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A New Explicit Iteration Method for Common
Solutions to Fixed Point Problems, Variational
Inclusion Problems and Null Point Problems

Yonggang Pei*, Shaofang Song, and Weiyue Kong

Abstract—In this paper, we present a new viscosity technique
for finding a common element of the set of common solutions
of the variational inclusion problems, the set of common fixed
points of an infinite family of demimetric mappings, and the
set of solutions of the null point problems in Banach spaces.
Under suitable assumptions, strong convergence of the sequence
generated by the iterative algorithm is proven to the unique
solution of the above problems. Furthermore, the main result
is extended to the 2-generalized hybrid mappings and strict
pseudo-contractions. A numerical example is also given to
demonstrate the results.

Index Terms—Banach space, demimetric mapping, variation-
al inclusion problem, fixed point, null point problems

I. INTRODUCTION

ET H be a real Hilbert space, C be a nonempty closed
convex subset of H,T be a mapping on C and F(T) :=
{xeC:Tx=x}. Let A: C — H be a mapping. The metric
(nearest point) projection from H onto a nonempty closed
convex subset C of H is defined as follows: for each point
Xx € H, there exists a unique point Pcx € C with the property

[[x—Pex|| < [x—y[l,  V¥yeC,
that is, for any point x € H, X = Fcx if and only if ¥ € C and
|lx = %[ = inf{|}x—y|| : y € C}.

The metric (nearest point) projection in the setting of
Hilbert spaces has been extensively studied in the literature;
see, for instance, [1], [2], [3], [4], [S]. The following lemma
is a well-known result about approximation or projection.

Lemma I.1. ([6]) Let Pc : H — C be a metric projection
from H on a nonempty closed convex subset C of H. Given
x € H and z € C, then 7 = Pcx if and only if there holds the
relation

(x—z,y—z) <0, VyeC.

Definition I.2. A mapping 7 : C — H is said to be:
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(1) a k-strict pseudo-contraction if there exist k € [0,1)
such that for all x,y € C

1Tx=Tyl| < [lx =yl +kllx=Tx—(y=Ty)ll;

(2) a 2-generalized hybrid mapping if there 8;,6,,€1,& €
R exist such that for all x,y € C

51 HTZx— Ty||2 + 8 || Tx—Ty|?
+(1-8 - &) |lx—Ty|

< |1y +&|Tx—y|?
+(1—& —&)x—y|*.

The class of 2-generalized hybrid mappings contains the
classes of nonexpansive mappings, nonspreading mappings,
hybrid mappings and generalized hybrid mappings in a
Hilbert space; see [7], [8]. In general, 2-generalized hybrid
mappings are not continuous; see [9]. Hence, the class of
k-strict pseudo-contractions does not contain the class of 2-
generalized hybrid mappings by the fact that k-strict pseudo-
contractions are continuous.

The following example is a 2-generalized hybrid mapping,
but it is not a k-strict pseudo-contraction.

Example 1.3. ([10]) Let S: [0,2] — R be defined as
Sy = { (1), x€0,2);

x=2.
Then S is a 2-generalized hybrid mapping and F(S) = {0}.
However, it is not a k-strict pseudo-contraction.

On the other hand, the class of 2-generalized hybrid
mappings does not contain the class of k-strict pseudo-
contractions. We give an example for a k-strict pseudo-
contraction which is not a 2-generalized hybrid mapping.

Example 1.4. Let S: R — R be defined as
Sx = —3x.

Then § is a k-strict pseudo-contraction but not a 2-
generalized hybrid mapping (check for instance the condition
of 2-generalized hybrid mapping for x =0 and y = —1).

Recently, Takahashi [11] introduced a broader class of
nonlinear mappings in a Banach space called k-demimetric
mapping. This class mappings contains the classes of 2-
generalized hybrid mappings, k-strict pseudo-contractions,
firmly-quasi-nonexpansive mappings and quasi-nonexpansive
mappings.

Definition 1.5. Let £ be a smooth Banach space, let C be
a nonempty, closed and convex subset of E and let k be a
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real number with k € (—eo,1). A mapping T : C — E with
F(T) # 0 is called k-demimetric if, for any x € C and g €
F(T),

—k
(x—g.J(x—Tx)) > —= |lx—Tx|].

k-demimetric mapping may not be strictly pseudo-
contractive. The following example (a k-demimetric map-
ping) is not pseudo-contractive. Then it is not strictly pseudo-
contractive.

Example L.6. ([12]) Let H be the real line and C = [—1,1].
Define T on C by T(x) = 3xsmf if x#0 and T(0) =0.
Clearly, 0 is the only fixed point of T. Also, forx € C, |T (x) —
012 = |T(x) 2 = |2xsin L2 < 22 < [xf? < br— O + k[T (x) —
x|? for any k € [0,1). Thus 7 is demimetric. We show that

T is not pseudo-contractive. Let x = % and y = 3— Then
IT(x)-T(y)| = % However,
160
2 2
— I-T)x—(I-T)y|"=—.
=y (= Thx= (=T = s

Takahashi [13] use Halpern type iteration to prove a strong
convergence theorem for finding a common element of the
set of common fixed points for a finite family of demimetric
mappings and the set of common solutions of variational
inequality problems for a finite family of inverse strongly
monotone mappings in a Hilbert. More precisely, Takahashi
[13] introduced and studied the following iterative algorithm:

Zn , M & (1= M)+ AnTj)x,
Wn—zzlctPC( —MuB )xm
Xn+1

where {T} :C — H is a finite family of kj-demimetric
and demlclosed mappings, and {B;}Y | :C — H is a finite
family of p;-inverse strongly monotone mappings. Then a
strong convergence theorem is obtained under some mild
restrictions on the parameters.

