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On a Stochastic Budworm Growth Model

Famei Zheng, Ruizhuang Zhang and Guixin Hu

Abstract—In this report, we dissect a budworm growth model
with multi-perturbations . We first show that the model has
a unique global positive solution for any positive initial data.
Then we explore the persistence and extinction of the species,
and test the growth rate and the global asymptotic stability
of the solution of the model. In addition, we give the explicit
density function of the stationary probability distribution of the
model, which can be utilized to test the growth of the budworm
species more accurately. Finally, we use the theoretical findings
to explore the growth of spruce budworm (Choristoneura
Jumiferana Clemens) in eastern North America.

Index Terms—population model, stochasticity, explicit density
function.

I. INTRODUCTION

HE SBW (spruce budworm, Choristoneura fumiferana
Clemens) has become the most harmful indigenous pest
of spruces in Eastern North America [11]. The outbreak of
the SBW has led to great losses, for example, by 2010,
owning to SBW outbreaks, Quebec province lost $12.5
billion [10]. Additionally, Eastern North America is currently
subjected to an outbreak starting in 2006. By 2018, it had
dispersed about 8.1 million hectares [1].
In order to portray the growth law of the SBW, Ludwig
et al. [9] put forward the following deterministic population
model which has been attracted much attention (see, e.g, [5],

[12]):
oS
w+y> o

ds
dtS(b@S

where S(t) represents the population abundance; b > 0,
0 > 0,0 >0 and w > 0 measure the growth rate, the
strength of the intra-specific competition, the predators’ con-
sumption rate and the saturate effect, respectively. However,
model (1) does not consider the environmental stochasticity.
Actually, the evolution of SBW has close relationships with
temperature and humidity that are of high stochasticity [2].
Accordingly, many authors (see, e.g., [7], [8], [14], [15])
introduced environmental perturbations into model (1) and
delved into the following stochastic model
as = 5(b—05 - —7°_Var + ASau(t 2
= < w+52> +ASdY(t), (@)
where A > 0 characterizes the intensity of the environmental
perturbations, 1 (t) stands for a Wiener process.
For model (2), some interesting results have been obtained.

Manuscript received October 8, 2020; revised December 8, 2020.

Famei Zheng is an associate professor at School of Mathematics and
Statistics, Huaiyin Normal University, Huaian 223300, PR China. E-mail:
hssky10@163.com

Ruizhuang Zhang (Joint-Corresponding author) is a lecturer at School
of Electrical Engineering and Automation, Henan Polytechnic University,
Jiaozuo 454000, PR China. E-mail: zhangrz2002@163.com

Guixin Hu (Joint-Corresponding author) is an associate professor at
School of Mathematics and Information Science, Henan Polytechnic Uni-
versity, Jiaozuo 454000, PR China. E-mail: huzhang2009hao@163.com

() ( [71, [8], [14], [15]) if o := b — A2/2 < 0, then
lim S(t) =0;
t—+o0
(i1) ([7]) if o > 0, then Eq. (2) possesses a unique invariant

measure concentrated on (0, +00).

Model (2) supposes that the growth rate is affected by
a single white noise. Nevertheless, the growth rate may be
affected by several white noises simultaneously. Therefore,
one need to test the following model:

O'S n
ds = S(b — 65 — M)dt + ; \iSdyi(t),  (3)

where 1 (t), ¥2(t),..., ¥ (t) are independent Wiener pro-
cesses.

The objectives of this report are to explore the dynamical
properties of model (3). The rest of this report is arranged
as follows. In Section II, we show that the model has a
unique global positive solution for any positive initial data.
In Section III, we explore the extinction, non-persistence in
the mean, weak persistence and stochastic permanence of the
species. In Section IV, we estimate the growth rate of the
solution. In Section V, we focus on the global asymptotic
stability (GAS) of the solution. In Section VI, the explicit
density function of the invariant measure of model (3) is
given. In Section VII, we extend some findings to cover
model (3) with regime-switching. In Section VIII, we use
the findings to explore the growth of spruce budworm (Cho-
ristoneura fumiferana Clemens) in eastern North America.

II. EXISTENCE AND UNIQUENESS OF THE SOLUTION

Theorem 1. For any S(0) > 0, model (3) has a unique
global positive solution S(t) almost surely (a.s.).

