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Spatial Prediction of Malaria Risk with
Application to Bandung City, Indonesia

IGNM. Jaya, Y. Andriyana, B. Tantular

Abstract— Identifying high-risk areas and understanding the
spatial distribution of malaria is crucial for developing an early
warning system for preventing, controlling, and providing
targeted antimalaria interventions. Global Moran’s I has been
used to analyzing spatial dependence and Bayesian hierarchical
models to figure out the spatial distribution and high-risk areas
of malaria disease at sub-district level in Bandung city,
Indonesia. We used malaria incidence data collected in 2018 for
30 sub-districts, and considered two risk factors: altitude and
healthy behaviors. We evaluated 24 models by combining four
likelihoods: Poisson (P), Negative Binomial (NB), Zero Inflated
Poisson (ZIP), and Zero Negative Binomial (ZNB) distributions;
two spatially-structured: Besag, York, and Mollié (BYM) and
Leroux priors and three hyperparameter distributions: Half
Cauchy (HC), Uniform (U) and Inverse Gamma (IG). Using
deviance information criteria (DIC), Watanabe Akaike
information criteria (WAIC) and Pseudo determination
coefficient (R?), we found that the spatial model with Poisson
distribution as the likelihood, BYM for spatial structure prior,
and Uniform as the hyperprior distribution had a better fit to
explain the relationship between risk factors and malaria
relative risk over sub-districts.

Index Terms— Bandung city, Bayesian, BYM, Early warning
system, Leroux, Malaria

1. INTRODUCTION

Malaria has been known as a mosquito-borne infectious
disease that may cause death. It is transmitted to human
through the bites of infected female Anopheles mosquitoes
[1]. World Health Organization (WHO) mentioned that in
2018, there were an estimated 228 million incidences of
malaria worldwide and 405,000 died. In 2008, total funding
for controlling and reducing malaria incidences reached an
estimated US$ 2.7 billion [1].

The geographical variation of disease burden and limited
resources cause disease control and treatment to become
challenging [2]. Account for the spatial heterogeneity and
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focus on high-risk regions is a common strategy used to
overcome the limited resources. Hence, identifying spatial
distribution and high-risk regions can be a crucial step for
developing an early warning system for a better quality of life
by preparing an effective and efficient solution to control and
prevent disease transmission with a limited budget [3].
Spatial analysis is often used to identify high-risk area and the
critical risk factors. Hence, disease control could be more
directed.

Weather information and quality of life, such as healthy
behaviors are widely used to predict disease risk variation
over space [4]. However, for a small area, climate
information including temperature, precipitation, and
humidity may have a single value for all areas because of the
limitation of weather monitoring stations. Altitude is
commonly used to represent the weather variation over areas.
Altitude and health behaviors information could be used
effectively to improve public health awareness in a bid to
prevent certain epidemics such as malaria disease. Prevention
consists of detection, monitoring, and predicting disease risk
that might lead to an early warning system [3].

We provide the spatial analysis to explore the spatial
distribution of malaria risk in Bandung city, Indonesia and
verify the risk factors which are related to the incidence risk
at sub-district level. We assessed two spatial methods to
address the spatial variations of malaria disease risk. The first
method is descriptive approach using the standardized
incidence ratio (SIR), and the second method is model-based
approach using Bayesian hierarchical model. We considered
using a Bayesian hierarchical Poisson model, including
spatially structured and unstructured effects. Spatially
structured effects is used to model spatial dependence and
spatially unstructured effect for modeling spatial
heterogeneity. Bayesian approach in disease mapping study
gives some advantages such as its ability to account for
uncertainty in the risk estimates and provide exceedance
posterior probability which is useful to define high-risk
clusters [3].

