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Comparison of Different Control Techniques on a
Bipedal Robot of 6 Degrees of Freedom
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Abstract—In this paper, a mathematical model of a bipedal
robot with six degrees of freedom (6 DoF) is presented and
tested for some control strategies. For simplicity, one of the
extremities is modeled, and it is assumed that the second
one is similar. Some widely used tools, like Denavit-Hattender
parametrization and Euler-Lagrange approaches, are applied
to obtain the movement equations. A set of control laws are
designed, applied to the system model, and compared among
them. The study is carried out to evaluate deviation errors in
the extremities, the proposed bipedal model’s performance, and
control strategies. The controllers’ performances are evaluated
in terms of the deviation errors, which are computed as the
root mean square (RMS) of differences between desired and
actual extremity-joint positions.

Index Terms—Control, mathematical modeling, bipedal robot

I. INTRODUCTION

Ince the beginning of robotics, and especially in recent

years, humans have desired to create machines that are
similar to them. That is why they have created various types
of robots that try to accomplish tasks using any human
being’s motion principles. The above can be noticed to a
great extent with manipulators pretending to be a human arm.
However, the spectrum is much broader and covers many
types of machines similar to human capabilities; An example
is bipedal locomotion [1].

The problem of bipedal locomotion in robots can be seen
in different ways depending on the techniques, the desired
level of precision, the degrees of freedom of the robot under
analysis, and if it is a real platform case or just a concept
for model development. The main objective is to devise a
mechanism that achieves the stabilization of a body on two
extremities. The matter is to find a mathematical model that
can be implemented in simulation, as close as possible to the
dynamic model of the real human legs, taking into account
all their degrees of freedom and their intrinsic characteristics.
Many approaches have been proposed to develop bipedal
robot models, but they are all very different. Approaches,
like proposed by Chevallereau et al. in “Bipedal Robots:
Modeling, Design and Walking Synthesis” [2] decompose
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the walking cycle into several phases depending on the feet
shape. They derive an analysis based mostly on geometric
viewpoints from the contact between the extremity and the
floor. Other approaches like “Modelling, simulation, and
control of a bipedal robot AAU-BOLTI” [3] by B. Jensen
and M. Niss, and “Bipedal walking for a full-size humanoid
robot utilizing sinusoidal feet trajectories and its energy con-
sumption” [4] by J. Han, show dynamical models based on
the energy functions acquired from the Lagrange dynamics
method. Finally, in “An optimal control method for a biped
robot with stable walking gait” [5] by N. Phuong et al., the
authors propose a model based on a triple inverted pendulum
using the Lagrange approach.

Furthermore, it is essential to find a more straightforward
approach to find the dynamic model and then carry out its
simulation applying different control strategies in order to an-
alyze their effects on that particular system [6]. Several con-
trol techniques as sliding modes control [7] or bio-inspired
control techniques based on cerebellum behaviour [8] are
also used for multivariable systems where the dynamical
model of the plant is estimated from data. Finding a model
that allows performing the proposed analyzes requires several
essential considerations. Since bio-mechanics are very com-
plex, we need to simplify some system features, given that if
the model includes all the restrictions and rigorous behaviors,
the mathematical expression complexity would be unsuitable.
Naturally, knee behavior is label-like, or in mechanical terms,
it is like a system of four-bar cross-linkages [9].

In this work, a bipedal robot’s mathematical model with
six degrees of freedom (6 DoF) is presented and tested
for some control strategies. It is worth noting that the
performance of the model and its controllers are evaluated in
terms of the RMS deviation errors. This paper is organized as
follows: Section II introduces the concepts of the geometrical
and fundamental dynamic required for this modeling and
introduces the proposed approach for devising the bipedal
system’s mathematical model. Section III describes the de-
sign of benchmarking control strategies for robotic systems
applied to the proposed model. Section IV describes the
performance of the proposed controllers, and finally, Section
V concludes the article.