Proof: We first focus on the following model

oey®)

_ 2 t
= “)

+ ) Nidu(t)
=1

with y(0) = In S(0). The coefficients of Eq. (4) are locally
Lipschitz continuous, therefore Eq. (4) has a unique solution
on [0,7.), where 7. < +oo. According to Itd’s formula,
S(t) = e¥® is the unique positive solution of (3).

Now let us show that 7. = 4+00. Choose an integer ko >
S(0). For every integer m, define

T = it {t € 0,7.) 1 S(t) = m}.

Let 7o = lim 7,,. It then follows that 7., < 7. If 7. <

k—-+o0 ~
+00, then there are two constants 7' > 0 and € € (0, 1) such
that

P{7o < T} > e
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In other words, there is an integer m; > myg such that for
arbitrary m > my,
P{Q,} > ¢, &)

{w:7m < T}. Define
U1(S) =

where 2, =
S§%,8>0,0<d<1.

In view of It6’s formula

dU.(S) =465° [b — 05 —

-1
Aty

+6> XiS0dei(t)

=1

< 5bUL (S) dt+§Z)\ Uy (S

i=1

)dis ().

Consequently,
EUL(S (7 AT))
T AT
< UL(S(0)) + b / EUL (S(s))ds
0,

T
< UL(S(0)) + 6 / EUL (S (o A ))ds.
0
By Gronwall’s inequality, one has
EU,(S(1m A T)) < Uy (S(0))eT. (6)

For w € Q,,, U1 (S(Tym,w)) > m?. According to (5) and (6),
we have

UL (S(0)eT > E[lq,, (@)U1(S(Tm, w)] > em’.
We then obtain a contradiction by letting m — +oc:
00 > Ul(S(O))e‘SbT = 0.

Consequently, 7. = +o0. ]

III. EXTINCTION AND PERSISTENCE

In this part, we pay attention to the extinction and persis-
tence of the species.

Theorem 2. If & < 0, then

the species goes to extinction, where

n
2
z .

ti}?oo S(t) = 0, a.s., namely,

l\.’)\»—l

Proof: By 1t6’s formula,

dln S :[a—GS— o5 }dt+ZAdw,

2 _|_SQ
Therefore,
o aS(s)
InS(t)/S(0) = at— /O {es+w+s()}d FAQ), (7)
where .
A(t) = Z Aithi(t)
i=1
Notice that
t_lggl trA(t) = a.s.. (3)

Hence (7) and (3) imply that

InS(t) — In S(0) < at — 9/t S(s)ds + A(t). (9
0

As a result,

—1{ In S(t) — In S(O)} <a+tHA(®).
According to (8)

limsupt ' InS(t) < a < 0.

t——+oo

Thereby, tligrn S(t) =0, as.. [ ]
—+0o0

Theorem 3. If & > 0, then

t
hmsupt_l/ S(s)ds <
0

t——+o0

| Qi

. o= . —1 rt _
Particularly, if & = 0, then tl}linoot Jo S(s)ds = 0,
namely, the species is non-persistent in the mean.

f’roof: For Ve > 0, there is an T > 0 such that for
t>1T,

tl[lnS( )+ a4+ At )} a+e.
Set & = & + €. According to (9), for ¢ > T,
t
In S(t) SlnS(O)—F&t—H/ S(s)ds + A(t)

0

< &t — Q/t S(s)ds.
0

Set m(t) = f(f S(s)ds, hence
e (da/dt) < e, T.
Therefore,
() < eew(f) + 95—16)@ . 95—1egf

Taking logarithm gives
7(t) <6 'In {95%“ + (D) _ 95166:?}’
Consequently,

¢
limsuptfl/ S(s)ds <!
0

t—+oo

x lim sup {t_l In {95_16& + (D) _ 95_165T} }
t—+oo
By L’Hospital’s rule, one has
. 5 a+e
limsupt ! / S(s = .
e =9~ 9
An application of the arbitrariness of € gives (10). ]

Theorem 4. If & > 0, then limsup S(t) > 0, namely, the
t—+oo
species is weakly persistent.

Proof: Set J = {w: lim S(t,w)
t—+o0
then for arbitrary w € J, lim S(¢,
t—+oo

= O}. If P{J} >0,
w) = 0. That is to say,

limsup ¢t~ *[In S(t,w)

t—+4oo

—In5(0)] <0,
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oS(s)

=215 | =0

t
lim 1 / [95(8) 4

t——+oo 0
Then (7) and (8) indicate that

0 > limsupt'InS(t,w) = a > 0.

t——+oo

One then derive a contradiction. [ |

Theorem 5. If & > 0, then for any € € (0, 1), there are two
constants g1 = g1(€) > 0, g2 = ga2(€) > 0 such that

ltlglﬁgofP{S(t) >gi}>1—¢
< >1-—
lminf P{S() < g2} 21— c.

namely, the species is stochastically permanent.