On the other hand, in order to finding a common fixed
point of an infinite family of demimetric mappings in a
Hilbert space, Akashi and Takahashi [14] introduced the
following Mann’s type iteration without assuming that demi-
metric mappings are commutative:

{ in= Z;'Ozl éj((l _/,Ln)I‘F/’LnTj)xn,

Xnt1 = Pe(0xn + (1 — 04y)zn), Vn e N,

where {T; } 1 :C— H is an infinite family of k;-demimetric
and demlclosed mappings. A weak convergence theorem
is presented under certain appropriate assumptions on the
parameters.

Very recently, Takahashi [15] introduced the following
iteration process for finding a common element of the set
of common fixed points of an infinite family of demimetric
mappings and the set of common solutions of variational
inequality problems for an infinite family of inverse strongly
monotone mappings in a Hilbert space:

=Y Si((1 =) + A Tj)xn,

Wy = le:] Gi-]n,, (1 - nnBi)xm

Xn+1
where {7}

and demlclosed mappings, {B;}7,
family of p;-inverse strongly monotone mappings.

-1 :C— H is an infinite family of k;-demimetric
:C — H is an infinite
Then

= Onlty + (1 - 6")(PC(O‘nxn +ﬁnZn + Yan))a VneN.

= 5nun + (1 - 6,,)(PC(OC”X" +ﬁnzn +ann))a Vn e N,

a strong convergence result is proposed under some mild
restrictions on the parameters.

Inspired by Akashi and Takahashi [14], Takahashi [13]
and Takahashi [15], we present a new iterative scheme for
finding a common element of the set of common solutions
of the variational inclusion problems, the set of common
fixed points of an infinite family of demimetric mappings,
and the set of solutions of the null point problems in Banach
spaces. The main results presented in this paper improve the
corresponding results in [14], [13], [15], to a certain extent.
Furthermore, some other results are also extended to some
extent; see e.g., [16], [6], [17], [18], [19], [20], [8], [21],
[22], [23], [24], [25], [26].

II. PRELIMINARIES

HROUGHOUT this paper, we denote E the real Banach
space, E* the dual of E, [ the identity mapping on E, H
the real Hilbert space, and N the set of nonnegative integers.
The expressions x, — x and x, — x denote the strong and
weak convergence of the sequence {x,}, respectively. The
(normalized) duality mapping of E is denoted by J, that is,

* 2 *
Jx={x" € E*: (x,x") = |lx||, [lx*|| = [|x]|}

for all x € E, where (-,-) denotes the generalized duality
pairing between E and E*. If E is a Hilbert space, then
J =1, where [ is the identity mapping on H.

The norm of a Banach space E is said to be Gateaux
differentiable if the limit

e
t—0 t

]

exists for all x,y on the unit sphere S(E) =
In this case, we say that E is smooth.

Let C be a nonempty closed convex subset of H and let
T :C — H be a mapping. We say that

(xeE:|lx| =1}

(i) T is nonexpansive if ||Tx—Ty|| < ||x—y]| for all x,y €
G
(i) 7 is firmly nonexpansive if || Tx — Ty||* < (Tx—Ty,x—
y) for all x,y € C.
It is easily found that 7" is firmly nonexpansive if and only
if T = (I+V)/2 for some nonexpansive mapping V. Hence
a firmly nonexpansive mapping must be nonexpansive. We
also notice that if 7' is nonexpansive, then the fixed point set
of T, F(T), is closed and convex [20].

Lemma IL.1. ([27]) Let {a,,} be a sequence of real numbers
such that there exists a subsequence {n;} of {n} such that
O, < Oly,41 for all i € N. Then there exists a nondecreasing
sequence {mi} C N such that m; — o and the following
properties are satisfied for all (sufficiently large) numbers
ke N:

Oy, < Oy +1 and oy < Olpy41-

In fact, my = max{j <k:o; < aj;1}.
Lemma IL2. ([28]) Let {a,} be a sequence of nonnegative
numbers satisfying the property:

Opi1 < (1= %)0 +by+Yacn, neN,
where {v,},{bn},{cn} satisfy the restrictions:

() Z,?:l Yo = oo, lim;, e ¥ =0,
(ii) b, >0, Z:Lozl by < oo,
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(i) limsup,_,..cn <O0.

Then, lim,_,. o, = 0.

Lemma I1.3. In a Hilbert space H, it holds for all x,y € H
and A € [0,1] that

1224 (1= 2)y)* = A [l 4+ (1= 2) Iy P = 2 (1 = 2) [l =y,

which can be extended to the more general situation: For all
X1,X2,....%y €H, A; €10,1], and ¥ A; = 1, we have

Arxt + Aaxs + o+ a2 = A [ [P+ A2 || |1
2
Fothlxal? = Y Ad |-

1<i<j<n
Lemma I14. ([14]) Let E be a smooth, strictly convex and
reflexive Banach space and let M be a real number with
N € (—oo,1). Let U be an n-demimetric mapping of E into
itself. Then F(U) is closed and convex.

Lemma ILS. ([/29]) Let C be a nonempty closed convex
subset of a strictly convex Banach space E. Let {T,:n € N}
be a sequence of nonexpansive mappings on C. Suppose that
(o) F(T,) # 0. Let {0} be a sequence of positive real
numbers such that Y, | &, = 1. Then a mapping T on C
defined by

Tx=

04, Ty,
n=1

for x € C, is well defined, nonexpansive, and F(T) =
M=y F(T,,) holds.

Recall that a mapping A : C — H is said to be o-inverse-
strongly monotone (ism) if there exists a constant ¢ > 0 such
that

(Ax—Ay,x—y) > a|Ax—Ay|*, VxyeC.

