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Abstract—To effectively handle the many-objective optimal 

power flow (MOOPF) problems considering the simultaneous 

reduction of power loss, emission and fuel cost, an improved 

NSGA-Ⅲ (INSGA-Ⅲ) algorithm is put forward in this paper. 

In detail, the proposed INSGA-Ⅲ algorithm adopts the 

competitive solutions preliminarily optimized by traditional 

NSGA-Ⅲ method as the initial population and integrates the 

novel adaptive dominant (NAD) strategy. Comparing with the 

original NSGA-Ⅲ algorithm, INSGA-Ⅲ obtains the more 

preferable Pareto front (PF) with uniform distribution. More 

significantly, an entirely new BP fuel-cost prediction network is 

proposed to explore the potential elite power flow (EPL) 

solutions. These EPL solutions determined around the best 

compromise solution (BCS) of INSGA-Ⅲ algorithm provide 

decision-makers with more and better scheduling schemes. The 

effectiveness and superiorities of proposed INSGA-Ⅲ algorithm 

and BP fuel-cost prediction model are verified by both 

dual-objective and triple-objective MOOPF simulation 

experiments. In general, this paper presents an innovative way 

to solve the complex engineering problems by computer 

technologies represented by intelligent algorithms and neural 

networks. 

 
Index Terms—Improved NSGA-Ⅲ algorithm, Many- 

objective optimal power flow, Adaptive dominant strategy, BP 

fuel-cost prediction network, Computer technologies 

I. INTRODUCTION 

N order to realize the economic and safe operation of power 

systems, the high-quality dispatching schemes which can 

reduce the fuel cost, active power loss and emission are 

needed. At present, the optimal power flow (OPF) problems 

considering only single objective cannot satisfy the various 

needs of users. Therefore, more scholars focus on the 

many-objective OPF (MOOPF) problems which aim to 

achieve the simultaneous reduction of two or three goals 

[1-4]. 

To solve MOOPF problems is actually to seek a feasible 
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Pareto optimal set (POS) which meets all system constraints. 

According to the commonly-used fuzzy affiliation function, 

the best compromise solution (BCS) of MOOPF problem can 

be determined from obtained POS set [5]. Then, adjusting the 

control variables based on the BCS of MOOPF problem can 

realize the desired operating state of power grids. 

The non-convexity and high-dimensional characteristics 

make traditional methods unsuitable for MOOPF problems. 

While intelligent algorithms provide the effective way to 

solve this complex optimization problem. Now, the strength 

Pareto evolutionary algorithm [6], the cuckoo search 

algorithm [7], the novel hybrid bat algorithm [8] and the 

artificial fish swarm algorithm [2] published recently are all 

appropriate for solving MOOPF problems. 

A. Contributions 

Two main contributions, the improved NSGA-Ⅲ 

(INSGA-Ⅲ) algorithm and an effective BP fuel-cost 

prediction network, are put forward and applied to MOOPF 

problems. 

1) INSGA-Ⅲ Algorithm 

In this paper, the NSGA-Ⅲ algorithm, which is often 

regarded as one evaluation benchmark for multi-objective 

algorithms, is adopted to handle MOOPF problems. Since the 

relatively-scattered distribution of Pareto front (PF) obtained 

by the standard NSGA-Ⅲ algorithm, the modified INSGA-Ⅲ 

algorithm is put forward. The initial population of suggested 

INSGA-Ⅲ algorithm is preliminarily screened by NSGA-Ⅱ 

algorithm and the novel adaptive dominant (NAD) strategy is 

integrated into INSGA-Ⅲ algorithm as well. 

To validate the applicability of INSGA-Ⅲ algorithm, two 

dual-objective and one triple-objective MOOPF experiments 

are conducted on the IEEE 30-node system. The generational 

distance (GD) and hyper-volume (HV) indexes quantitatively 

demonstrate that compared with the original NSGA-Ⅲ 

algorithm, INSGA-Ⅲ method has obvious advantages in 

PF-uniformity and PF-diversity. In addition, the suggested 

INSGA-Ⅲ algorithm also achieves the higher-quality BCS 

solutions, which is conducive to the optimized operating 

status of power systems. 