Proof: Set

Us(S) =1/8% S >0.

By Itd’s formula,

dU(5)
oS
= 2U,(S) [95 + g b] dt
+3) NU(S dt—2z>\ Us(S)du; (t)
=1

S
=2 —b+1. 2, 90
UQ(S){HS b+ 5;)\2+w2+52}dt

f2ZAUQ

)des(t)

Let 11 € (0,1) be a constant satisfying
< afN2. (11)

Set

Us(S) = (1+ Ua(S))".

By It6’s formula,

EU3(S(t)) = Us(S

0)) + E/Ot LUS(S(s))ds

where
LU3(S)
—ou(1+ Uz(s>>“—2{<U2<S> L U2(9))

b+152)\2]
- DURS) T M?}
noy2

=2u<1+Uz<s>>“-2{[—b+Zzw

<los+ g

2
+ Z AE] U2(S) + U2 (S)

w2+52
oS ]

+ = U215(S)+[—b+1.52>\f

+w2+82

< 2u(1+ U(S H
+HZV] )+ (04 )utss)
+ [1.5; A2 4 2;] Us(S) + 9U§-5(S)}
=2u(1 + UQ(S))“Q{ - {d
uZV] +(0+)U215(S)

+ [1.52 22 4 2w] Us(S) + 9U§-5(S)}.

=1

Us(S) + 9U§-5(5)}

Let 9 > 0 be a constant obeying

- ",
O?*MZ)\%*Z>O
i=1

(12)
Set
UL(S) = ”Us(S).

By It6’s formula,

EUL(S(t)) = Us(S(0) +]E/ LUL(S(s))ds,

where

LU4(S)
= 1961%(1 + Us(S))H
< 2¢”p(1 + Uz (S))"~

In view of (12),

g :=supg(S) < +o0.
S>0
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Thus,

E[e”(1+ U2(S))"] < (1 +S72(0)" + 07 g(e” — 1).

That is to say,
lim sup E[S™2#(t)] = limsup E[UL(S(t))]

t—+o00 t—+oo (13)
< limsupE[(1 + U2(S(t)))*] < g.
t—+o0

For any € > 0, define gy = (¢/g)> . By Chebyshev’s

inequality,
P{S(t) < g1} = P{S72(t) > ¢, "}
E —2un
< HE ) g2,
m
91
Hence,
1imsupP{S(t) < gl} <ee.
t—+o0
As a result,
ltlglﬁ&fp{s >gl}2176.
In order to testify
5@#?}5“5 ) < 92} >1—c¢, 14)
set
Us(S)=87, >0, f>0.
By It6’s formula,
d(e'Us(9))
= 13" NietSTdu(t) + et{Sf
i=1
AT oS f—1¢ 2
+fS [b 05— —— + 3 ;/\ dt
< elgsdt+ fe'STD " Niduy(t)
i=1
where g3 > 0 is a constant. Thus,
limsupIE[Sf(t)] < g3. (15)
t—+o00
By Chebyshev’s inequality, one has (14). ]
IV. UPPER- AND LOWER-GROWTH RATES
Theorem 6. For model (3), one has
1 t
lim sup nS(t) <1, a.s.. (16)
t—+o0 n
Proof: By 1t6’s formula,
DY
dletlnS] = et{lnS—i—b— % - 68
oS .
—i g dt+ZAed¢Z (t).
Thus,
t N2
etIn S(t)/S(0) = / e’ InS(s) +b— %
0
aS(s)
-0 — —————|ds+ As(t
S(s) @2 + S2(s) s+ Ao (1),
(17)

where
t n
2 f,) :/ Z)\legdwl(s)
0 =1

That is to say,

(Aa(t), Aa(t)) = /O Y N,

By the exponential martingale inequality, for any 7 > 1 and
¢ >0,

e—¢m
P{ sup [Ag (t) —
0<t<(m 2

T

(Aa(t), Ay <t>>]
>7ef™lnm y <m”

According to Borel-Cantelli’s lemma, for almost all w € 2,
there is a mo such that for any m > meo,

e=sm
2
Hence for m > mo, 0 <t < (m,

As(t) < (Ao (t), Ao (t)) + ™ Inm, 0<t<(m.