We collect some basic properties of inverse strongly mono-
tone operators in the following proposition.

Proposition I1.6. ([1]) We have:
(i) IfA:C— H is a-ism and A is any constant in (0,20,
then the mapping I — AA is nonexpansive;
(i) A mapping T : C — H is nonexpansive if and only if
I—T is Y-ism;
(ili) If A is a-ism, then for y>0, YA is %—ism.

III. SOME NEW LEMMAS

E also need the following lemmas, which are funda-
mental for our main theorem.

Lemma IIL.1. Let C be a nonempty closed convex subset
of a real Hilbert space H. Let M : H — 2" be a maximal
monotone operator with dom(M) C C. Let J), be the resolvent
of M for A > 0. Let A:C — H be a-ism. Suppose that
M~ 'ONAT'0#0. Let A,r >0 and z € H. Then the following
are equivalent:
i) z=J,(I—-rA)z

(i) ze (M+A)"'0;

(ii) ze M~ona-lo.
Consequently, F(J;(1—rA)) = (M+A)~'0=M"'oNnA~'0.

Proof: Since M~'0NA~'0 # 0, there exists zo € D(M)
such that 0 € Mzp and 0 = Azp.

(i) = (if). Assuming z =J, (I —rA)z yields
—%Az € Mz.
Since M is monotone and 0 € Mzy, we obtain
(Az,z—1z0) <0.
This together with Azp = 0 implies that
o ||Az]]* = at||Az— Azo||* < (Az—Azp,z—20) <O.

Therefore, Az = 0. This reduces the fixed point equation
z=J)(I—rA)z to the fixed point equation z = J)z that is
equivalent to 0 € Mz. Consequently, 0 € Mz+ Az. This means
z€ (M+A)~o.

(ii) = (iii). The assumption z € (M +A)~'0 can be rewrit-
ten as —Az € Mz. The monotonicity of M then implies (note
0 € Mzp) that

(Az,z—2z0) <O0. (II.1)

Noticing Azo = 0, we obtain that
a||Az|* = a||Az — Azo||* < (Az—Azg,2—20) <O

It shows that Az = 0. Now the assumption z € (M +A)~10
is reduced to the relation 0 € Mz. Consequently, we have
zeM'onA~'o.

(iii) = (i). Since z€ M~'0NA~'0, we have that ze M~10
and z € NA~'0. It follows that z=J,z and Az = 0. Thus we
have

2=, (I—rA)z.

The proof is completed. ]

Lemma IIL.2. Let C be a nonempty closed convex subset of
a real Hilbert space H. Let {A;} | :C — H be an infinite
family of oy-ism mappings such that ﬂ‘;":lAi_lO # 0. Let
{Ai}3, be a positive sequence such that ;> A; = 1. Then
Y2 1 AiAi i C— H is an a-ism mapping with oo =inf{o; : i =
1,2,...}, and (2, AA) 710 =2 A0 holds.

Proof: Setting S; =1 —20A;, from Proposition I1.6(i),
we know S; is nonexpansive. Since (> A;'0 # 0, noticing
F(S;) = A;'0, we have that N7, F(S;) = 2 A;'0 # 0. Tt
follows from Lemma IL5 that Y7, A;S; strongly converges.
Noticing that A; = ﬁ([ —S;), we deduce that Y7, LiA;
strongly converges. Letting

S= i AiS;
i=1

then we have A = 5 (I—S). Since S is nonexpansive due to
Lemma II.5, we deduce I — S is %-ism by Proposition I1.6 (ii).
Hence, we get A is «-ism by Proposition I1.6 (iii). Taking
into consideration that F(S) = A~'0 and noticing the fact that
N F(S:) = N2 A0, we deduce that (X2, LA;)7'0 =
N A0 ]

For every i = 1,2,...;, let A;:C - H and M : C 2
Dom(M) — 2! be nonlinear mappings. We introduce the
combination of variational inclusion problem in Hilbert s-
paces as follows: find a point x* € C such that

and A= Z),[A[,
i=1

=

0e (M+ ZA{A,’)X*,

i=1

where A; is a real positive number for all i = 1,2,... with

Yo A=l
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Lemma IIL3. Let C be a nonempty closed convex subset of
a real Hilbert space H. Let {A;}7 | : C — H be an infinite
Samily of oy-ism mappings with a =inf{o; :i=1,2,..}, M
be maximal monotone in H with Dom(M) C C and J, =
(I+rM)~" be the resolvent of M for r > 0. Let {A;} be a real
number sequence in (0,1) with Y5 A =1 and N2 (M +
A) 710 £ 0. Then,

(M+Y 2A)7'0=(M+A;)""0.
i=1 i=1
Proof: We can obtain the desired result due to Lemma
II.1 and Lemma II1.2. ]

Lemma IIL.4. (/30]) Let C be a nonempty closed convex
subset of a real Hilbert space H. Let {T;}7 | : C — H be an
infinite family of ki-demimetric mappings with sup{k; : i =
1,2,...} < 1such that 2| F(T;) # 0 . Assume that {n;}7 is
a positive sequence such that Y ;- | 1; = 1. Then, the following
conclusions hold
() Y2, niT;:C— H is a k-demimetric mapping with k =
sup{k;:i=1,2,...};
@) F(Z2, 1) = 2o F(T);
(3) if T; is demiclosed for each i €N, then }..:_n;T; : C —
H is demiclosed.

