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Abstract—The codes generated using tensor product and
called tensor codes have properties and composition similar
to Linear Error Block codes (LEB codes). In this paper we
study in depth the construction of new LEB codes using tensor
product (TP). We also show that the TP code formed by two
LEB codes is also an LEB code. We prove that the TP of two
Hamming codes is not a Hamming code with minimum distance
3, besides, it’s a non- perfect LEB code. We show that the TP
code formed by two π-cyclic codes (resp. simplex LEB codes)
is a π-cyclic code (resp. simplex LEB code).

Index Terms—Linear Error-Block codes, Tensor product,
Hamming codes.

I. INTRODUCTION

L INEAR error-block (LEB) codes were introduced by
Feng, Xu and Hickernell [1] in 2006 as a natural gen-

eralization of linear error correction codes. They summarized
that these codes have mixed-level orthogonal arrays and
can be used in experimental design and high-dimensional
numerical integration. Like their classical counterpart, these
codes may also be used in cryptography. Dariti and Souidi
[2], in their paper, proved that using LEB codes in public
key cryptography can reduce the size of the used keys while
keeping the same level of security as in the classical case.
The same authors in [3] showed the practicality of using
LEB codes in steganography as it can help to increase the
embedding capacity.

As a generalization of the classical case, we extend the
notion of tensor product into the LEB codes case. Tensor
codes were first introduced by J.K Wolf in [4] and were later
generalized in [5], they are the result of the tensor product of
the parity check of two constituent codes. These particular
codes have found application in digital storage systems and
digital recording systems [6], [7].

TP codes have many particular properties derived from the
constituent codes, but the main motivation behind our work is
that their structure reminds us of LEB codes. This pushed us
to formally study the relation between LEB codes and tensor
codes. We verify if tensor product codes are themselves LEB.
We try to construct new LEB codes based on the tensor
product of two constituent LEB codes and see if some of
the properties are kept in place.

This paper is organized as follows: In Section 2, we
present the preliminaries and introduce all the definitions that
we will need for the rest. In Section 3, we verify if TP codes
are also LEB codes. In Section 4, we give a construction
of new LEB codes based on the tensor product of different
constituent codes. In Section 5, we study the properties of
the LEB constituted by TP of Hamming LEB codes. The
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Tensor product of simplex and cyclic LEB codes is studied in
Section 6. A perspective of this work is discussed in Section
7.

II. PRELIMINARIES

A partition π of a positive integer n, is given by n = n1 +
n2+ . . .+ns, where n1 ≥ n2 ≥ . . .≥ ns ≥ 1, and s is an integer
≥ 1, and is denoted by π = [n1][n2] . . . [ns]. Furthermore, if
n=∑

s
i=1 ni = l1m1+ l2m2+ . . .+ lrmr where m1 >m2 > .. . >

mr ≥ 1, then π will be rewritten as π = [m1]
l1 [m2]

l2 . . . [mr]
lr .

Let π = [n1] . . . [ns] (s ≥ 1) be a partition of an integer n,
set Vi = Fni

q (1≤ i≤ s), and

V =V1⊕V2⊕ . . .⊕Vs = Fn
q. (1)

Then each vector in V can be written uniquely as v =
(v1,v2, . . . ,vs), where vi is in Vi ( f or 1 ≤ i ≤ s). For any
u = (u1,u2, . . . ,us) and v = (v1,v2, . . . ,vs) in V , the π-weight
wπ(u) and respectively the π-distance dπ(u,v) of u and v are
defined by:

wπ(u) = #{i/1≤ i≤ s, 0 6= ui ∈Vi} (2)

and

dπ(u,v) = wπ(u− v) = #{i/1≤ i≤ s, ui 6= vi}. (3)

An Fq-linear subspace C of V is called an [n,k,d]q linear
error-block code over Fq of type π, where k = dimFq and
d = dπ is the minimum π-distance of C, which is defined as:

d = min{dπ(c,c′)/c,c′ ∈C,c 6= c′} (4)

d = min{wπ(c)/c ∈C, c 6= 0}. (5)

A classical linear error-correcting code is a linear error-
block code of type π = [1]n.