The rest of paper is structured as follows: In section 2,
we describe spatial modelling, including discussion of global
Moran’s I and incidence risk modelling. Section 3 contains
the empirical estimation result on spatial modelling of
malaria in Bandung city, Indonesia, while section 4 consists
of discussion and conclusions.
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II. SPATIAL MODELLING FOR DEVELOPING AN EARLY
WARNING SYSTEM

A. Global Moran’s 1
Identify the high-risk clusters of disease risk is the crucial
step in developing an early warning system. The disease
clustering can be determined by evaluating the spatial
dependence of disease risk across areas. Investigation of
spatial dependence across sub-districts is critical in spatial
modelling to provide information on whether or not the
disease transmission is caused by area proximity. Disease
clustering provides information on high-risk clusters.
Moran’s I is widely used for identifying global spatial
autocorrelation in order to detecting spatial clustering of
disease risk [5].

Define y; denotes the number of incidences and N; as
the population at risk at spatial unit i (i = 1,...,n) with n
denotes the number of spatial observations (e.g., sub-
districts). Moran’s I is defined as follows [6]:

= lZ?:l DijiejyWij Vi — 37)(Yj - )

S5 Uity Dgjiiwjy Wij

(1)

where y = %Z?ﬂ%’: sy =% . (y;—¥)? i and j are the
sub-district indexes and w;; is the element of spatial weight
matrix W and defined as:

- {1 if i and j are adjacent neighbors
Y0 otherwise

This study considered queen adjacency spatial weight matrix
W. Moran’s I coefficient takes values from -1 to 1. Zero value
indicates that there was no global spatial autocorrelation or
no spatial cluster. The strong spatial cluster is indicated by
positive and large value the Moran’s I coefficient.

B. Standardized incidence ratio
The disease risk is widely measured by relative risk (RR) that
is the ratio of number of incidence and expected number of
incidence. The expected number of incidence is a function of
population at risk and/or demographic (e.g., age and gender).
Let y; denotes the number of incidences at spatial unit  which
is count data with mean y; [8]. In order to evaluate the disease
risk over spatial units and accommodate different structure in
population at risk such as age-and sex, p; is commonly
defined by product of relative risk (6;) and expected disease
incidence (E;). E; is calculated by accounting the population
at risk structure. However, the detail information of age and
gender were often not available, then it is defined as E; =
N, QM v;/X™ N;). The simple way to calculate relative
risk is:

5 Vi @)

6, = E,
and its asymptotically standard errors (SE) is:

Vi 3)

E;
The equation (2) is known as the crude relative risk and it is
a kind of descriptive approach. The crude risk SIR is often
used in disease mapping but it has many drawbacks. First,
SIR is unreliable for a small area level because it tends to be
high for the small expected count [9]. Second, SIR cannot be
used to model the risk factors [3].

SE(8,) =

2.3. Loglinear model

To overcome the drawback of SIR, model based approach is
used. Using model based approach it is possible to account
the risk factors in estimating the relative risk which is
modeled through mean function. For count data, generalized
linear model (GLM) i.e., log-linear model could be used. iven
the Knumber of risk factors, the loglinear model of the mean
U; is presented as [3, 8, 9]:

log E(y;|x) = log(y;)
= offset(log E;) + x|B + €;; “4)
i=1,..,n

offset(log E;) explains the regression coefficient of log E; is
constrained to 1, x; = (1,X;q, ..., Xix)'is a (K+1) X1 is
vector of K number of risk factors, B = (By, By, ..., Bx)' is
(K +1) x 1 vector of regression coefficients, and the last
components €; is random effect component. It is used to
account the spatially structured and unstructured effects.

C. Distribution for disease count

There are two distributions were commonly used to model
disease count data. First Poisson distribution and second
Negative Binomial distribution. The Poisson distribution of
y; is defined as [3, 8, 9]:

v;|E;, 0;~Poisson(E;6;); i =1,...,n %)