Lemma IILS. Let C be a nonempty closed convex subset
of a real Hilbert space H. Let M : H — 2! be a maximal
monotone operator with dom(M) C C. Let J), be the resolvent
of M for A > 0. Given 0 < s <r and x € H, it holds that

N
x = dpx] < |1 = 2| =]

and

Jor = Jox| < 2= Jpx]

Proof: Note that (x —Jyx)/A € M(Jyx). Since M is
monotone, we have

<x—stx _ x_]rnysX—Jr)O > 0.
It turns out that
Hjsx—.lrtz < g()C—Jr)c,JS)c—er>
< == il ox =]

This along with the triangle inequality yields that

x=Jsxl| < [lx = Jex|| + [[ox — Jox]|
s
< fv= ol + 1= 2 fx— dx
< 2|lx—Jx||.
This completes the proof. ]

IV. MAIN RESULTS
MOW, we can prove the main theorem.
e

rem IV.1. Let E be a smooth, strictly convex, and
reflexive Banach space and let J be the duality mapping
on E. Let H be a Hilbert space and let C be a nonempty
closed convex subset of H. Let {A;}7 | : C — H be an infinite
Sfamily of Wi-ism mappings with @ = inf{y; : i = 1,2,...}.
Let M : H — 2" be a maximal monotone operator with
dom(M) C C. Let J, be the resolvent of M for A >0 and

let f:C — H be a contraction with coefficient v € [0,1). Let
B:H — E be a bounded linear operator such that B # 0 and
let B* be the adjoint operator of B. Let {T;}7 | : C — H be
an infinite family of ki-demimetric and demiclosed mappings
with k=sup{k;:i=1,2,...} <1, S: E — E be a k-demimetric
and demiclosed mapping. For xo € C, define a sequence {x,}
as follows:

Uy = Jn,l (I - )Ln 2;0:1 GiAi)xna

yn = Gu(X72 6iTiuy, — TB*J(I — S)Buy)

+(1 = &u)un,
Xn+1 = PC(anfxn +Bnun + '}/nyn)y vneN,

where T € (0,4), {0,},{Bn}, {1}, {&:} C (0,1) and
{6}, {0n}, {1}, { A} C (0,+o0) satisfy the following con-

ditions:

av.1)

(1) im0, =0 and Y7 0ty = oo,
(ii) 0 < liminf, e B, < limsup,_.., B, < | and o, + B, +
Y= 1,
(i) 0<c <Ny,
(v) Y2, 6=1and Y2 0, =1,
(v) 0<liminf,_e A, <limsup, A, <2,
(vi) 0 < liminf,e G, <limsup,_,., & < min{%, 271\\;?|\2 1.

Assume T:=F (Y2, §T)NM+X ., 6:A;) 'ONBIF(S) #
0. Then the sequence {x,} generated by (IV.1) strongly
converges to a point zo € I, where zo0 = Prfzp.

Proof: Set T = Y7 ,6T; and A = Y2, 0A;. We
get by Lemma III.3 and Lemma III.4 that ' =
N2 F (1) NN (M + A7) 0) B~ F(S). Taking any z €
I", we have that

(uy — Tup + tB*J(I — S)Buy,up, — 2)

= (uy—Tuy,uy —z) + T(B*J(I — S)Buy,un — 2)
= (up—Tuy,u, —z) +1(J(I — S)Buy,Bu, — Bz)
11—k t(1—k
2 o | n_TunH2+ ( ) )HBun_SBMnH2~ (Iv.2)

It follows from (IV.1) that

lyn —zl?

= (1~ &u)un + &u(Tutn — TB*J (I — S)Buy) —z||*

= ||t —2— &t — Tup + TB*J(I — S)Buy)||*
llttn — z))* = 280 (s — Tt + TB*J (I — ) Bty t, — 2)
+82 |y — Tty + TB*J (I — S)Buy ||

< i —2)|* = 280 (un — Tut + TB*J(I — S)Buty, t — 2)
+7 (lun — Tuy|| + || <B*I (I — S)Buy |)?
< N — 2> = 23ty — Tty + B*J(I — S) Bty — 2)

+0a (2l — Tu | +27% | B (2 — ) Bun ).
This together with (IV.2) implies that

yn —z])?
< H”n _ZH2 - Cn(l _k) ||”n - T”nH2
—£,7(1—k) || Bun — SBuy|?

+87(2[un — Tun||* + 22 || B||* || Buty — SBuy |*)
= |luy _ZHZ = Gu(1 =k —28,) [Jun — T”n||2

—£,t(1 —k—28,7||B||*) ||Buny — SBu,||*.  (IV.3)
By condition (vi), we have
[[yn =2l < llun — 2] - (IV.4)
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In view of Lemma IIl.2, we get A is u-ism. Hence we
obtain Jp, (I — A,A) is nonexpansive due to Proposition IL6.
Now put Jp, = 11+ %Vn for all n € N. Since Jy, is firmly
nonexpansive, then we know that V, is nonexpansive and
F(Jy,) = F(V,). Noticing z € N2 (M +A;)~'0, we get by
Lemma III.1 and Lemma IIL.2 that z € M—'ON(N=, A;10) =
M~10NA'0. It follows that

IN

IN

IN

IN

e — 2]

([0 (T = A0A)x — Ty 21

2

1 1 1 1

1 1

) ||(I_ )LnA)xn _Z”Z —+ 2 HVn(I_ )LnA)xn _Z”Z
1

= Vall = A — (1 - 2nA) x|

10— Aa) 2P = G 1ol ~ A — (1~ D)
[ = 2l|* = 220 (A, X0 — 2) + A2 | Axa| >

—% VI = AA)n — (I = AnA) x|

[ = 21 — 220 (A% — Az, 3, — 2) + A2 || Ay |

*% [Vl = 2A)xy — (I — A)x||*

n — 21 = 22t A, — Az]|* + A2 || A ||

—% (Vi (I = 2pA)xy — (I — ApA) x|

b = 21 = 22k | A% |2+ 24, | A |

*% [Vl = 2pA)xy — (I — A)x||*

20 — 2] = A (20 — Ay) [| A, ||

—% VL = Ao )0 — (I — T )| (IV.5)