An LEB code is completely defined by a generator matrix
or a parity check matrix.

As in the classical case, the minimum π-distance of a
linear error-block code is straightforwardly determined using
a parity-check matrix as follows:

Proposition 2.1 ([1]): Let H = [H1,H2, . . . ,Hs] be a
parity-check matrix for an [n,k,dπ] code C over Fq of type
π = [n1][n2] . . . [ns]. Then dπ(C) = d if and only if
• The union of columns of any d − 1 blocks of H are
Fq-linearly independent;

• There exist dπ blocks of H of which the columns are
linearly dependent.

The Hamming and singleton Bounds for LEB codes are given
by Feng et al. [1], as follows:

Theorem 2.2: [1] Let C be an [n,k,dπ]q LEB code over
Fq of type π = [n1][n2] . . . [ns] where n1 ≥ n2 ≥ . . .≥ ns ≥ 1.
Then (the Hamming bound):

qn−k ≥

{
bπ(l) if dπ = 2l +1,
b′π(l) if dπ = 2l ≥ 2.

(6)
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where
bπ(l) = 1+
∑

l
α=1 ∑1≤i1≤i2≤...≤iα≤s(q

ni1 −1)(qni2 −1) . . .(qniα −1)
(7)

and
b′π(l) = qn1(

1+∑
l−1
α=1 ∑2≤i1≤i2≤...≤iα≤s(q

ni1 −1)(qni2 −1) . . .(qniα −1)
)

.

(8)
and (the Singleton bound) :

n− k ≥ n1 +n2 + . . .+nd−1. (9)

Definition 2.3: An [n,k,dπ]q LEB code of type π is said
to be perfect if it attains the Hamming bound and is said to
be MDS if it attains the Singleton bound.
Thus, perfect LEB codes verify the following equations :

qn−k =

{
bπ(l) if dπ = 2l +1,
b′π(l) if dπ = 2l ≥ 2.

(10)

and MDS LEB codes verify the equation

n− k = n1 +n2 + . . .+nd−1. (11)

The binary Hamming single-error-correcting codes are an
important family of codes which were invented by Richard
Hamming in 1950 [8] to be codes of length n= 2r−1 (r≥ 2)
and have parity check matrix H whose columns consist of
all nonzero binary vectors of length r, each used once, these
are [n = 2r−1,k = 2r−1− r,d = 3] codes.

Hamming LEB codes of type π= [m]
qr−1
qm−1 with r = λm≥ 2

were introduced by Belabssir. et al. in [9]. The authors

defined π−ham(r,q) codes to be codes of type π = [m]
qr−1
qm−1

and whose parity check matrix H is an r× n matrix for
which the union of columns of any two blocks is linearly
independent. they also chowed that the π− ham(r,q) codes
are perfect and defined its parity check matrix as follows:

H2 =

(
Im E1 . . . . . . Eqm−1 0m

0m−1 Im . . . . . . Im Im

)
(12)

and for λ≥ 3

Hλ =

(
Im A1 . . . . . . Aqm−1 A0

0m(λ−1) Hλ−1 . . . . . . Hλ−1 Hλ−1

)
(13)

where
• Im is the identity matrix of size m.
• E1, . . . ,Eqm−1 are the extensions of non-zero vectors in
Fm

q .
• For all 1 ≤ i ≤ qm− 1, Ai = (Ei, . . . ,Ei︸ ︷︷ ︸

sλ−1 time

) where sλ−1 =

q(λ−1)m−1
qm−1 .

• A0 = (0m, . . . ,0m︸ ︷︷ ︸
sλ−1 time

) where 0m is the m×m null matrix.