Poisson distribution assumes the equality of the mean and
variance E(y;) = Var(y;) = E;0;. The Poisson regression
model is similar to equation (4) [3]. However, the equality
assumption may be violated because of spatial dependency or
heterogeneity. When the variance is larger than the mean is
known as overdispersion (i.e., Var(y;) > E(y;)). The
violation of the equality assumption lead to bias standard
errors estimates and cause test statistics become wrong.
Negative Binomial distribution was used to model the
overdispersion. The idea behind the negative binomial
regression model is by including second parameter &;; into
the Poisson distribution to model the variance of y; with &,
follows a Gamma distribution. The equation (5) can be
extended becomes Eq. (6), [3, 10]:

v;|E;0;, &;~Poisson(E;b;¢;) and ©6)
&;|o~Gamma(g, 0),

for y; =0,1,2,... and ¢ > 0. The Poisson-Gamma mixture
distribution of y; is [3]:

p(y;|E;, 6;, €;) = Gamma(p, o) Poisson(E;0;)
_ <QQ(€i)Q_leXP(—QSi)> <exp(_Ei9i)(Ei9i)yi>
[(e) yi! '

()

By integrating out €; we get the marginal probability of y;
which is a Negative Binomial (NB) distribution [10]:

p(v;|E;6;,0)
E;0;

- F(;(J—t I)lg)(g) (EL-HL- + Q)Yi (EL-HL-Q+ Q)Q' ®

The mean and variance of NB distribution are E(y;) = E;0;
and Var(y;) = E;0; + (E;0,)? /o respectively, with g is the
additional Poisson variation parameter. The NB distribution
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has greater variance than the its mean, so that NB is
appropriate distribution to deal with overdispersion. If o —
oo, the NB distribution is just a Poisson distribution.
Although NB is appropriate to be used to model data with
overdispersion, it is not good enough to use if the model
involves a lot of zero data. Large number of zeros in the data
cause the Poisson and NB regression models are not
appropriate to be used to predict the zero observations [11,
12]. The excess zeros are also a source of overdispersion [13].
Zero-inflated (ZI) models were used to model excess zeros
[14]. Tt is specified as:

f(y;) with probability 1 — m; 9
Yi~ { 0 with probability 7; ©)
We considered Zero Inflated Poisson (ZIPP) and Zero
Inflated Negative Binomial (ZINB) for f (y;) and m; the zero-
inflation probability. By assuming that the 8; and ¢; are the
relative risk and overdispersion parameters of the NB
distribution respectively, then the Eq. (9) can be defined as
[12]:

VilE;, 6;, m;~ZIP(E;0;,7;) (10)
for ZIP distribution, or
VilE;, 6;,1;,&~ZINB(E;0;,7;, &;) (11)

for ZINB distribution. Note that, A; = E;8; and m; is modeled
using canonical link function [12]:

log(4;) = x;B + offset(log E;)
where y is a vector regression coefficient of the logit model.

D. Hierarchical models for relative risks

Hierarchical models of relative risk are often used to
smoothen the relative risk estimate as well as overcome the
overdispersion and excess zeros problems. The model is
flexible for smoothing purpose by introducing random effect
components. The random effect components may capture the
spatial heterogeneity and spatial dependence:

log(4;) = offset(log(E;)) + a + B1xq1; + Brxp; + (13
w;,+v;i=1,..,n
where « in an intercept and describes the overall relative risk,
[, and 8, denotes the regression coefficients of latitude (x1)
and healthy behaviors (x2). We used intrinsic conditional
autoregressive (iCAR) or BYM CAR prior for the spatially
structured random effect of region i (w;) [15]:

n 2
Lj-i Wy 04 )

Yiawy X wy

(1),:'(1)_,:,0}3,W~N< (14)

where w;; is similar to w;; in equation (1), 02 is the variance

parameter of w;. We also consider Leroux CAR prior [16]:

p Xy Wijw; ol >
pEjwii+1—p (pXj wy+1-p)

w;lw_;, 02, W~]\/(

(15)

where p denotes the parameter autoregressive. Note that
iCAR is the limiting case of the Leroux prior when p equals

1. The spatially unstructured random effect v; is modeled by
an exchangeable prior:
1
V|02~ (O, 0—3)
where o2 is the variance parameter of v;.