It follows from (IV.4), (IV.5) and (v) that

[[%n41 — 2]
< ||O‘n(fxn_Z)‘f‘ﬁn(un—Z)‘FYn(}’n—Z)||
< 0 || 2 =zl 4 Bu llun — 2l + Y [y — 2|
<[ foxn — 2l + (1= o) [Jx — 2]
< ol foxn— fall + o | fz— 2l + (1 — ) [[xn — 2|
< ovxn =zl + o4 [ fz =zl + (1 — o) ||, — 2|
= (1=au(1=v))[xn—zl + 0t |l fz 2|
—Z
< max{y, ) L2
By induction, we have
| fz—

Z
w2l < max{lvo =, LZE e,

1

which gives that the sequence {x,} is bounded, so are {u,}
and {y,}.

In terms of (IV.3), (IV.4), (IV.5) and Lemma II.3, we have

IA A

IN

IN

X1 =2

| & (f2n — 2) + B (ttn —2) + Ya(yn —2)
|| fxn _Z||2 + Bu l|un _ZHZ + %o [n _ZHZ

—BuYn ””n_)’nH2

0 120 — 201 + B0 — 21> — An(20 = An) || A, |
Il = 2 — (1= A P)

+ % (||t _ZHZ = Gu(1 =k —28,) [Jun — T’"n“2
—&ut(1—k—28,7||B|*) | Buy — SBuy||*)

— B [t — il

0 1260 = 21>+ [0 — 21> = Ban (20t — 2) || A ||
BV = Ay — (1= ) P

— V(1 =k —28,) [Jun — T”n”2

~&nt(1 —k—28,(|BI*) || Buy — SBuy||?
—Bu¥y llun =yl

2
|

which implies that

<

B (218 — ) | A > + (1 = k= 283) 1t — Tt |
%Bn [V = AnA)x — (I — AA)x ||
Lo — k=28, | BIP) |1 Buy — SBuy |

+[3n7’r% H”n _)’n”2

O | fn =2l -l =2l = 1 = 21 (IV.6)

Case 1. Assume there exists some integer m > 0 such that
{||xn — 20|} is decreasing for all n > m. In this case, we know
that 1im, .. ||x, — zo|| exists. From (IV.6) and conditions (i)-
(vi), we deduce

and

r}glolo llttn —ynll =0, (Iv.7)
lim ||Ax,|| =0, (Iv.8)
n—soo
lim ||u, — Tu,|| =0, aIv.9)
n—soo
lim ||Bu, — SBu,|| =0 (IV.10)
n—soo
i [[Va (7 — A — (I — A )ta| = 0. (IV.11)
n—soo

Observe that

IN

IN

<

(|2t — |

HJnn (I—A,A)xy, —x,,||

1 1
H (5]-" EVn)(I — lnA)xn —Xp

1 1

5 1T = 2aA)xn = x| 5 1V (7 = AnA) s — 200

1 1

B [(7 = AnA)xn — xn| + B [Vl = AnA)xn = (I = AnA )|
1

+3 |(I = ApA)x, — x|

1
o || 5 Vil = AnA )t = (= nA) i |

This together with (IV.8) and (IV.11) implies that

IV.12)

lim ||u, — x,|| = 0.
n—oo
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Let T, = J.(I —2uA), where J. = (I +cM)~'. Then we
deduce from (IV.8), (IV.12), Lemma III.5 and (iii) that
et —

e (T = 21A) x5 — x|

Ve (I = 20A)xn — (I = 21 A) x5 || + || (T — 21A )0 — x|

< 2|, (I = 21A)x, — (I = 2p1A)x, |
T =2pA)x, — x|
< 2|, (I = 20A)x, — Ty, (I = 22,A)x,|

+2 ||, (I = 220 A) %0 — X || 4+ 2 |0 — (I — 2A) x|
+[(1 = 21A)xn — x|
< A= Al [|Axal] 42 {|un — x| + 64 [|Axa|

— 0. av.13)

Since {x,} is bounded, there exists a subsequence {x,,} of
{xn} satisfying x,, — % € C. Without loss of generality, we
may also assume
lim (fzo — 20,%n; — 20) = limsup(fzo —z0,%, —z0). (IV.14)
I—poo n—oo
Since T; is demiclosed for each i € N, noticing (IV.9), (IV.12)
and Lemma IIL.4, we have ¥ € F(T) = (2, F(T;). Because
B is bounded and linear, we also see that {Bu,,} converges
weakly to Bx. Using this and (IV.10), we have & € B~'F(S).
Noting (IV.13) and the fact that 7, = J.(I —2uA) is nonex-
pansive, we get ¥ € (M +A)~'0 due to Lemma IIL1.
It follows from (IV.14) and Lemma 1.1 that
limsup({fzo — 20, X, — 20)
n—oo
= lim(fzo —20,%; —20)
i—oo
= (fz20—20,%—20)
= (fzo—Prfz0.%— Prfzo)

< 0. (IV.15)

Setting 1, = 0, fx, + Butty + Yuyn for all n € N, we have from
(IV.1) that x,,+1 = Pchy. It follows from (IV.4), (IV.5) and
Lemma 1.1 that

[lxn-+1 —ZOH2
(Pchy — hn, Pchy — z0) + (hn — 20, Pchy — 20)