II. MATHEMATICAL MODEL

To perform a mathematical model for any dynamic system,
we must know the system’s behavior features; in other
cases, the found expressions would be inaccurate. The robot
model presented has two aspects of high relevance that will
define the mathematical derivations. The first one is that
it will be modeled as a triple pendulum for kinematics as
in [5] and [10]. The second one is that the friction in the
model will not be considered for a matter of simplicity. This
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simplification will not have significant repercussions on the
system’s behavior since the operational points tracked by
the controller (to be designed in a subsequent stage) have
minimum friction.

For devising the model, the first step is to perform the geo-
metric analysis to obtain the Denavit-Hartenberg parameters
[11]; these parameters allow us to find the reference frames
for each joint between the limbs. As shown in Fig. 1, the
very first frame (base) is allocated in the hip, and the last
frame (end effector) is allocated in the ankle. We need to
describe each frame pose in terms of the base frame pose.

/1/2 i

Is

Fig. 1. Bipedal Robot of 6 Degrees of Freedom.
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A. Dynamics

Starting from the coordinate frames for each center of
mass shown in Fig. 1, we can find the kinetic energy for each
element, see (1). Recall that the sum of them will be the total
kinetic energy of the system. Also, generalized coordinates
q are introduced for each point.

1 . 1

K, = 5m(z‘f/Qg,f) + 5o
1 . . .

Ky = §m2((1101(h + loy2C142(d1 + G2))°
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where C,4. 4n represents cos(0,, + ... + 6,).

To find the dynamic equations of the system, one must also
take into account the potential energy of each body. For this,
potential energies are individually defined as shown in (2).
Taking the sum of all of them will be the total potential
energy of the system.

U= —mlg(l1/201)

Uy = —mag(l1C1) — mag(ly/2C1y42)

Us = —m3g(l1C1) — m3g(l2Cr+2) — m3g(l3/2C14+2+3)
2

Then, the general Lagrangian in (3) can be expressed using
the kinetic and potential energies in (1) and (2).

L(q(t),4(t)) = K(q(t), 4(t)) — U(q(t)) 3)

With the general description of the Lagrangian, we can
describe the equation for the torque of each junction.

=T “)

dt 0q; 0¢; ’

d (8L<q,q'>> ~ 9L(g.4)
The general model for the torque in each junction may be
rewritten as follows:

d (0K oK n ou
- _ S
dt \ 9¢; dg; g
The form of the expression in (5) make computations more
easy to perform, here, ¢ represents the index for each link

of the mechanism. In this case ¢ = {1,2,3}. It must be
considered also the temporal derivative written in (6).

d (8[() _i( 5} (8[() dg; N 0 <8K> dqi)
(6)

It becomes clear that the solution to this system of non-
linear equations requires computations demanding numerical
methods or iterative algorithms, which are better performed
by computers. Furthermore, the modeling behavior is similar
to a triple pendulum with no controller working; thus, it will
show chaotic behavior.

It is crucial to mention computation power to describe the
method used when deriving the robot’s movement Equations.
Computers become an essential tool if desired to reach a
good representation of the system’s real dynamics. It is
also necessary to know about symbolic computation since it
substantially decreases the computing cost. For the particular
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case of the robot studied in this paper, it is required to
give the algorithm parameters such as masses, lengths, and
other constants of the robotic mechanism. Then, we need to
define 0;, 6; y 0, symbolically, and x and y position for the
mass center of each link of the mechanism. In particular, let
each mass center match with its respective geometric center
for every link. Then, we perform the derivatives for each
position to obtain the velocity. These masses, positions, and
velocities are used to compute the system’s potential and
kinetic energies.

Energies are used to build a Lagrangian equation, which
is later used to obtain the movement equations. This process
is carried out using (5) and (6). This process results from
the well-known inverse dynamics of the system, from which
we can solve for ¢ and find the direct dynamics this way.
All this process is carried out using symbolic variables to be
changed to numeric variables for initializing and performing
the simulation.