We assigned a vague Gaussian prior distribution for
a, By, and B,, that is, {a, By, B2 }~N(0,108) and log(p/(1 —
p)) ~N(0,100) [12]. For each variance, parameters are
commonly assigned by inverse Gamma prior. However, it is
too sensitive to the variation of the hyperprior parameters
[17]. Here we use half Cauchy (HC) prior for standard
deviation of each random components. Gelman (2006) [17]
proposed 25 as scale parameter for the HC hyper-prior. To
select the best prior and hyperprior distributions, we use
model selection techniques. We consider deviance
information criterion (DIC), Watanabe Akaike information
criterion (WAIC), and the pseudo coefficient of
determination (R?). We fit the model in equation (4) using
Integrated Nested Laplace Approximation (INLA) [18].
Bayesian exceedance probability [19, 20, 21] is computed to
test the significant high-risk areas namely hotspots. The
models were estimated using R-INLA packages.

INLA works in three hierarchies: the first is the
likelihood model p(y|®,¢¥), where y is the vector
observation, ® = (a, B, B,, w,V, p)’ is a vector parameters
and P = (c2,02)" denotes the vector of hyperparameter.
The second is defining the latent Gaussian field (GMREF),

p(®[P)~N (H(lll), Q_l(lll)). The last hierarchy is defining

hyperprior distribution of the hyperparameter . The
hyperprior distribution is denoted by p({). The posterior
marginal of ®;is [22]:

P@) = | p(@l Iy

All parameters models are approximated by INLA using the
finite sum:

(16)

P@y) = ) (@O, y)WPy) A0 (8)
j

where p ((I)i|l|1(j), y) and p (lll(j) |y) denote approximation of

p((l>i|l|1(i),y) and p(l|1(i)|y). Equation (18) is evaluated at

support grid points Yy using suitable weights A,

III. RESULT AND DISCUSSION

A. Data exploration

We used malaria incidences data in 2018 in 30 sub-districts
of Bandung city. To estimate the relative risk (RR) and
identify the high-risk clusters for developing an early warning
system, a number of population is needed to adjust the
population at risk variation over space. To facilitate the
ecological hypothesis, two covariates altitude and healthy
behaviors were used. The altitude was wused as a
representation of the weather variables such as temperature,
humidity, and precipitation which have a high correlation
with the altitude (Kazembe, 2007). The data presented in
Table I was obtained from http://data.bandung.go.id/. The
average of number of incidences per sub-districts for the
entire city was | (range: 1-3), and the average of the
population at risk was 83,457 (range: 24,929-13,6351) with
overall mean incidence rate was | (range: 0-3) episodes per
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100,000 persons in 2018. In 2018, the highest number of
incidences of malaria were found in Buah Batu, Kiara
Condong, and Sukajadi sub-districts. We observed that there
were 14 (46.6%) sub-districts which have zero incidences.
The excess zeros incidences may lead to overdispersion