< (04 f%n + Buttn + YuYn — 20, %n+1 — 20)
< |1Bu(un —20) + ¥ (¥n — 20) [ Xn+1 — 20|
+0, (X0 — 20, Xnt-1 — 20)
< Ballun —zo0l[ [1xXn+1 —20ll + ¥ [[yn — 20| 41 — 20|
+00,(fXn — f20,Xn11 — 20) + 0 (f20 — 20, Xn11 — 20)
< (=) [lxn —zoll [xn+1 — 20|

0V [|xn — 2ol [[xn+1 — 20|
+06,(f20 — 20, Xn 11 — 20)
< (1= (1=v))[Jxn — 20l* + @ (f20 — 20, Xu+1 — 20)-
This together with Lemma I1.2 and (IV.15) implies x, — zo
as n — oo
Case 2: Suppose that there exists {n;} of {n} such that

[1%; — zo|| < [|%n;+1 —20]| for all i € N. Then by Lemma IIL1,
there exists a nondecreasing sequence {m;} in N such that

e, = 20| < [lxin, 1 =],

[ = z0]| < [xm, 41 —z0]| - (IV.16)

Following a similar argument as in the proof of Case 1, we
have that

lim ||, — ym,|| =0, (IV.17)
n—soo / /
and
lim ||, — X, || = 0. (IV.18)
n—oo / /
We want to show that
limsup(fzo0 — 20, Xm; — 20) <0, (IV.19)

j

where zo = Prfzo. Without loss of generality, there exists a
subsequence {xm/.k} of {xu,;} such that Xm;, — 0 for some
o € C and

—20) = limsup(fzo — 20, Xm; — 20)-

llm <fZO - ZO)xm,'k
k—roo ’ j—reo

Thus we deduce that

hm Sup(fZ() - ZOaxm_/ - ZO>
J—re

= klgl;lo<fzo_z()axmjk _ZO>

= (fz0— Prfzo,® — Prfzo)

< 0. (IV.20)
Taking into consideration that
me,-+1  Xim; H
< Hamjfxmj "’ﬁmjumj + Y Ym; — Xm; ||
< O‘m/‘fomj*xijJrﬁmJ‘||”mj*xmj|’
+ij Hymj —)ijH
< O‘m.ffomj_xij+ﬁm./|‘“m_/_xmf'H
¥, Hy'"j _“ij + ¥, ||”mj —xij
= Oy || oty — i || + (1= o)) [|ttm; — 0, |
+ij Hymj — Um; || ;
we deduce from (IV.17), (IV.18) and (i) that
lim [, 41— xm; || = 0. Iv.21)

J

Letting hy; = O, fXm; + ij Unm; + Ym;ym; for all j €N, we
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get by Lemmal.1, IV.4), (IV.5) and (IV.16) that

-

(Pchm; — hm;y Pchm; — 20) + (hm; — 20, Pchm; — 20)
(O f%Xm; A Bonjthm; + Yim Ymj — 20, Xm ;1 — 20)

1B 1ty = 20) + ¥on; (ym; — 20) [
0 (fXm; — 205 Xm;+1 — 20)

B ||ttm; = 20| [[m; 41 = 20|
s |y = 20| [P 1 = 2o
+0; <fxmj _f107xn1_/+1 —20)
+0n; (20 = 20, Xm;+1 — Xm;)
+0n; (20 — 20, %m; — 20)
(1=t} [, = 2o} [}m41 =20
0 ;= 20| [m 1 = 20|

+0m; [|f20 = 20| me.i+1 — Xm; |

+ 0, (f20 — 20, %m; — 20)

(1=, (1 =) [[m; = 20| [|2m;+1 — 20|
+0m; |£20 = 20 [[m; 41 =5 |
+0n; (f20 = 20, Xm; — 20)

(1= Gy (1 =) 1 — 20

L F20— 2l 1 |
+0n; (f20 = 20, Xm; — 20),

ININA

xmj+1 —ZOH

IN

IN

IN

IN

which means that
1

P ||fZ0 _ZOH H‘xmj+] _xij

||xmj+1—zo|’2 < =

+ (f20 — 20, Xm; — 20)-

1—v

In view of (IV.20) and (IV.21), we have
tim [, 1~ ]| =0
By (IV.16), we obtain
0 < Jlxj — 20| < [|m;+1 =]

Consequently, we get x; — zo as j — o. The proof is
completed. [ |

Remark IV.2. Theorem IV.1 extends, improves and develops
Theorem 3.1 of Akashi and Takahashi [14], Theorem 3.1 of
Takahashi [13] and Theorem 3.1 of Takahashi [15] in the
following aspects.

(i) Theorem IV.1 strengthens the corresponding results
in [14] from weak convergence analysis to strong
convergence analysis.

(i) Compared with the corresponding results in [14], [13]

and [15], Theorem IV.1 solves the more general and

challenging problem for finding a common element of
the set of common fixed points of an infinite family
of demimetric mappings, the set of common solutions
of the variational inclusion problems and the set of
solutions of the null point problems in Banach spaces.

The proof of Theorem IV.1 is based on the novel results

(Lemma III.1 to Lemma II1.5). That is very different

from the proof of Akashi and Takahashi [14], Theorem

3.1 of Takahashi [13] and Theorem 3.1 of Takahashi

[15].

(iii)

051 4

0 I . . . - - - -

0 2 4 6 8 10 12 14 16 18 20
n

Fig. 1: The convergence of {x,} with initial values x; = 3.

(iv) The algorithm (IV.1) is more flexible than the ones
given in [14], [13], [15].

Therefore, the new algorithm can be expected to be widely

applicable.