—(m
e
625

As()

2ds + 7™ Inm.

By (17), for m > mq, 0 <t < (m,

e'ln S(t) —In S(0)
t )\2
STelenm—l—/ es[lnS—l—b—z:ZQ“—GS
0
aS(s) e Ko [ oo
_w2+52(s):|d8+ 5 Z)\i/e ds

t 1 5™ cm "
= [ ¢ |InS+b-05— ——— /\2]
[l >

+7e$™ Inm
t

§/ es[lns(s)+b—95(8)}d8+7'e<m1nm
0

< gale = 1)+ 7eS™ Inm,

where g4 > 0 is a constant. Then for 0 < {(m—1) <t < (m
and m > mo,
In S(%)
Int

e 'InS0)  ga(l—e?)

t Int
Te_cgn_l)ecm Inm

In(¢(m — 1))

As a result,

t
lim sup 5(@) < 7€,

t——+oo

Letting 7 — 1 and { — 0 yields (16). ]
Theorem 6 explores the upper-growth rate of S(t), now
we test the lower-growth rate of S(t).

Theorem 7. If & > 0, then

.. .InS(t) 1
> ——.
ltlamﬁgf Int = 2u (18)
Proof: By (13), there is an g5 > 0 satisfying
i
IEKI + U2(S(t))> ] <gs, t>0. (19)
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By Itd formula, By Burkholder-Davis-Gundy’s inequality
t pn—1
d[(1 4 Uz(S5))*] IE( sup / (1 + Ug(S(s)))
A2 oS (L-1)r<t<Lw | J(L-1)x

oo (et ]
+uiA?]U§(S)+9U§'5(S>+[—b ; l "
/(L o (1+U2(S(s)))

[ZAUQ }d%())

< 6E</(LLH1)K (1 + UQ(S(S))YM
2 0.5
+93U2(S>+92U§-5(5)} [ZA Ui } ds)

I
< 6100 /\ixIE( su <1+U S(t ) )
—2u(1 4+ Uy(8))H 1 Z AiU2(S)dw;(t) - ; (Lfl)mgtSLn 2(S()

(23)
/(:—l)n (1 + UQ(S(S))>Hds )

< IE< sup
(L-1)rk<t<Lk

+ 1. 52/\2 2"+ SQ]UQ(S) + 9U§-5(S)}

—2u(1 + Uz(S *“ZAUQ )dus (t)

<2u(l+ Ua(S))*~ {QlUQ (S) + 02Uy ()

In addition,

E( sup
(L—1)k<t<Lk

where

91:—b+( )ZV 2z =0, Lo i
< E(/ (1 + Uz(S(s))) ds>
(L-1)k '
n - < nE( sup (1 + U2(S(t))> )
=—b+15Y> N+ —. (L-1)s<t<Lsk
0= bH15Y Nt o (24)
= According to (22), (23) and (24),
Let gg be a positive constant obeyin
96 P yine E( sup  (1+ UQ(S(t))“)
2 1.5 0.5 (L-1)k<t<Lk
21(01U5(S) + 02U3 () + 03U2(S5) + 02U3°(5)) »
< g0(1 1+ Uh(S)). <e(1+0(s02-10))
n
Hence, + {gﬁm + 12uK%° Z /\1}
i=1
n
A((1+Ua(S))") < go(1+ Ua(5))"dt . ]E< sup <1 + Ug(S(t))> )
(L-1)k<t<Lk
—2/1(1 + U2 ,u, 1 Z/\ U2 d’(/Jz (20)
We then deduce from (19) and (21) that
Let k be a positive constant obeying ]E( sup  (1+ UQ(S(t))“) < 2¢s.
(L-1)k<t<Lk
. n 1 . y . .
gok -+ 1200 Z A < 5 @1 For any € > 0, it follows from Chebyshev’s inequality that
i=1 g 295
P sup (1+U S) >Lnl+6}g .
{ (L—1)k<t<Lk 2(5) (L) (Lk)tte

Let L =1,2.... In view of (20),
Then Borel-Cantelli’s lemma means that for almost all w €
]E( sup 1+ Un(S(1)) ) ), there is an integer Ny such that for any N > Ny and