—6.864

L
=] -
problem. 2
TABLE I 3
RESEARCH VARIABLES
~6.94+
. . Malaria  Population . Population ~ Healthy
id Sub-District Incidences  at Risk Altitude Density  Behaviors
1 Andir 1 106498 733000 20759  56.900 —698L_, , , Y
2 Antapani 1 77,293 690.000  21.859 71.540 107.55 107.60 107.65 10770
3 Arcamanik 0 73,801  680.000 8742 62.720 Longitude
4 Astanaanyar 1 76911 695000 23377 58.560
5 Babakan Ciparay 0 136254  697.000 21700  78.840 (a) Population at risk [ -
6 Bandung Kidul 0 59,433 670.000 13.036 80.130 50 60 70 8 90 100
7 Bandung Kulon 0 136351 709.000  21.022 56.990
8  Bandung Wetan 1 32331 751000 8248 67.320 N
9  Batununggal 2 121,886 682000  22.901 53370
10 Bojongloa Kaler 0 126477 694000  36.286 76.730 56 (A)
11 Bojongloa Kidul 1 86981  689.000  16.657 68.960 ' 17
12 Buahbatu 3 100,984  670.000 13.861 67.360
13 Cibeunying Kaler 0 70926  750.000  13.992 72.620 ‘ .
14 Cibeunying Kidul 0 113,885 706000  23.612 570 2l “
15 Cibiru 1 73312 706000  12.268 81040 = 8
16 Cicendo 1 97,903  700.000 12791 89.150 3 2 ' 5
17 Cidadap 1 54401 848000 7353 69.450 8,
18 Cinambo 0 2499 677000 6578 45.440 o0ad
19 Coblong 1 115720 792000  17.561 54260
20 Gedebage 1 39,167  666.000  3.887 69.410 -‘ »
21 Kiaracondong 3 127,738 760.000  21.902 53.720 —
22 Lengkong 0 74753 696000  1L151 60990 —6984, , | |0 12m
23 Mandalajati 0 69,283 760.000  16.039 53.270 107.55 107.60 107.65 107.70
24 Panyileukan 0 39,059 675000 8902 88.390 Longitude
25 Rancasari 1 82,744  670.000 11611 70.580
26 Regol 0 85,383  686.000  16.805 71210 . ‘ e [
27 Sukajadi 3 103390 891000 20254  61.480 (b) Population Density = " T 25 30 35 40
28 Sukasari 1 75672 856000  12.637 38.790
29 Sumur Bandung 0 37,114 712000 9236 65.580
30 Ujungberung 0 83,130 698000  13.764 63.570 N
~6.86 @
Figures 1-2 presents the choropleth maps of the research
variables that we used in this study. v ‘
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3 29 . 2 3 15
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Fig 1. Spatial distribution of malaria incidences .‘ ‘
0 12km
Figure 1 presents the spatial distribution of malaria B vayes T e e
incidences in Bandung city, Indonesia. The high incidences Longitude
were concentrated in northern and central Bandung which e —
have high population density (d) Healthy Behaviors
gh pop . 0 6 70 8 9 100

Fig. 2. (a) Population at risk, (b) Population density, (c) Altitude, and (d)
Healthy behaviors
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Figure 2 shows the spatial distribution of variables interest
including population at risk, population density, altitude, and
healthy behaviors. Population at risk is used to calculate the
expected count (E;). Two variables were considered as risk
factors: altitude and healthy behaviors. The population
density was not included directly in the analysis because the
population variable was used to calculate E;. It will be used
to validate the spatial distribution of incidence risk or the
relative risk.

B. Spatial dependence
The spatial dependence in the number of malaria incidence
was evaluated by mean global Moran’s 1.

Moran's I=0.170 (p— value=0.0334)

;
w2 l
(5} '
Q '
= '
O 1
=l |
Q ,
= l
— l
) |
(5] 1
o |
)
= ]
> ,
= lo) '
I 8 -
Z
= :
& . |® :
> ] .
o ML)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Incidences
Fig. 3. Moran’s Index plot

Moran’s I statistics of 0.170 with (p-value<0.05) indicates
there is a significant spatial dependency. Figure 3 shows the
Moran’s I scatter plot of malaria incidence over 30 sub-
districts. Points are place in quadrant I shows that clusters
with high malaria incidence was surrounded by clusters of
high malaria incidences. The plots show more cluster points
in quadrant I. This information can be used as an initial
reference that malaria is spreading due to proximity to
locations.

C. Bayesian Hierarchical Model

To estimate the relative risk of malaria, we applied Bayesian
hierarchical model and compared the result with the crude
SIR. A total of 24 models were estimated considering four
distributions (i.e., Poisson, negative binomial, zero-inflated
Poisson, and zero-inflated negative binomial), two different
spatial prior (BYM, and Leroux), and three different
hyperprior distributions (half Cauchy, Uniform and Inverse
Gamma). The model comparison based on DIC, WAIC, and

R? are presented in Table 2.
TABLE II
MODEL COMPARISON MEASURES FOR VARIOUS SPATIAL
MODELS FITTED IN THE STUDY

] Spatial DIC WAIC R
No. Model b THe U 1G HC U 1G HC U IG
3 BYM 7095 7096 7000 69.12 69.11 6971 051 051 0.2
2 NB 7121 7127 7009 6925 6927 6974 051 051 012
3 zIp 7152 7154 7081 6936 6936 7024 031 031 007
4 ZINB 7181 7181 7098 6945 6945 7035 033 033  0.06
s P Leroux 7037 7030 7000 6920 69.12 6971 042 043 0.2
6 NB 7042 7042 7008 6928 6928 6974 040 040 0.12
7 zIp 7087 7093 7067 69.56 69.61 7014 022 023 007
g ZINB 7122 7122 7068 6971 6971 7012 023 023 007