Example IV.3. Let C = H = R with the inner product defined
by {(x,y) = xy for all x,y € R and the standard norm |-|.
Letting M,B, f : H — H be defined as Mx = 3x, Bx = —%x,
fx= %x for all x € H, we then see M : H — 2 be a maximal
monotone operator with dom(M) C H and B is a bounded
linear operator and f be contractive. Let S: H —+ H be
defined as Sx = —3x for all x € H, T; : H — H be defined
as Tix = —2x, and A; : H — H be defined as A;x = 6x for all
i€Nand x € H. It is easy to check that I' = {0}. Also, it
is easy to check S is %—demimetric and demiclosed, A; are
%-ism, and 7; are %-demimetric and demiclosed for all i € N.
Let us choose o, = 6%!, B = ”3%‘ Y= 4’&;3, Ay =10, 7=
%, n,,:cn:%,nnzgn:%, 6,':6,-:%foralln7i€N.Then
%, Bus Yis Any T My &, 6; and o satisfy all the conditions of
Theorem IV.1. Therefore iterative scheme (IV.1) becomes

12n+17
180n

The numerical results are reported in Table I(where e-k
denotes 107%) and Figure IV demonstrate Theorem IV.1.

Xp, VYn€eN.

Xnt+1 =

TABLE I: The values of the sequence {x,}

n Xn
1-5 3.0000 0.4833 0.0550 0.0054 0.0005

6-10 4.17e-5 3.44e-6 2.76e-7 2.16e-8 1.67e-9
11-15 1.27e-10 9.56e-12 7.13e-13 5.27e-14 3.87e-15
16-20 2.82e-16 2.05e-17 1.48e-18 1.06e-19 7.62e-21

V. AN EXTENSION OF OUR MAIN RESULTS

Y using Theorem IV.1, we have the following strong
convergence results for computing the common solution
of fixed point problems of nonlinear mappings, variational in-
clusion problems and null point problems in Banach spaces.

Theorem V.1. Let E be a smooth, strictly convex, and reflex-
ive Banach space and let J be the duality mapping on E. Let
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H be a Hilbert space and let C be a nonempty closed convex
subset of H. Let {A;} , : C — H be an infinite family of L;-
ism mappings with i =inf{y; :i=1,2,...}. Let M : H — 21
be a maximal monotone operator with dom(M) C C. Let
Jy be the resolvent of M for A > 0. Let f:C — H be a
contraction with coefficient v € [0,1). Let B: H— E be a
bounded linear operator such that B # 0 and let B* be the
adjoint operator of B. Let {T;}7 | :C — H be an infinite
family of 2-generalized hybrid and demiclosed mappings,
S:E — E be k-demimetric and demiclosed mapping. Assume
L= (2 FR) NN (M+A)~'0) VB~ F(S) is nonempry.
For xo € C, define a sequence {x,} as follows:

tn = Jn, (I = A L7y GiAi)xn,
Yn = (1 - Cn)btn + Cn(chzl SiTiun - TB*J(Ifs)BMn), (Vl)
Xny1 = Pe(OnfXn + Battn + Yayn), Vn €N,

where T € (0,4), {0}, {Bs}. {W},{C} C (0.1) and
{0}, {0n}, {nn},{An} C (0,4o0) satisfy the following con-
ditions:

(@) 1My o0 0 = 0 and Y, 0 = o0,

(ii) 0 < liminf, e B, < limsup,_,.. B, < | and o, + B, +

Y= 1,

(i) 0<c <My,

(v) Y2, 6=1and Y2, 0, =1,

(v) 0<liminf, e A, <limsup,_ .., A, <2u,
(vi) 0 < liminf, &, <limsup,_,., & < min{%7

1—k
27|B|* g
Then the sequence {x,} generated by (V.1) strongly con-
verges to a point zo € I', where zo = Prfzo.

Proof: Note that the 2-generalized hybrid mapping T
with F(T) # 0 is 0-demimetric. Therefore, Theorem IV.1
implies the conclusion. ]

Theorem V.2. Let E be a smooth, strictly convex, and reflex-
ive Banach space and let J be the duality mapping on E. Let
H be a Hilbert space and let C be a nonempty closed convex
subset of H. Let {A;}7 : C — H be an infinite family of ;-
ism mappings with @ = inf{y; :i=1,2,...}. Let M : H — 211
be a maximal monotone operator with dom(M) C C. Let Jj,
be the resolvent of M for A > 0. Let f:C — H be a contrac-
tion with coefficient v € [0,1). Let B: H — E be a bounded
linear operator such that B # 0 and let B* be the adjoint
operator of B. Let {T;}> , : C — H be an infinite family of k;-
strict pseudo-contractions with k =sup{k; :i=1,2,..} < 1.
Assume T := (2 F(T)N(NZ (M +A;)"'0)N\B'F(S) is
nonempty. For xy € C, define a sequence {x,} as follows:

Un = Jnn (I—MZT’:l GiAi)xm
Vo = (1 — Cn)un + Cn(Z}il 6;Tiu, — ‘L'B*J(I — S)Bun), (V.2)
Xn+1 :PC(arlfxn+ﬁnun+Ynyn), VneN,

where T € (0,+00), {o.},{Bn}, {1}, {G} C (0,1) and
{6}, {0n},{Mn} {An} C (0,+00) satisfy the following con-
ditions:

(1) limy e 0, =0 and Y5 04, = oo,

(i) 0 < liminf, e B, < limsup,_,., B, < 1 and o4, + B, +

Y= 1)

(i) 0<c <,

(v) Y2, 0=1and Y72 0, =1,

(v) 0<liminf, ;e A, <limsup,_ ., A, <2u, A
(vi) 0 < liminf, e ¢, < limsup,_,., §, < min{ 15, 211“*3’]2 I3

Then the sequence {x,} generated by (V.2) strongly con-
verges to a point 7o € I', where zo = Pr fzo.