2) BP Fuel-cost Prediction Network 

Furthermore, a fire new fuel-cost predicting model based 

on BP network is proposed to search the possible elite 

power-flow (EPL) solutions. Explored in a small range close 

to the current BCS, EPL solutions realize zero constraints 

violation and dominate the final BCS solution of INSGA-Ⅲ 

method. Three experiments with different goal combinations 
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prove that the presented BP fuel-cost prediction network is 

not only suitable for dual-objective MOOPF simulation 

problems, but also for the more complex triple-objective 

ones. 

B. Structure 

The structure of this paper is set as follows. Three goals and 

two kinds of constraints for MOOPF problems are given in 

Section Ⅱ. Section Ⅲ introduces two major contributions of 

this paper including INSGA-Ⅲ algorithm and BP fuel-cost 

prediction model. Then, detailed results of three MOOPF 

cases to verify the superiority of INSGA-Ⅲ algorithm and 

fuel-cost prediction model are given in Section Ⅳ. In the final, 

Section Ⅴ gives the conclusion of this paper. 

II. MOOPF MODEL 

The mathematical model of MOOPF studied in this paper is 

mainly composed of three objective functions and system 

constraints. 

A. Goals 

The fuel cost (Fcost), power loss (Floss) and emission (Femis) 

are optimized by INSGA-Ⅲ algorithm. The formulas of 

mentioned goals are shown as (1) ~ (3)  [7, 9, 10]. 
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where NG, NL are the numbers of generators and transmission 

lines. Vi and δi are the voltage-magnitude and voltage-angle of 

ith node. The other special symbols are clarified in literatures 

[5, 11, 12]. 

B. Constraints 

The MOOPF problems are restricted by equality 

constraints and inequality ones. 

1) Equality Constraints 

Two equality constraints, the power balance equations in 

essence, are shown as (4) and (5) [13-15]. 
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2) Inequality Constraints on Control Variables 

The inequality restrictions on the generator node voltage 

(VG), the generator active power output at PV node (PG), the 

tap ratios of transformer (T) and the reactive power injection 

(QC) are shown as (6) ~ (9) [5, 16]. 

 min max ,  Gi Gi Gi GV V V i N     (6) 

 min max , 1Gi Gi Gi GP P P i N i   （ ）  (7) 

 min max ,  i i i TT T T i N     (8) 

 min max ,  Ci Ci Ci CQ Q Q i N     (9) 

3) Inequality Constraints on State Variables 

The inequality restrictions on the generator active power at 

slack node (PG1), the load node voltage (VL), the generator 

reactive power (QG) and the apparent power of transmission 

line (S) are shown as (10) ~ (13) [1, 17]. 

 min max

1 1 1G G GP P P    (10) 

 min max ,  Li Li Li PQV V V i N     (11) 

 min max ,  Gi Gi Gi GQ Q Q i N     (12) 
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where NT, NC, NPQ are the numbers of transformers, 

compensators and PQ nodes. The other special symbols are 

clarified in literatures [5, 18, 19]. 

C. Constraints Processing 

As the termination condition of Newton-Raphson power 

flow calculation, two equality constraints do not need the 

additional treatment. Therefore, this paper focuses on the 

processing of two kinds of inequality constraints. 

1) Treatment of Unqualified Control Variables 

The unqualified control variables which violate (6) ~ (9) 

are regulated according to (14). 
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where Con
max 

i  indicates the maximum value of the ith control 

variables set and the Con
min 

i  is the minimal one. 