Denote that a block extension of v ∈ Fl
q is an l× l matrix M

defined as follows
• The columns of M are linearly independent.
• The sum of all columns of M is equal to vT (transpose

of v).
In [10], the authors proved that the dual code (π-

Ham(r,q))⊥ is a simplex code and the common π-weight of
its non-zero codewords is wλ = 2r−m = 2(λ−1)m where λ = r

m
is an integer ≥ 1.

A. Tensor Product codes

In this part, we introduce tensor product codes and some
of their properties. To start with, we define what is the tensor
product between two matrices.

Definition 2.4: Let A = (ai j) be an m-by-n matrix and let
B = (bi j) be a p-by-q matrix. The tensor product of A and
B is defined as

A⊗B =


a11B a12B . . . a1nB
a21B a22B . . . a2nB

...
...

. . .
...

am1B am2B . . . amnB

 (14)

Definition 2.5: The Tensor Product (TP) code is formed
by combining two constituent codes in a particular way. The
name tensor product comes from the fact that the parity check
matrix of the new code is formed by taking the tensor product
of the parity-check matrices or generator matrices of the two
simpler codes [4].

III. TENSOR PRODUCT OF TWO LINEAR BLOCK CODES

In this section, we prove that the tensor product of any
two codes is not an LEB codes.

Theorem 3.1: The tensor product code of two Hamming
codes is not a Hamming code.

Proof: Let C1 and C2 be respectively an [n1 = 2m −
1,2m− 1−m,3] and an [n2 = 2l − 1,2l − 1− l,3] ( m and l
are integers bigger than 2) Hamming codes and C the TP
codes resulting from the tensor product of C1 and C2.

To be also a Hamming code, C needs to be written as
[N = 2M−1,2M−1−M,3] with M a positive integer bigger
than 2.

C is the TP code generated using C1 and C2. Then by
definition

N = n1×n2
2M−1 = (2m−1)× (2l−1)
2M−1 = 2m+l−2m−2l +1

2M = 2m+l−2m−2l +2
2M−1 = 2m+l−1−2m−1−2l−1 +1

the last equality is only possible if the integers m, l and M
are equal to 1 which is absurd as we supposed that they are
bigger or equal to 2.

There is an interesting property that is transmitted to
the TP code formed by two Hamming codes, which is the
columns of the check matrix of the generated codes are two
by two linearly independent.

Remark 3.2: The minimal distance of the TP code formed
by two Hamming codes is equal to 3.

Theorem 3.3: The TP code of minimum distance d = 3,4
formed from two linear block codes is not a linear error-block
code.

Proof: We give the proof for the case d = 3 and the
case d = 4 is done in the same way with some minor
modifications. Let C1 be an [n1,k1,3] code of parity-check
matrix H1 and C2 be an [n2,k2,3] code of parity check matrix
H2. The parity-check matrix of the TP code C formed from
these two codes is of size r×n where r =(n1−k1)×(n2−k2)
and n = n1× n2. Set r1 = n1− k1 and r2 = n2− k2. If C is
an LEB code with minimum π−distance d = 3 = 2× 1+ 1
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then π = [n1]
n2 and it satisfies the Hamming bounds defined

as follows:

qr ≥ 1+
s

∑
i=1

(qni −1). (15)

We have qr = qr1r2 and 1+∑
s
i=1(q

ni −1) = 1+n2(qn1 −1).
Since n = n1n2, then 1+n2(qn1−1)>> qr1r2 . Therefore 1+
∑

s
i=1(q

ni−1)> qr and this is a contradiction with (15). Thus
C is not an LEB code.