III. CONTROL TECHNIQUES

In robotics, many control strategies can be used to achieve
the desired behavior for any system. Choosing a tech-
nique depends on the proper system and its domain nature
(continuous or discrete). Some continuous stable systems
could become unstable when they are transformed to the
discrete domain, and it could cause the misbehavior of
some digital control strategies. It is important to analyze
different control techniques because it allows defining which
approaches are better to reach the desired behavior based on
any performance index. One of the most critical indexes is the
computational cost that a technique involves. Some advanced
strategies require more computational power, which implies
an increase in costs if the controller is implemented over a
real platform.

A. Calculated torque control

The calculated torque control strategy is commonly used
in robotic manipulators. It essentially computes the control
signal that commands the system to achieve the desired
position using the inverse robot dynamics. The above is
a crucial factor we must keep in mind; the model must
be as loyal as possible to the real system in order to
reach an effective control law [12]. Given the manipulator’s
desired paths, the calculated torque controller uses the inverse
dynamics to compute the required torque for achieving these
paths. It passes through a sum with two gains to the desired
path and the derivative of the errors. We can see a scheme
of this in Fig. 2.

104(t) 0a(t)
Desired | 2 | 2 ed'(t)‘ Inverse
Paths 1ot 1Ot | Dynamics

Fig. 2. Calculated torque block diagram.

The calculated torque control must make use of the robot’s
precise dynamics to be effective. So, the uncertainties in the
model affect the accuracy of the control [13]. The control law
is then computed based on the parameter estimation using the
model, as in (7).

7= M(0a)81 + C(04,64) + G(04) + F(0a,64)+

. (7
Kgé+ Kpe

where M\ is the estimated inertia matrix, C i§ the estimated
matrix containing the Coriolis accelerations, G is the gravity
matrix, and F' is the friction in each of the joints. Many
parameters influence the model’s behavior, and taking them
all into account would not be easy. Their implementation
in a simulation would be an impossible task. A significant
factor that must be taken into account is the friction in each
joint of the mechanism to have a model close to reality and
achieve a good performance of the calculated torque control.
The calculation of friction is shown in (8).

75 = B0 + - sgn(0) ®)

where [ is the material’s viscous friction coefficient and p
is the dry or Coulomb friction coefficient.

B. PID control

PID Control is the most used control strategy in many
areas where it is required to carry out the system to the
desired state. It is widely used because of its simplicity
and effectiveness, given that it requires low computational
power in its computations. The PID controller is theoretically
straightforward, and it is widely studied in the literature.
Since this paper is not tackling an in-depth description for
this controller, readers can always refer to the bibliogra-
phy [141, [15], [16].

PID controllers for bipedal robots are performed by de-
signing a PID control law for each extremity. Equation (9)
shows the general form of this controller for the extremities
[17].

7 = Kpe(6;) + Kpe(0;) + Kl/e(ei) ©)

This control law is applied directly in the direct kinematics
robot model, and its error is computed as:
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e(0;) = 0iq — bir (10)

where 6,4 represents the extremity desired angle, and 6, is
the real angle measured by the acquisition system.

C. Hyperbolic Sine-Cosine control

In [18] is presented as an algorithm for robot manipulators
control. This control law could be extended to our robot
mechanism since the model is obtained using common
manipulator modeling approaches. Equation (11) describes
the controller and considers two constants: one of them is
for the proportional component, based on hyperbolic sine
and cosine, and the other constant is for the derivative
component based on a hyperbolic sine. The third term is
gravity compensation.

T = K, sinh(e) cosh(e) — Ky sinh(§) + G(q) 1D

D. Control tuning

Each of the described control architectures has gains that
must be tuned, so we need a methodology or algorithm that
establishes them to reach each controller’s correct operation.
A genetic algorithm is proposed as a tuning method that
provides the appropriate values for the gains. So far, a genetic
algorithm is a meta-heuristic optimization technique whose
goal is to optimize (minimize o maximize) a loss function
that describes a performance index. In this case, we chose
the impulse or step response of the closed-loop system shown
in (12) and (13), respectively.