Model: P (Poisson); NB (Negative Binomial); ZIP (Zero
inflated Poisson); ZINB (Zero inflated Negative Binomial)

Table II presents the model comparison measures for the
spatial models. Based on the DIC, WAIC, and R? values, the
model (M1), a model with Poisson likelihood, BYM spatial
prior, and Uniform prior had a better fit. This model explains
51% of the total variation.
TABLE III
POSTERIOR ESTIMATES FOR THE FIXED AND RANDOM EFFECTS
OF THE BEST SPATIAL MODEL OF MALARIA INCIDENCE RISK
AT SUB-DISTRICT LEVEL IN BANDUNG CITY, INDONESIA

Relative risk

Parameters Coefficient SE (RR) 95% CI
Intercept (Bo) -3.097 4476 0.045 0.000; 296.190
Altitude (8;) 0.005 0.005 1.005 0.995; 1.015
Healthy Behavior (8;) -0.010  0.024 0.900 0.995; 1.005
o2 0.462 0715  0.600;1.477 1.012; 9.545
a2 0.443 0712 08461532 1 012;10.014
a2/(a2 + a?) 0.510

Estimates for covariates (altitude and healthy behaviors) after
considering for spatially structured in the best model are
given in Table III. The malaria incidence risk was positively
associated with altitude (RR: 1.005, 95% CI: 0.995-1.015).
Inversely, the incidence was related negatively with healthy
behaviors (RR: 0.990, 95% CI: 0.995-0.1005). Both
associations were not statistically significant. But, the sign of
the coefficients was reasonable. It indicates that the number
of malaria incidences could be reduced by increasing healthy
behaviors. The proportion variance of spatially structured is
about 0.510, and spatially unstructured is of 0.490, which
indicates that the variation of malaria was explained similarly
by spatially dependence and heterogeneity. The spatially
structured and unstructured effects for each sub-district were
presented in Figures 4(a)-4(b).

1 W
0
-1

¥}

Spatially structured (Besag)

12345678 91011121314151617 181920212223 24252627 282930
District
(a) Spatially structured — Predicted 95% Credible Interval

1

=

2

=

53

2

=1

2

S o ' | ]

2

=

2

=

=

)

=

s-1

(=

w

012345678 91001112131415161718192021222324252627282930
District

(b) Spatially unstructured — Predicted 95% Credible Interval

Fig. 4. (a) Spatially structured effects and (b) spatially
unstructured effects
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Fig. 5. (a) Malaria relative risk and (b) standard deviation based on SIR
Model

Figures 5(a)-5(b) shows the relative risk and its standard
deviation maps based on the SIR estimator in Eqgs. 2-3. The
SIR ranges from 0 to 3.370, with zero relative risks for most
eastern and southwest regions.

(a)
-6.864
3
S -690-
‘."';
-6.944
-6.98 < T T T T
107.55 107.60 107.65 107.70
Longitude
Malaria Relative Risk ------
05 075 1 125 15 175 2 4

(b)

-6.864

-6.904

Latitude

-6.944

-6.98 4

T
107.65
Longitude

01 03 05 07 09 L1 35

T
107.55 107.60

Stadard Deviation

Fig. 6. (a) Malaria relative risk and (b) standard deviation based on BYM
Model

Figures 6(a)-6(b) present the relative risk and its standard
deviation maps based on the BYM model. The BYM ranges
from 0.460 to 2.835 with relatively small relative risk most at
eastern and southwest regions. The smoothed map gives
homogeneous RR, which is easy to interpret. The relative risk
estimates based on BYM has shrunk toward the overall
means, compared to the crude SIR because of the smoothing
effect of the spatial dependence and heterogeneity. The
smoothing effect is also described by the plots of BYM versus
crude SIR (Fig. 7).