(Lfl)HStSLn (L—1)x <t< Lk,

<E<1+U2(S(( 1) )>) + g6 In(1+Ua(S()* _ (1+€)In(Lr)
. u Int ~ In((L-1)k)
XE( sup / (1 + UQ(S(S))) ds ) Thus,
(L-1)r<t<Lk | J(L-1)r m
t n—1 lim sup ln(l + UQ(S(t)) <14e
—|—2/ﬂE( sup / (1 + UQ(S(S))) t—+00 Int
(L-1)k<t<Lk | J(L-1)k
Letting € — 0 gives
[ZA U2(S(s))dvs(s )] D L I Us(S@)"
(22) ihie  Int =
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Hence, , As aresult, for 0 < t; < to < 00, to—t1 < 1, 1/f+1/f =1,
In(S—2+
lim sup M <1, we have
t—s+oo Int
which means (18). [ |
V. GLOBAL ASYMPTOTIC STABILITY (GAS) E(|S(t2) — S(t1)|f) = ‘ / [b 08( )
Definition 1. Eq. (3) is called GAS if - oS(s) ] / Z A (s
im [S(s151) = S(sas )] = 0, @+ 5%(s)
[e'e] to f
_ oS(s)
where S(s1;t) and S(sa;t) are two arbitrary solutions of <2/7E / S(s) {b_ 05(s) — J— Sz(s)]ds'
Eq. (3) with initial data S(0) = s; > 0 and S(0) = s > 0, o8 " f
respectively. +2/-1E s) Z Aidii(s)
Lemma 1. ( [6]) Let X (t) be an n—dimensional stochastic Ni:1t2 - oS p
process which obeys <2771 (ty - tl)f/f/ E‘S b—0S - M] ds
_ a1« o1tz < . _f/2
E|X(t) X(S)| —C‘t 5| ;0 < st <00 +2f 1, f- 12)\2f|:f / (tg—tl)f/QGl(f)

for some constants oy > 0,0 > 0 and ¢ > 0. Then i1 FFa
almost each sample path of X (t) is locally uniformly Hélder <277 (t2 — tl) Ga(f)

. . _ s f/2
continuous with exponent 0 € (0, az/ay). Lof-1pi-1 Z)‘?f {f . f (1 — 11)772G1 ()
Lemma 2. Almost each sample path of S(t) is uniformly i= .
. 2
continuous. < 2f’1(t2 _ tl)f/2 (tg _ tl)f/2 + (f ;f)f/z} Gg(f)
Proof: By (15), for any f > 0, there is a G1(f) such
that <277ty — )1 /2 (1+(f22f)f/2]G3(f),
E|S(t)) < Gi(f).
Rewritten Eq. (3) gives
K aS(t)
S(t) = S(0 S|b—0S(t) — ———1|d where
0 =50+ [ slp-o500 - ZZGs]as
n t
+Y N / S(s)dis(s)
i=1 0
One can see that G3(f) = max{Gs(f nf-1 Z )\2 fGl
oS(t) 1|
E _9S —
‘S[b 0S w—i—S?}
s |
S Y p—
{|S| ’b 0S p—— .
oS(t) 2f According to Lemma 1, almost each sample path of S(¢)
< 0.5E|S|*F + 0. 5E’b 0S — p——— is locally uniformly Holder-continuous with exponent 6 &
=2
2f (0. 57). m
< 0-5{01(2f) +32 [|b|2f +0*/E|S|* + ;fJ }
2 Theorem 8. If
< 0.5{G1(2f) 432/t [|b|2f + 0% G1(2f) + f] }
= Ga(f).
Additionally, by the moment inequality for stochastic inte- 0> 0/w, (25)

grals, it follows that for 0 <¢; <t and f > 2,

to M
/ > AiS(s)dei(s
1 =1
ta f

<nf1 ZE‘/ i S(s)dap;(s)

i=1 t1

n 2 f/2 ty
i S _ f;/ ESl
<n ;A [ 5 (ty — t1) 5 1S|¥ds

n _ f/2 P
<nf1 Y DY [ﬂgl)} (t2 =) Ga (f)-

then Eq. (3) is GAS.

