t}, i = 1, 2, · · ·,m− 1.

For0 ≤ t ≤ 1, max{ξi−1, t} ≤ s ≤ ξi, i = 1, 2, ···,m−1,

G(t, s) =
1

µΓ(α)

[
(ϕ(t)− ϕ(0))α−1(ϕ(1)− ϕ(s))α−1

−
m−2∑
j=i

αj(ϕ(ξj)− ϕ(s))α−1(ϕ(t)− ϕ(0))α−1

]

=
1

µΓ(α)
(ϕ(t)− ϕ(0))α−1

[
(ϕ(1)− ϕ(s))α−1

−
m−2∑
j=i

αj(ϕ(ξj)− ϕ(s))α−1

]
> 0.

Hence,G(t, s) > 0 for all t, s ∈ (0, 1).
Lemma 2.4 [21] We presumed thatK is a normal cone of

the Banach spaceE. < v0, u0 >∈ E. Furthermore, there is
an increasing and completely continuousT :< v0, u0 >→<
v0, u0 > . We can getT has a fixed pointu∗ ∈< v0, u0 > .

Lemma 2.5[22] Let E be an order Banach space,K ⊂ E
is a cone, and suppose thatΩ1,Ω2 are bounded open subsets
of E with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and letT : K → K be a
completely continuous operator such that either
(C1) ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Tu‖ ≥ ‖u‖, u ∈
K ∩ ∂Ω2; or
(C2) ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Tu‖ ≤ ‖u‖, u ∈
K ∩ ∂Ω2.

ThenT has a fixed point inK ∩ Ω2 \ Ω1.

II I. EXISTENCE OF POSITIVE SOLUTION

We define the norm

‖u‖ = max
t∈[0,1]

|u(t)|.

Thus we haveE = C[0, 1] is a Banach space in the above
norm case. LetK ⊂ E defined by

K = {u ∈ E : u(t) ≥ 0, 0 ≤ t ≤ 1}.
Lemma 3.1 Let T : K → E is given by the following

relation

(Tu)(t) =
∫ 1

0

G(t, s)ϕ′(s)φq

(∫ s

0

f(τ, u(τ)dτ

)
ds. (11)

ThenT : K → K is a completely continuous operator.
Denote

A−1 =
(ϕ(1)− ϕ(0))α−1

µΓ(α)

∫ 1

0

ϕ′(s)(ϕ(1)− ϕ(s))α−1ds,

B−1 =
∫ 1

0

G(1, s)ϕ′(s)φq(s)ds,

Φ(l) = max{f(t, u), (t, u) ∈ [0, 1]× [0, l]},
ϕ(l) = min{f(t, u), (t, u) ∈ [0, 1]× [0, l]}.

Theorem 3.1 We presumed that(H1), (H2) hold. In
addition, we can find two positive constantsa > b such
that

Φ(a) ≤ φp(aA), ϕ(b) ≥ φp(bB). (12)

Thus there has at least one positive solution for equation
(1),(2).

Proof: In order to apply Lemma 2.5, we divide this
Theorem in two steps.

Step 1. LetΩa = {u ∈ K| ‖u‖ < a} . For anyu ∈ ∂Ωa,
there are‖u‖ = a and
f(t, u(t)) ≤ Φ(a) ≤ φp(aA) for (t, u) ∈ [0, 1]× [0, a].
Thus

|Tu(t)| ≤
∫ 1

0

∣∣∣∣G(t, s)ϕ′(s)φq

(∫ s

0

f(τ, u(τ)dτ

)∣∣∣∣ds

≤
∫ 1

0

[
(ϕ(t)− ϕ(0))α−1

µΓ(α)
(ϕ(1)− ϕ(s))α−1

ϕ′(s)φq

(∫ 1

0
f(τ, u(τ)dτ

)]
ds

≤
∫ 1

0

[
(ϕ(1)− ϕ(0))α−1

µΓ(α)
(ϕ(1)− ϕ(s))α−1

ϕ′(s)φq

(∫ 1

0
φp(aA)dτ

)]
ds

= aA
(ϕ(1)− ϕ(0))α−1

µΓ(α)∫ 1

0

(ϕ(1)− ϕ(s))α−1ϕ′(s)ds = a.