J = [f 7*(1)

-/ gy

0

12)

13)

where ¢(t) is the system’s output. The genetic algorithm
starts an initial population of possible gains and iteratively
improves them by some heuristic updates like crossing or
different mutation types. Finally, at the elitism step, the best
individuals of the population are preserved. For details on
genetic algorithm implementations see [19], [20], [21].

IV. RESULTS

As a case study, we developed the model applying (6)
that uses the kinetic and potential energies given by (1)
and (2). Then, we designed each of the controllers described
in the previous section and tune-up them using the genetic
algorithm. The parameters for the simulation are shown in
Table 1.

TABLE I
SIMULATION PARAMETERS

link  length (m) mass (kg)
1 0.4 1
2 0.45 1
3 0.2 0.5

All joints have an initial position of %. The testing

references are chosen to be 0. This way, all controllers must

0.085 T T T T T T T T T

0.075 b

0.065 b

Cost function

0.055 ]

0.045 b

0.035 | | | |
0 5 10 15 20 25 30 35 40 45 50

Generations

Fig. 3. Cost function evolution of the computed torque parameters tuning.

2.2

211 b

Cost function

13 i

1.2 I I I I I I I I I

Generations

Fig. 4. Cost function evolution of the PID parameters tuning.

carry out the system to the equilibrium point, starting from
the given initial conditions.

It is essential to clarify that each of the joints requires an
individual controller. Thus, for each strategy, there is a set
of three controller gains for the articulation hip, knee, and
ankle.

By applying the genetic algorithm to tune the controller,
the evolution of the computed torque’s cost function is
presented in Fig. 3.

Table II shows the gains found by the genetic algorithm
for the calculated torque controller set.

TABLE II
CALCULATED TORQUE CONTROL PARAMETERS

CTC %y kg
Hip  205.1099 47.1080
Knee 181.3973  32.6045

Ankle 1595147 19213

By applying the genetic algorithm to tune the controller,
the evolution of the PID controller’s cost function is pre-
sented in Fig. 4.
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Fig. 5.
tuning.

Cost function evolution of the hyperbolic sine cosine parameters

Similarly, the gains for the PID controller are shown in
Table III.

TABLE III
PID CONTROL PARAMETERS

PID Ty = 1
PID; 69163 03638 75522
PID, 82239 23298  0.8590
PIDs 93359 0.6616 45187

Also, by applying the genetic algorithm to tune the con-
troller, the evolution of the hyperbolic sine cosine controller’s
cost function is presented in Fig. 5.

Finally, Table IV shows the hyperbolic sine cosine con-
troller gains found by the genetic algorithm.

TABLE IV
HYPERBOLIC SINE-COSINE CONTROL PARAMETERS

ASC &, foq €]
Hip 05359 10270 09231
Knee 03033  0.1666 0.9737
Ankle 00331 04297  0.4955

A. Behavior Comparison

Figure 6 shows the simulation results for the output angles
of each controller using the parameter gains obtained in
Tables II - IV. The setpoint is defined as 0 to provide a
slightly more straightforward tool for comparing behaviors.

™ T T T T

Il
4 6 8 10
Knee

0.5 s, T T T
\x Calculated Torque

., 4 PID

S Rkl TP LT LTI TN

-

"\
A3

055 2 4 6 8 10

Ankle

T T T T T T T T

.. Calculated Torque

K Hyperbolic Sine-Cosine
0 2 4 6 8 10
Time (s)

Fig. 6. Output angles obtained for each controller. Upper: hip output angle,
middle: knee output angle, and lower: ankle output angle.

We can also perform a simulation using synthetic trajec-
tories for each joint, as in [22].

In robotics, it is also important to take care of the control
signal magnitude, since in practice, it is not possible to
provide large control signals. As aforementioned, the analysis
points are rotating systems, so a torque must be applied to
them. Figure 7 shows the torques for each of the controllers,
which provides a tool to analyze the controllers’ efficiency.