(a)

3 -

L J

= o
}:2 24 °
=
=
(]
o

0+

Sl'R B\r'M
(b) .

SIR
Fig. 7. (a) Boxplot SIR versus BYM and (b) scatter plot SIR versus BYM
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Figure 7(a) presents the comparison between crude relative
risk SMR and smoothness relative risk BYM. BYM has a
smaller variation than SMR, but scatterplot (Figure 7(b))
shows that the BYM and SMR have high correlation which
indicates that the smoothness does mnot produce
underestimated estimation of the relative risk. The
corresponding BYM map gives posterior probabilities of RR
> 1 (Figure 8). From the map, we have three sub-districts
which were categorized as hotspot areas with a posterior
exceedance probability greater than 0.80. The districts are
Kiaracondong, Sukajadi, and Sukasari with posterior
probabilities of 0.865, 0.935, and 0.806, respectively (see
Table IV). The high-risk clusters were observed mostly in the
northwest and southeast of Bandung.

4

—6.86-

19
g 13
~6.90 23
2 \ 8 P 30
3 29 15
9
e . | » 8,
—6.94+ 26
5
11
6 s 2
-_—
0 12km
—6981 : : :
107.55 107.60 107.65 107.70
Longitude
Posterior porbability --
0.3 0.6 08 1

Fig. 8. Posterior probability of relative risk based on BYM

Figure 8 shows that the hotspots of malaria risk in 2018 were
located at northern and central Bandung, Indonesia.

TABLE IV
ESTIMATION OF BYM AND POSTERIOR PROBABILITY OF
MALARIA DISEASES IN BANDUNG CITY, INDONESIA, 2018

Id Sub-District BYM Posterior
Mean  SE 95% CI Probability
1 Andir 0.903 0.560 0.217;2.331 0.328
2 Antapani 1.074 0714 0.233;2912 0.430
3 Arcamanik 0.808 0.543 0.177;2.211 0.261
4  Astanaanyar 0.891 0.607 0.189;2.461 0315
5  DBabakan Ciparay 0.460 0349 0.079; 1.372 0.070
6  Bandung Kidul 0.586 0.456 0.104;1.781 0.133
7  Bandung Kulon 0.550 0.438 0.084; 1.698 0.119
8  Bandung Wetan 1.284 0.850 0.303;3.480 0.540
9  Batununggal 1.232  0.741 0.295;3.101 0.541
10 BojongloaKaler  0.493 0.364 0.090; 1.442 0.082
11 Bojongloa Kidul 0.769 0.541 0.154;2.171 0.238
12 Buahbatu 1.545 0854 0.425;3.679 0.709
13 Cibeunying Kaler 0.827 0.619 0.150; 2.444 0.272
14 Cibeunying Kidul 0.663 0.445 0.142; 1.810 0.168
15 Cibiru 1.147 0935 0.158;3.601 0.439
16 Cicendo 0.832 0.656 0.124;2.546 0.281
17 Cidadap 1924 1390 0.337;5.520 0.730
18 Cinambo 1220 1.254 0.125;4.534 0.407
19  Coblong 1.307 0.753 0.339;3.199 0.590
20  Gedebage 1.138  0.887 0.197;3.464 0.434
21  Kiaracondong 1.995 1.000 0.608; 4.441 0.865
22 Lengkong 0.704 0.509 0.139;2.030 0.197
23 Mandalajati 1.153  0.782 0.243;3.171 0.470
24  Panyileukan 0.748 0.726 0.084;2.671 0.222
25 Rancasari 1.076 0.746 0.212;3.004 0.426
26  Regol 0.570 0.407 0.115;1.630 0.118
27  Sukajadi 2.835 1.536 0.742; 6.603 0.935
28  Sukasari 2.248 1530 0.410; 6.156 0.806
29  Sumur Bandung 0.755 0.522 0.170;2.114 0.224
30 Ujungberung 0.788 0.551 0.160:2.217 0.250