Example 3.4: The TP code formed from two binary Ham-
ming codes of minimum distance d = 3 is not a linear error-
block code. In fact, let C1 be a Hamming [n1,k1] code and C2
be a Hamming [n2,k2] code. Set r1 = n1−k1 and r2 = n2−k2.
If C is an LEB code then π = [n1]

n2 and it reaches the
Hamming bounds defined as follows:

2r = 1+
s

∑
i=1

(2ni −1). (16)

We have 2r− (1+∑
s
i=1(2

ni −1)) = 2r1r2 −1−n2(2n1 −1).
Since C2 is a Hamming code then 2r2−1 = n2. Therefore,

2r− (1+∑
s
i=1(2

ni −1))
= 2r1r2 −1− (2r2 −1)(2n1 −1)
= 2r2(−2r1(r2−1)(2n1−r2−r1(r2−r1)(2r2 −1)+1)+1)−2.

Obviously
−2r1(r2−1)[2n1−r2−r1(r2−r1)(2r2 −1)+1]+1 < 0, thus 2r−

(1+∑
s
i=1(2

ni−1))< 0 and this is a contradiction with (16).
Finally, C is not an LEB code.

Corollary 3.5: In general the TP code formed using two
classical codes is not an LEB code.

IV. CONSTRUCTION OF LEB CODES USING TENSOR
PRODUCT BY PARITY CHECK-MATRICES

We have shown that the tensor product of two classical
error correcting codes does not generate an LEB codes
despite the similarity of the structures.

In this section, we are motivated to explore the other ways
we can use the tensor product to produce LEB. To do, we
explore two constructions which we will explain in more
details.

A. The tensor product of two LEB codes

Our first construction is inspired from the construction of
tensor codes in the classical case. It is the tensor product
of two LEB codes. From different examples and some
theoretical proof, we gathered that this product can produce
another LEB code.

In general, we denote two LEB codes C1 defined as
[n1,k1,d1] and C2 defined with [n2,k2,d2] with partitions
π1 = [m1]

s1 and π2 = [m2]
s2 respectively.

We use the Hamming LEB code to illustrate the different
cases, but we will always give the corresponding analogy to
the general case.

As a reminder, here is the Hamming LEB code (binary of
length n1 = 10, dimension k = 6 and type π = [2]5) control
matrix:

H =


1 0 0 0 0 1 1 0 1 1
0 1 0 0 1 0 1 1 0 1
0 0 0 1 0 1 0 1 0 1
0 0 1 0 1 0 1 0 1 0

 (17)

When we do the tensor product of H ⊗H the resulting
matrix is a 16 by 100 matrix.

H⊗H =


H 0 0 0 0 H H 0 H H
0 H 0 0 H 0 H H 0 H
0 0 0 H 0 H 0 H 0 H
0 0 H 0 H 0 H 0 H 0

 (18)

After doing the tensor product comes the choice of the
partition which is one of the most important factors in a
LEB code. There are two natural choices that seem worthy
of trial.

(we have n1 = n2 = 10, k1 = k2 = 6,s1 = s2 = 5)
a) π = [2]50 ([m1]

s1.m2.s2 = [m1]
s1.n2 ): This choice does

actually generate an LEB code, but it defies the purpose of
the tensor construction. Also, we do not make use of the
structure of the constituent codes.

b) π = [10]10 ([m1.s1]
m2.s2 = [n1]

n2 ): The last choice is
in our opinion the most suitable. We get 10 blocks of length
10 each, but also every underlying block keeps the structure
of one of the constructing codes (that we hope to use to
simplify the decoding procedure of the lengthy code). By
definition it is still an LEB code.

In the following corollary, we prove the LEB structure of
this tensor product.

Corollary 4.1: The TP code of two LEB codes is also an
LEB code.

Proof: To prove that the TP code C of two [n,k,d] LEB
codes C1 and C2 is an LEB code, we prove that C is a sub-
space of Fn

2. Take c1 and c2 two codewords of C and α

and λ two elements of F2. Since ct
i.H = 0 for i = 1,2, then

(αc1 +βc2)
t .H = 0 and αc1 +βc2 is a codeword of C. Since

(C,+) is an abelian group then C is a subspace of Fn
2.

B. Classical code Tensor LEB

Unlike the previous construction this is more of an hybrid
construction between LEB codes and classical codes. We will
try both sides to see the resulting code if it is in fact an LEB
code and what properties they hold.