Hip Control Signal

E ol A PID ]
L .50 —— ‘
! Hyperbolic Sine-Cosine
I
10007 Calculated Torque 1
1805 04 08 12 16 2
Knee Control Signal
50 T T T T T T
TSN - TR s L
. O}‘/ _‘__\_—..‘.-T--':S* ______________ |
5 / \ Hyperbolic Sine-Cosine PID
50 | 1
I/Calculated Torque
-100 | | L I 3
0 0.4 0.8 1.2 1.6 2
0.2 Ankle Control Signal
Calculated Torque _.-*~"~ T
o- o=
*E \/// ’
Z—O 2+ // Ka
/.0 e
I S \ :
L. 4/ ___________ PID
-0.6 1 1 1 1
0 0.4 0.8 1.2 1.6 2
Time (s)
Fig. 7. Control signal for each joint.

B. Errors Comparison

For comparison, we use the mean square error metric
(erars) as in [23], where the authors compare the behavior
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of a redundant robot. In our case, we compute the erars, as
shown in (14) for all the outputs in each controller.

eRMS = (14)

where e; is the deviation error defined in (10).

The performed simulations provide deviation errors. This
information is used to draw a comparative graph between the
studied controllers. Intuitively, the plot with the least errors
would have the best performance. Figure 8 show the obtained
mean square errors.

0.25
0.2 4
0.15 4

0.1

RMS Error

Hyperbolic SC

PID Joint3

Calculated T Joint2

Joint1

Fig. 8. RMS errors of each Controller for each Joint.

In order to have another perspective to compare the
effectiveness of the controllers driving the robot. Figure 9
presents the deviation errors along time for each controller,
which allows doing another behavior assessment of the limbs.

4 6 8 10

Knee error

B Hyperbolic Sine-Cosine
15§ Calculated Torque P ¢! :

2 4 6 8 10
05 ‘ Anklg error
Le~.
s °f
- I
LIJ_O'5 g‘ i

s & Calculated Torque
| %, Hyperbolic Sine-Cosine

0 2 4 6 8 10
Time (s)

Fig. 9. Errors of each for each Joint.

V. CONCLUSIONS

In this paper, a bipedal robot’s dynamic model with 6
degrees of freedom (3 for a leg) was developed, and some
control strategies were applied for assessment. The model is
based on a simple triple pendulum without friction. It was
obtained through the Denavit-Hatenberg parameters, and an
Euler-Lagrange framework was used to derive the movement
equations. The approach shows to give a good representation
of the real system.

We show the system’s behavior driven by three different
controllers: The calculated torque, the PID controller, and
the hyperbolic sine-cosine strategy. Those are three SOTA
approaches in robotic systems control. The results are shown
in Fig. 6, Fig. 7, and Fig. 9. Figure 6 has the angular positions
of the articulations. The calculated torque controller has an
excellent settling time. In contrast, the hyperbolic sine-cosine
and PID controllers show similar behavior with a little bit
longer settling time. It is also supported by the deviation
errors in Fig. 9. Figure 7 shows the control signal. We can
see good control torques for the hyperbolic sine-cosine and
PID controllers and a bigger but still possible control signal
for the calculated torque controller.

The root mean square error, is presented as a bar graph in
Fig. 8, is used for a final comparison of the implemented con-
trol techniques. We can quickly identify that the calculated
torque controller reaches the least error, and, in cumulative
average, the PID controller gets the maximum error.

This type of “low-level” controllers are advantageous
because the desired trajectories can be computed off-line,
decreasing the time consumption and the computational costs
compared to other more advanced techniques.

Finally, we evidenced that using computational simulators
to develop control strategies on robots is very useful since
it offers a numerical and visual representation of the real
system’s behavior. The above allows for formulating and
evaluating new robotic models and control laws, even if the
mechanisms are not physically available.
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