Proof: Define

W(t) = |InS(s15) — In S50 )],
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Computation dTW (t), we have

dTW (t) = sgn(S(s15t) — S(s2;1))
[dS(sl; t) B (dS(s1; ))2}

5(317 252 817 )
dS(82 t) dS 82,
S(Sg,t) 252 82,

015(

_ sen(S(s1) - (>{ 51) = S(s2)]

7J(W S(s15t)S(s2;1))(S(s1;t) — S(s2;t))
(@ + 52(s1: ) (@ + 52(s2: ) }dt

—0]S(s15t) — S(s2;1)]
w + S(s1)S(s2)
(@ + 52(s1))(w + S%(s2))
S

+o S(sl)—S(32)|}dt

. o( + 8(51)S(52)) )
w? + w(S52%(s1) + SQ)(s 2)) + 52(s1)5%(s2;t)

x [S(s1; )( (8526 |d1)55( )
w + 5(s1;t)S(82;
70+w2+2w5(51, )S(SQ;t)}
X \5(81;t)< (22( )|d)tS( "
o(w 4+ 5(s1:t)S(82;
O e S0t )5(52;15)}
X |S(s1;t) — S(s2;t)|dt
—{ =0+ Z}i5(600) - SCez0a
As a result,
W (t) < W(0) —/0/ {9— ;} 1S (s157) — S(s2 7).
Therefore,

W(t)—i—/ot {9—;};5(31; S(s2;7)|dr < W(0) < o0.

Hence by V (t) > 0 and (25),
|S(s1;t) — S(s2;t)| € L0, 00)

According to Lemma 2 and Barbalat’s result [3], we obtain
the required assertion. ]

VI. EXPLICIT DENSITY FUNCTION OF THE INVARIANT
MEASURE
The explicit density function of the invariant measure can
test the growth of the budworm more accurately. Thus in this
part, we test this problem.

Theorem 9. If a >0,
invariant measure is

then the density function of the

; (26)

where

Proof: Define

1(7) :T(b—er—

w+T

where a is an arbitrary positive constant. It then follows that

on{ -2 [0 ol

— exp { _ % {b(lnx/a) 0 —a)

_ \/LE (arctan\/xa — arctan \/aaﬂ }
blna—@a—% % }

2
= blnx — 0x — arctan \/IE]}

Wz) 62(r) = Nor2,

arctan

I

D

”

T
—N
X v
L —|

N

X
@
»
o]
o N
|
—

Il

S

iy

R\

€=

X

]

»

io)
—N
X[ 8

8
——

U =exp arctan

(e
where

(ahn- g 2]
Now define
= B@BE)

For sufficiently small 0 < ¢ < 1/w, one obtains

/O+<><> az

dx

~

27

{ 20 . T }d
e - = arctan —— pdx
P A/ VW
1 Foo 222, 20
+ U )\72/ y A2 exp{ - a:}
2
1/w
o

It then follows from 2b — A2 > 0 that

/C 2632 { 20 }
T A2 exXxpqy — ==
0 A2

><exp{—/\2
¢ 222

S/ x A Tdr < Uy,
0

T
arctan —— dx

NG (28)

é&’
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where W5 > 0 is a constant. Due to the fact that

1 { 20 } { 20 o % }
expq — =7z pexp{ — =——— arctan ——
A2 A2/w vw
is continuous on [¢,1/w], as a result,
1/w 2b;>\72_1 20
/ €T A2 exp { — JJ}
¢ A2

2
X exp{ — % arctan —— N

where W3 > 0 is a constant. Moreover,

Too 260
/ €T A2 exp{ — x}
1/w { A2

26—22
T A2

29)
}d(E < \I/g,

20 &urct&mi dx
2w V@
lex { — %x}dx
Pl »
(3) " fom™
= | — €T A2
20 20/(\2w)

Too 3z
/ v .
0

exp{ — x}dx

(30)
where I'(+) is the Gamma Function ( [13]). When (28), (29)
and (30) are used in (27), we get

+oo
/ a(z)dr < 4o0.
0

Define
a(z)
ple) =~
f0+ a(r)dr
One can see that p(z) solves the following forward Kol-
mogorov equation of Eq. (3) in steady-state

d2

d
12 (p(z)e3(x)) — 20 (p(z)p1(x)) =0. (3D
Therefore, p(x) is the density function of the stationary
distribution of Eq. (3). [ |

VII. GENERALIZATIONS

In the previous sections, we have probed some dynamical
properties of model (3). As a matter of fact, some theoretical
findings can be extended. Consider the following stochastic
hybrid model

a(p)S

ds :S<b( )—0(¢)S—W>dt

+ZA

where ¢ = (t) is a continuous-time finite-state Markov
chain which is independent with v;(¢). Let £ = {1,2, ..., L}
represent the finite-state space of ¢(t), then the mechanism
of the model portrayed by Eq. (32) could be illustrated as

(32)
)Sdei(t)

follows. Hypothesize that in the beginning, ;(0) = j € L,
then Eq. (32) follows

ds S< (j) — 0(5)S —
+Z>\

until ©(t) jumps to a new state, say, k € £, then Eq. (32)
follows

)Sdy(t

o(k)S

s = S(b(k:) —0(k)S — W)dt

+Z/\

until ¢(t) jumps again.
For Eq. (32), we have the following results. To begin with,
similar to the proof of Theorem 1, one can testify that

Theorem 10. For any (S(0),¢(0)) € (0,+00) x L, Eq. (32)
has a unique global solution (S(t), o(t)) € (0,+00) x L a.s.