For the construction we use the [7,4,3] Hamming code and
the [10,6] LEB Hamming code (a code of H parity check
matrix shown in (17)).
The parity check matrix of the Hamming code [7,4,3]

A =

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

 (19)

The tensor product of H and A, will also give a 12 by 70
check matrix of an LEB code

H⊗A =


A 0 0 0 0 A A 0 A A
0 A 0 0 A 0 A A 0 A
0 0 0 A 0 A 0 A 0 A
0 0 A 0 A 0 A 0 A 0

 (20)

We come back again to the choice of the partition π and
the most suitable choice is π = [7]10.
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V. TENSOR PRODUCT CODE OF LEB HAMMING CODES

In this section, we study the structure of the code generated
from the tensor product of two LEB hamming codes.

Theorem 5.1: Let C1 be an [n1,k1,3] π−Ham(r1,q) code
of type π = [m1]

s1 and C2 be an [n2,k2,3] π−Ham(r2,q)
code of type π = [m2]

s2 . The TP code C of C1 and C2 is
an LEB code of type π = [n1]

n2 . Besides, C is a non-perfect
code of minimum π-distance 3.

Proof: Let C1 and C2 two LEB Hamming codes satis-
fying conditions of Theorem 5.1. Viewing the TP code C of
C1 and C2 as an LEB code we get two constructions:

1) Code of type π = [n1]
n2 .

2) Code of type π = [m1]
n2s1 .

Here we are interested by the first construction (i.e. code
of type π = [n1]

n2 ). If C is an LEB code, then C verify the
Hamming bound that is qr ≥ 1+∑

n2s1
i=1 (q

m1 −1).
We have

1+∑
n2s1
i=1 (q

ni −1) = 1+n2s1(qm1 −1)
= 1+ s1m2

qr2−1
qm2−1 (q

m1 −1)

= (qm2−1)+m2(qr2−1)(qr1−1)
qm2−1

and
qr = qr1r2

= [1+ qr2−1
qm2−1 (q

m2 −1)]r1

= [ (q
m2−1)+(qr2−1)(qm2−1)

qm2−1 ]r1

Therefore qr > 1+∑
n2
i=1(q

ni − 1). Thus C is a non perfect
LEB code of dπ = 3 and the columns of it’s parity check-
matrix are pairwise independent.

Theorem 5.2: The TP code formed of two perfect LEB
codes is in general not a perfect LEB code.

Proof: The same idea of proof of the Theorem 5.1.

VI. CONSTRUCTION OF TP CODES OF LEB CODES USING
GENERATORS MATRICES

We show in this section that the tensor product of two
cyclic LEB codes is a cyclic LEB code and the tensor product
of two simplex LEB codes is also a simplex LEB code.

Cyclic LEB codes were introduced by Dariti et al. in [2],
and generalized by Belabssir et al. in [10]. Hereafter we
recall the definition of π-cyclic codes proposed in [10] and
we give a short over view about their properties.

Definition 6.1: [10] An [n,k,d] code C of type π = [m]s

is π-cyclic if for each a ∈C we have σπ(a) ∈C where

σπ : Fm
q ⊕ ...⊕Fm

q︸ ︷︷ ︸
s times

−→ Fm
q ⊕ ...⊕Fm

q︸ ︷︷ ︸
s times

(u1,u2, ...,us) 7→ (us,u1, ...,us−1)

σπ is a cyclic shift of one block to the right.
Proposition 6.2: Let Fq be the finite field of q elements

and Rπ =
Fn

q[X ]

<Xn−1> , then (Rπ,+,?) where ”+” is the classical
addition and ”? ” is the multiplication defined by
• For i ∈ N; X i ?X j = X i+m−1.X j = X j ?X i where ”.” is

the classical multiplication.
• For i, j,k ∈ N X i ? (X j ?Xk) = (X i ?X j)?Xk.

is a commutative ring, with 1? =Xn−m+1 is the unity element
for the law ?.
we have the following results

1) A linear error-block code C is π-cyclic if and only if
C is an ideal of (Rπ,+,?).