Proof: Noticing that k-strict pseudocontraction T with
F(T) # 0 is k-demimetric and demiclosed; see [6], we have
the desired result due to Theorem IV.1. [ |

Theorem V.3. Let E be a smooth, strictly convex, and
reflexive Banach space and let J be the duality mapping
on E. Let H be a Hilbert space and let C be a nonempty
closed convex subset of H. Let {A;}7 | : C — H be an infinite
family of Wi-ism mappings with @ = inf{y; : i =1,2,...}.
Let M : H — 2% be a maximal monotone operator with
dom(M) C C. Let Jy be the resolvent of M for A >0 and
let f:C — H be a contraction with coefficient v € [0,1). Let
B:H — E be a bounded linear operator such that B # 0 and
let B* be the adjoint operator of B. Let {T;}7 , : C — H be
an infinite family of nonexpansive mappings, S: E — E be a
k-demimetric and demiclosed mapping. For xy € C, define a
sequence {x,} as follows:

Uy = Jnn (I — Z(:o:] GiAi)xn;

Yo =20, (Zlm:l 6;Tuy — tB*J(I — S)Buy)
+(1 - Cn)un;

Xn+1 = PC(anfxn + Buitn + 'VnYn)a Vn €N,

where © € (0,+e0), {0}, {Bn},{%},{C:} C (0,1) and
{6}, {on}, {Mn}, { M} C (0,+00) satisfy the following con-
ditions:

(1) im0, =0 and Y7 0ty = oo,

(ii) 0 < liminf, e B, < limsup,_.. B, < | and o, + B, +
Yo = 1,
0<c<ny,
Y>,6=1land Y2 0,=1,
0 < liminfy, e Ay < limsup,,_,, Ay < 20,
0 < liminf, e §, < limsup,_,., &, < min{%,

(V.3)

(iii)

(iv)

v)

i g
Assume T:=F (Y5 §T)N(M+X2, 6:A) 'ONB~IF(S) #
0. Then the sequence {x,} generated by (V.3) strongly
converges to a point zo € I', where zo = Prfzp.

Theorem V4. Let H be a Hilbert space and let C be a
nonempty closed convex subset of H. Let {A;}7 | : C — H be
an infinite family of W;-ism mappings with u = inf{y; : i =
1,2,...}. Let M : H — 2" be a maximal monotone operator
with dom(M) C C. Let J, be the resolvent of M for A >
0 and let f:C — H be a contraction with coefficient v €
[0,1). Let B: H — E be a bounded linear operator such that
B #0 and let B* be the adjoint operator of B. Let {T;}3 :
C — H be an infinite family of k;-demimetric and demiclosed
mappings with k =sup{k;:i=1,2,..} <1, S:H—H be a
k-demimetric and demiclosed mapping. For xy € C, define a
sequence {x,} as follows:

Un = Jn,l (17 )Ln Z;x':] GiAi)xn;

Yn = gn(Zf:l 0;Tiu, — TB*(I_S)Bun)
+(1 - Cn)un;

Xn+1 = PC(anfxn +ﬁnun + ’VnYn)a vneN,

where T € (0,4), {0,},{Bu},{%}.{&:} C (0,1) and
{6}, {0n}, {Mn}, {M} C (0,+00) satisfy the following con-
ditions:
(1) limy e 0, =0 and Y7 0ty = oo,
(ii) 0 < liminf, e B, < limsup,_.., B, < | and o, + B, +
=1

(V.4)
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(i) 0 <c <1y,

(v) Y28 =1and Y3, 0;=1,

(v) 0<liminf,eA, <limsup, A, <2, )
(vi) 0 < liminf, e, <limsup,_,,, §, < min{15%, ZTIH—BkHQ I3

Assume T:=F (Y5 ST N(M+X2, 6:A;) 'ONBIF(S) #
0. Then the sequence {x,} generated by (V.4) strongly
converges to a point zo € I', where zo = Prfzp.

Theorem V.5. Let H be a Hilbert space and let C be a
nonempty closed convex subset of H. Let {A;}3 | :C — H be
an infinite family of W;-ism mappings with = inf{y; : i =
1,2,...}. Let M : H — 2! be a maximal monotone operator
with dom(M) C C. Let J) be the resolvent of M for A >0
and let f:C — H be a contraction with coefficient v € [0,1).
Let B: H — E be a bounded linear operator such that B # 0
and let B* be the adjoint operator of B. Let {T;}7 , :C — H
be an infinite family of nonexpansive mappings, S: H — H be
a k-demimetric and demiclosed mapping. For xo € C, define
a sequence {x,} as follows:

U, = Jnn ([— 7Ln Zloozl G,'Ai)xn,

yn = Gu(Xi2y 6:Tiup — TB* (I — S)Buy)
+(1 = &)un,

Xnt+1 = PC(anfxn +ﬁnun + ')/nyn)y vneN,

where T € (0,4), {0},{Bn}, {1}, {&:} C (0,1) and
{6u}:{0n}, {Mn}, {An} C (0,+00) satisfy the following con-
ditions:
(i) limyseo 0y = 0 and Y=, 0 = oo,
(i) 0 < liminf,_ye B, < limsup, ... B, <1 and o, + B, +
=1

(i) 0 <c <1y,

(v) Y2, 6=1and Y2 0, =1,

(v) 0<liminf,_eA, <limsup, A, <2,
(vi) 0 < liminf, e &, < limsup, ., §, < min{J,

(V.5)

1—
22| | -
Assume T:=F (Y5 §T)N(M+X2, 6:A;) 'ONB1F(S) #
0. Then the sequence {x,} generated by (V.5) strongly
converges to a point zo € I', where zo = Prfzp.
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