So,‖Tu‖ ≤ ‖u‖, ∀u ∈ ∂Ωa.
Step 2. We defineΩb = {u ∈ K| ‖u‖ < b} . We choose

u ∈ ∂Ωb, thus‖u‖ = b and
f(t, u(t)) ≥ ϕ(b) ≥ φp(bB) for (t, u) ∈ [0, 1]× [0, b].
So

Tu(1) =
∫ 1

0

G(1, s)ϕ′(s)φq

(∫ s

0

f(τ, u(τ)dτ

)
ds

≥
∫ 1

0

G(1, s)ϕ′(s)φq

(∫ s

0

φp(bB)dτ

)
ds

= bB

∫ 1

0

G(1, s)ϕ′(s)ϕq(s)ds = b.
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This is equivalent to,‖Tu‖ ≥ ‖u‖ for u ∈ ∂Ωb. At least
one fixed pointu ∈ Ωa \ Ωb wasgot by Lemma 2.5, which
implies problem (1),(2) has a positive solutionu, moreover,
u satisfiesb ≤ ‖u‖ ≤ a.

Theorem 3.2 We presumed that(H1), (H2) hold and
f(t, ·) was an increasing function for eacht ∈ [0, 1]. If
we can findν0, ω0 satisfying Tν0 ≥ ν0, Tω0 ≤ ω0 for
0 ≤ ν0 ≤ ω0, 0 ≤ t ≤ 1. Then a positive solutionu∗

satisfyingν0 ≤ u∗ ≤ ω0 can be got for (1),(2).
Proof: Let ν, ω ∈ K satisfy ν ≤ ω, then f(t, ν(t)) ≤

f(t, ω(t)), there are

Tν(t) =
∫ 1

0

G(t, s)ϕ′(s)φq

(∫ s

0

f(τ, ν(τ)dτ

)
ds

≤
∫ 1

0

G(t, s)ϕ′(s)φq

(∫ s

0

f(τ, ω(τ)dτ

)
ds

= Tω(t).

Hence,T is an operator and it is increasing. We can say that
T :< ν0, ω0 >→< ν0, ω0 > according toTν0 ≥ ν0, Tω0 ≤
ω0. Based on the completely continuous property ofT, T
has a fixed pointu∗ ∈< ν0, ω0 >, which is the required
positive solution.

Theorem 3.3 We presumed that(H1), (H2) hold and
f(t, ·) is an increasing function for eacht ∈ [0, 1]. Moreover,
if 0 < lim‖u‖→∞ f(t, u) < ∞ for each t ∈ [0, 1], then
problem (1),(2) has a positive solution.

Proof: The assumption0 < lim‖u‖→∞ f(t, u) < ∞
implies that there exist positive constantsM, R such that for
‖u‖ ≥ R, f(t, u) ≤ M, ∀t ∈ [0, 1]. Write

d = max{f(t, u)|0 ≤ ‖u‖ ≤ R, 0 ≤ t ≤ 1}. (13)

Thenf ≤ d + M. For the problem

(φp(D
α, ϕ
0+ u(t)))′ + (d + M) = 0, 0 < t < 1, (14)

Dα, ϕ
0+ u(0) = 0, u(0) = 0, u(1) =

m−2∑

i=1

αiu(ξi). (15)

Making use of Lemma 2.2, the solution of the integral
equation

ω(t) =
∫ 1

0

G(t, s)ϕ′(s)φq

(∫ s

0

(d + M)dτ

)
ds

is the same as the solution of (14),(15). Thus, we can say

ω(t) ≥
∫ 1

0

G(t, s)ϕ′(s)φq

(∫ s

0

f(τ, ω(τ))dτ

)
ds = Tω(t),

this equals toω ≥ Tω.

On the other hand, forν = 0,

Tν(t) =
∫ 1

0

G(t, s)ϕ′(s)φq

(∫ s

0

f(τ, ν(τ))dτ

)
ds ≥ 0,

we can find Tν ≥ ν. Hence, as a consequence of the
Theorem 3.2, we can find a positive solution for problem
(1),(2).
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