2) There exist a unique unitary polynomial g in C, of
minimal degrees and called the generator polynomial
of the code C, such that g(x) divides every word c(x)
in C and g(x) divides Xn−1 in Fq[X ].

3) If g(X) = g0(X)+X ? g1(X)+ . . .+X?r ? gr(X) is the
generator polynomial of C where g0,g1, . . . ,gr are non-
zero polynomials in Fq[X ]

<Xm−1> . Then dimC = k = l− r
and C is generated by the matrix

G =


g(X)

X ?g(X)
. . .

X?(l−1) ?g(X)

=


g0(x) . . . gr(x) 0 . . . 0 0

0 g0(x) . . . gr(x) 0 . . . 0
...
0 0 . . . 0 g0(x) . . . gr(x)


A. Tensor Product of two Cyclic linear error-block codes

Theorem 6.3: Let C1 and C2 be respectively [n1,k1,d1] and
[n2,k2,d2] cyclic LEB codes of types π1 = [m1]

s1 and π2 =
[m2]

s2 where s1∧ s2 = 1, then the code C =C1⊗C2 of type
π = [n1m2]

s2 is an [n1n2,k1k2,d1] cyclic LEB code.
Proof: Assume C1 and C2 are two π-cyclic codes of

types π1 = [m1]
s1 and π2 = [m2]

s2 respectively. The code C =
C1⊗C2 is defined by its generator matrix

G = G1⊗G2 = γ0 . . . γr 0 . . . . . . 0
0 γ0 . . . γr . . . 0
. . . . . . . . . . . . . . . . . .
0 0 . . . γ0 . . . γr

 .

where γi = gi(x)?G2
A codeword c(X ,Y ) of C =C1⊗C2 can be obtained from

the matrix representation (αi j)0≤i<s1−10≤ j<s2−1 as follows

c(X ,Y ) =
s1−1

∑
i=0

s2−1

∑
i=0

αi j ?X?i ?Y ? jmod(Xm1m2 −1).

If we suppose Xn1 = 1 and Y n2 = 1, then X ? c(X ,Y )
and Y ? c(X ,Y ) represent cyclic shifts of the rows and the
columns, and also belong to C = C1⊗C2. Therefore C is
an ideal of ( Fq[X ]

<Xm1m2−1> ,?). To represent C(X ,Y ) as uni-
variate polynomial C̃(X), we suppose s1 and s2 are relatively
prime. Then by the Chinese remainder for each pair i, j
where 0 ≤ i < s1− 1 and 0 ≤ j < s2− 1, there is a unique
integer 0 ≤ I(i1, i2) < s1s2 such that I(i, j) ≡ i mod[s1] and
I(i, j)≡ j mod[s2] and

C̃(Z) =
s1−1

∑
i=0

s2−1

∑
i=0

αi j ?Z?I(i, j)mod(Zm1m2−1).

where Z = X ?Y .
Since C(X ,Y ) ∈C, Y ?C(X ,Y ) ∈C, then Z ? C̃(Z) = X ?

Y ?C(X ,Y ) ∈C. Therefore C is an LEB π-cyclic code.

B. Tensor Product of two Simplex linear error-block codes

Theorem 6.4: The TP code C of two simplex codes C1
and C2 of types π1 = [m1]

s1 and π = [m2]
s2 is a simplex code
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of type π = [n1m2]
s2 and the common π-weight of the non

zero codewords of C is

wλ2 = 2r2−m2 = 2(λ2−1)m2

where λ2 =
r2
m2

is an integer and for i = 1,2 si =
qri−1

qmi−1−1
and

ri = ni− ki.
Proof: Suppose C1 and C2 are simplex, then the LEB

code of type π = [n1m2]
s2 is an [n1n2,k1k2,d1] defined by its

generator matrix H2 = G1,λ=2⊗G2,λ=2 =(
Im2 ⊗G1 E1⊗G1 . . . . . . Eqm2−1⊗G1 0m2 ⊗G1
0m2 ⊗G1 Im2 ⊗G1 . . . . . . Im2 ⊗G1 Im2 ⊗G1