)Sdyi(t)

Theorem 11. If o < 0, then the species portrayed by Eq.
(32) goes to extinction, where

L n
a=Y mal) —S 3 N)
j=1 i=1
and m is the unique stationary probability distribution of
U(t).
Proof: By 1t6’s formula,

dln§ = [a(gp) ()5 — —29)S

W]‘”

' o(p(s))S(s) 3
-/ [0(@(5))5(8)—&— et | A,
(33)
where
Z / )y (5).
Notice that _
Jim t7IA(t) =0, a.s.. (34)
We then deduce from (33) and (3) that
In S( ) —1n S(0)
/ ds—/ 0(p ds+A() 35)

< [atptenas—a [ sas+ Ko
0 0
where = min;jc{0(j)}. It follows that,

t
1{ InS(t) — In S(O)} <t ! / alp)ds +tTA(t).
0
According to (34) and

lim t_l/o alp(s))ds = @,

t——+o0
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we get
limsupt ' InS(t) < a < 0.
t——4o0

As aresult, lim S(¢) =0, as..
t——+oo

Theorem 12. If a > 0, then

limsupt™ 1/ S(s

t——+oo

a.s.. 36)

<b<\ o3}

Particularly, if & = 0, then the species portrayed by Eq. (32)
is non-persistent in the mean.

f’mof: For Ve > 0, there is an T > 0 such that for
t>1T,

t
t1 [ln S(0) +/ alp(s))ds + A(t)] <a+e
0
Set £ = & + €. In view of (35), for t > T,

InS(t) <InS(0)+ at— 9/5 (s)ds + A(t)

9/5

The following proof is similar to that of Theorem 3 and
hence is omitted. ]

Theorem 13. If @ > 0, then the species portrayed by Eq.

(32) is weakly persistent.
Proof: Set J = {w : tilgloo S(t,w) =0}. If P{J} >0,

then for any w € J, . ligrn S(t,w) = 0. That is to say,
—+o0o

limsup ¢~ *[In S(¢,w)

t——+o0
t
1 o(p(s))S(s) _
it [ oosor+ S g as =0
We then deduce from (33) and (34) that

—1nS(0)] <0,

0 > limsupt'1InS(t,w) = a > 0.

t—+oo

This is a contradiction. [ |

Theorem 14. If & > 0, then the species portrayed by Eq.
(32) is stochastically permanent.

Proof: Set
Us(S)=1/52, § > 0.

By It6’s formula,

5 eN _ of 0(90)5
dUs(S) = 2U, (S){ (p)S + w2(<p) b(@)} dt
+SZ>\2 dt722)\z(g0) S)d; (t)
:2@(5){9( )S +15Z)\2

a(p)S
T o) 1 SQ}dt 2ZA S)dws (t).
Let 41 € (0,1) be a constant satisfying
w< af Z A2, 37

Set

Us(S) = (14 Uy(S))".

According to Itd’s formula,

0)) + E /O L05(S(s))ds

EUs(S(1)) =

o(p)S

() 5
S e AU RUCEEE WD
| 0a(S) + 0)08(5)}

Let ¥ > 0 be a constant obeying

LA Y
& — 22— — >0.
u; o

(38)
Set ~ ~
U4(S) = €ﬂtU3(S).

In view of It6’s formula,
E4(S(1)) = Ts(S(0) —HE/ L£04(S(s))ds,

where
LUL(S) =€ (1+ Us(S))* + " LUs(S5)

n
< 2e% (1 + Uy(8))* 2

A U
0.5
+ 0U5°(S) + 2#}
=: "' h(9).
By virtue of (38),

h :=sup h(S) < +o0.
S$>0

Thus,

E[e”(1+ U2(8))"] < (1 +572(0))" + 9~ h(e” — 1).
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Consequently,

lim sup E[S™2#(¢)] = lim sup E[U4(S(t))]

t— 400 B t—+o00 _
<limsup E[(1 4+ U2(S(t)))"] < h.
t—+oo

L
For any € > 0, define hy = (e/h) 2+ In view of Chebyshev’s

inequality,
P{St hi} =P{S72(t
3 [Sh <t>1:h3#E[57
It follows that,

) > hy )
()]

lim sup P{5(t)

t——+oo

<h1} <e.