IV. DISCUSSION AND CONCLUSION

We have analyzed and mapped the relative risk of malaria by
considering altitude and healthy behaviors as the risk factors..
This study is an application of and spatial regression for
epidemiological data at small area [3, 9]. Using a Bayesian
spatial hierarchical model, we obtained more homogenous
relative risk estimates than crude standardized incidence
ratios by smoothing the data through BYM CAR model with
Uniform hyperprior distribution [16]. The smoothing model
is more comfortable to interpret where the posterior estimate
has high specificity and low sensitivity [21]. This is an
important property to avoid false-positive, thereby predicting
true clusters in the maps. The BYM CAR model of malaria
risk gives a more reliable estimate of the relative risk of
disease than the crude estimate SIR [3, 21, 23]. A
nonparametric model, such as P-spline may also have a
similar advantage. However, it can give a computational
challenge [24].

Over smoothing issue becomes an exciting topic in disease
mapping study. Several alternatives to CAR models have
been proposed to be able to distinguish the high-risk and low-
risk clusters better. Allowing the spatial autocorrelation has
different values from 1 using BYM model and selecting the
appropriate interval of the relative risk on the choropleth
maps may also be possible to minimize the over smoothing
problem realized by the CAR model. As far as we know, this
is the first study to evaluate the spatial distribution of malaria
risk in Bandung city, Indonesia. However, there is a
limitation on data access. The newest data that we can access
is Malaria data in 2018 due to the government regulation that
published health profile information after one until two years
later. We also realized that under-reported malaria incidences
might occur in the community because most people resort to
home or community-based care [24]. They usually visit the
health facility or modern biomedical care at a health facility
if the disease is perceived to be severe or near-fatal [25, 26].
Therefore, the relative risk pattern described in this study
describes the risk of severe malaria [24]. The under-reported
effect is minimized in this study by defining the sub-district
level as units of spatial analysis and using the aggregate data
over sub-districts [24]. Additionally, we believe that the
availability of health facilities in each sub-district improves
the data reported quality.

In this study, we evaluate the effects of altitude and healthy
behaviors on malaria risk. Because the study includes a small
sample size (30 sub-districts), we only focus on the direction
of the effect and avoid the discussion of statistical
signification. High malaria risk was generally associated with
high altitude and low healthy behaviors. In our study,
naturally, high altitude areas are of high malaria transmission
increased malaria incidence, while at low altitude, malaria
risk is decreased. This result confirmed the research study by
Kazembe (2007) [24], and it was similar to the dengue disease
incidence in Bandung city, Indonesia. The high-risk dengue
was found in high altitude areas which are in northern regions
of Bandung city [3]. The consistency of these results with
dengue disease is possible because of the similar kinds of
vectors. Both diseases are transmitted by the same vector, i.c.,
mosquitoes. Mosquitoes benefit from rainfall and high-
altitude regions which commonly have a high frequency of
rainfall [3]. Rainfall provides aquatic environments for
mosquitoes breeding sites [27].

The high index of healthy behaviors is corresponding to low
malaria risk. Health behaviors are important risk factors that
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have to get more attention in disease control and prevention
[28]. The random effect component of spatial autocorrelation
was found to influence the malaria risk. This component
provides a characterization of spatial patterns in the data. The
Spatial autocorrelation accounts for the relevant unobserved
variables [3, 24, 29]. At the same time, spatial regression
modelling is essential to consider malaria modelling [29].
This study provides risk maps that could be used for
developing an early warning system as guidance for the
government to define priority areas for the focusing of limited
resources. This is an essential point and future model aimed
at a sub-district level for the effectiveness and efficiency of
malaria disease prevention and control [2, 24]. Based on the
result of our study, we suggest that various risk factors
influence the spatial variation in malaria risk in the Bandung
city regions. Give more attention to the risk factors that have
a high impact on malaria risk could help the government to
develop an effective and efficient strategy in controlling
malaria spread and reduce the negative effect on society.
The Bayesian hierarchical model that has been used can be
extended to identify spatiotemporal clusters by taking into
account the space time variation [30]. It is important to
explore the spatial evolution of disease transmission.
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