)
and for λ2 ≥ 3, define inductively Hλ2 by:
Hλ2 = G1,λ⊗G2,λ =

(
Im2 ⊗G1 A1⊗G1 . . . Aqm2−1⊗G1 A0⊗G1

0m2(λ2−1)⊗G1 Hλ2−1⊗G1 . . . Hλ2−1⊗G1 Hλ2−1⊗G1

)
where G1,λ with (λ≥ 3) and G2,λ are respectively genera-

tor matrices of C1 and C2 with the form defined in Equations
(12) and (13).
• Set sλ2 and wλ2 where r2 = n2− k2 = m2λ respectively

the number of blocks of Hλ2 and the weight of a
codeword c in Sλ2 .

• The non-zero codewords generated by H2, have the
weight

w2 = s2,λ2=2−1=
q2m2 −1
qm2 −1

−1= qm2−1+1= q(2−1)m2 .

In fact, each non-zero codeword generated by H2 is
defined by one of the following forms of matrices :

c = (e⊗G1 | a1⊗G1 | a2⊗G1 | . . . | aqm2 ⊗G1 | 0⊗G1)

or

c = (0⊗G1 | e1⊗G1 | e2⊗G1 | . . . | eqm2 ⊗G1)

where for all i = 1, . . . ,qm2 , ai is a codeword generated
by Hλ2−1, ei is in Fm2

q and e is an element of the canonic
basis of Fm2

q .
• We suppose the non-zero codewords generated by Hλ2−1

have the weight wλ2−1 = qr2−2m2 = qr2(λ2−2).
• Then, the non-zero codewords of the sub-code generated

by the last (r2−m2) rows of Hλ2 are defined by the
matrix c = (0⊗G1 | a1⊗G1 | a2⊗G1 | . . . | aqm ⊗G1)
where for all i = 1, . . . ,qm, ai is a codeword generated
by Hλ2−1. Therefore,

wλ2 = qm2 .wλ2−1 = qm2(qr2−2m2) = qr2−m2 .

• The remaining non-zero codewords generated by Hλ2−1
is defined by the matrix (e ⊗ G1 | a1 ⊗ G1 | a2 ⊗
G1 | . . . | aqm−1⊗G1,0⊗G1 . . .0⊗G1︸ ︷︷ ︸

sλ2−1time

) where for all i=

1, . . . ,qm2 , ai 6= 0 and e is an element of the canonic
basis of Fm2

q . These codewords have the weight

wλ2 = s2,λ2 − s2,λ2−1

= qm2λ2−1
qm2−1 −

qm2(λ2−1)−1
qm2−1

= qm2λ2−qm2(λ2−1)

qm2−1

= qm2(λ2−1)( qm2−1
qm2−1 )

= qm2(λ2−1) = qr2−m2

• Thus by induction, all the non-zero codewords of C′

have the weight

wλ2 = qr2−m2 = q(λ2−1)m2 .

VII. CONCLUSION

In this paper where we have explored the different pos-
sibilities using tensor product and LEB codes, we have
presented two different constructions of LEB codes using
tensor product. We have shown that the tensor product of two
block codes is not an LEB code and that the tensor product
of two Hamming codes is in general not a perfect Hamming
code. Besides, we have shown that the tensor product of
two cyclic LEB codes is a cyclic LEB code and the tensor
product of two Simplex LEB codes is also a simplex LEB
code. In future projects, we plan to explore the tensor product
on codes with partitions π of sub-blocks of different lengths.
Also working on factoring the new construction to optimize
the decoding of certain LEB codes.
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