As a result,

lim inf P{S

t——+oo

>h}>1-e

No we testify that

lim inf P{S

< >1—ce.
t——+oo 92} - ¢

(39)

Let

Us(S) =8, $>0, f>0.

According to Itd’s formula,
d(e'Us(9))

_ et{Sf + fst {b(@ - o(¢)S

WS~ 2oy + 52

WAL
+ fz)\i(@

< etgsdt + fe SfZ)\

i=1

et ST dy;(t)

)depi(t),

where g3 > 0 is a constant. As a result,

lim sup B[S/ (¢)] < §3.

t——+oo
In view of Chebyshev’s inequality, one gets (39). ]
Theorem 15. For model (32), one has

In S(%) <1

lim sup m: =
n

t——+oo

a.s.. 40)

Proof: We deduce from It6’s formula that

2imi M)
2

©)eldu(t).

d[e! In S] :et[1n5+b( ) — —0(p)S

a(p)S
B i e § i
w2<¢>+s2} TN
Thus,

etIn S(t) — In.S(0)

where

/ Jesdisi(s).

/ 252)\2

By the exponential martingale inequality, for any 7 > 1 and
¢ >0,

Therefore,

(Aa(t), Aa(t

P{ B [T\Q(t) - ?(7\2(15), /~\2(t)>] > 7™ lnm}
<m™T.

It then follows from Borel-Cantelli’s lemma that for almost
all w € QQ, there is a my such that for any m > meo,

—(m

A1) < €T<7\2(t),7\2(t)> +eSmInm, 0<t<Cm.

Hence for m > mo, 0 <t < (m,

e—Cm t n
/ e2s Z )\fds + 7™ Inm.
0 i=1

By (41), for m > mq, 0 <t < (m,
etIn S(t) —In S(0)
t 2
<[ [1ns<s> +b(p(s)) — =)
’ o ((5))S(s)
9“‘2(5”5 )" e + s%)]ds
>

M (p(s))e**ds + 7e¢™ Inm
i=1

In S(s) + b(e(s)) — O(¢(s))S(s)
1-— esicm "

g LN

t
< e

As(t) <

]ds—|—reC Inm

3

InS(s)+b— 95’(5)} ds + 7€ Inm
o L
< Ga(e’ — 1) 4+ 7eS™ Inm,

where g, > 0 is a constant. Then for 0 < {(m—1)
and m > mo,

<t<(m

InS(t) e tInS(0) ga(l—et) 7eStm=Delminm
Int Int Int In(¢(m — 1))
It follows that,
lim sup 5@) < Teb.
t—too In
Letting 7 — 1 and ¢ — 0 gives (40). ]

VIII. APPLICATIONS TO SPRUCE BUDWORM

Now we use the above findings to explore the growth
of spruce budworm (Choristoneura fumiferana Clemens) in
eastern North America. In accordance to [7], [9], » = 1.6,
0 =6x10"", 0 =3x 104, @ =8 x 10%, \2 = 2.6. Thus
a = 0.3 > 0. In view of Theorem 5 and Theorem 9, the
species is permanent and has the following explicit density
function
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Fig. 1: A sample path of Eq.(3) at ¢ = 3000 with r = 1.6,
0 =6x10"", 0 =3 x 10% @ = 8 x 108, \2 = 2.6, step
size At = 0.01.
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Fig. 2: Density function of Eq.(3) with parameters given in
Fig.1.

where
a(r) =az07 exp{ —4.62 x 10_796}

x
X exp { — 0.816 arctan 2828)(104}
See Fig.1 (a sample path of S(t)) and Fig.2 (the density
function of S(t) at ¢ = 3000).

Remark 1. In this report, we only consider the effects of
stochastic perturbations, it is of interest to consider the effect
of time delay ( [4], [16]). In addition, one may use the
fuzzy approach ( [19], [20]) to depict the fluctuations of
the parameters. Moreover, this report tests the differential
models, one may consider the discrete models ( [17], [18]).
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