2) Treatment of Unqualified State Variables 

The unqualified state variables which violate (10) ~ (13) 

will be filtered out based on the constraints-violation and 

objective-function values. The adoption priorities, also called 

the Rank index, of candidate power-flow schemes are 

determined according to (15) and (16). The acquisition of 

Rank is inspired by the non-inferior sorting idea proposed by 

Deb [20-22]. In detail, the ith power-flow solution will be 

given a higher adoption priority when condition (15) or (16) is 

met. 
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where Cvio(S(Coni)) defined as (17) is the constraints 

violation of the ith power-flow scheme. Obm(S(Coni)) is the 

mth objective value of the ith power-flow scheme. Besides, No 

is the number of goals optimized simultaneously. 
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where Cvio_P(S(Coni)), Cvio_V(S(Coni)), Cvio_Q(S(Coni)) and 

Cvio_S(S(Coni)) are the constraints violations of ith scheme 

which respectively violate (10) ~ (13). 

III. ALGORITHM AND PREDICTION MODEL 

The novel INSGA-Ⅲ algorithm and BP fuel-cost 

prediction network, which are put forward to explore the 

satisfactory power flow scheduling schemes, are introduced 

as follows. 
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A. Modified INSGA-Ⅲ Algorithm 

The application of basic NSGA-Ⅲ algorithm on MOOPF 

problems can refer to [5, 8, 23]. Aiming at the deficiencies of 

NSGA-Ⅲ, two major measures are integrated into INSGA-Ⅲ 

algorithm which greatly improve the performance for solving 

MOOPF problems. 

1) Optimization of Initial Population 

Due to the poor PF-distribution obtained by original 

NSGA-Ⅲ method, an innovative idea of conducting the 

preliminary screening for initial population is put forward. In 

this paper, the typical NSGA-Ⅱ algorithm is adopted to 

optimize the initial population of presented INSGA-Ⅲ 

algorithm. The POSns2 set obtained by NSGA-Ⅱ method after 

Itens2(max) iterations is taken as the input of INSGA-Ⅲ 

algorithm, which is helpful to make basic adjustments of 

PF-distribution at the initial stage. 

2) NAD Dominant Strategy 

In order to avoid the loss of high-quality power flow 

schemes, the proposed NAD dominant strategy is adopted in 

the iterative process of INSGA-Ⅲ algorithm. The NAD 

strategy can be described as (18). 
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where S
INSGA3 

k+1 (Coni) is the ith power flow solution updated 

based on INSGA-Ⅲ model at the (k+1)th iteration. S
valid 

k+1 (Coni) 

indicates the final ith power flow solution of INSGA-Ⅲ 

algorithm after the (k+1)th iteration. 

In other word, the S
valid 

k (Coni) will remain unchanged at the 

(k+1)th iteration when S
INSGA3 

k+1 (Coni) is not superior to S
valid 

k

(Coni). The dominant relationship of different schemes can be 

judged according to (15) and (16). The effective NAD 

strategy can reserve the elite power flow solutions to the great 

extent. 

The main flow-chart of presented INSGA-Ⅲ algorithm on 

MOOPF problems is summarized as Fig. 1. The Itens3(max) 

and POSns3 indicate the maximum iteration and the final POS 

set of INSGA-Ⅲ method. Additionally, the models of 

standard NSGA-Ⅱ and NSGA-Ⅲ algorithms can refer to [5, 

20, 21]. 

B. BP Fuel-cost Prediction Model 

In this paper, a novel BP fuel-cost prediction model, which 

is applicable for double-objective and triple-objective 

MOOPF problems, is proposed. Taking the basic fuel cost as 

the entry point, the proposed BP prediction model is able to 

search the EPL solutions near the current BCS solution of 

INSGA-Ⅲ. The applications of neural network can refer to 

[24, 25]. 

The main steps of suggested fuel-cost prediction network 

are shown in TABLE Ⅰ. In TABLE Ⅰ, three indicators 

including the mean absolute error (MAE), the mean absolute 

percentage error (MAPE) and the root mean squared error 

(RMSE) are adopted to evaluate the performance of different 

predictive models. Three mentioned indexes are defined as 

(19) ~ (21) [26]. 

Start

Input: Ns randomly generated control-variables sets

Itens2=1

Update the POSns2 based on NSGA-Ⅱ model

Itens2=Itens2(max)

Determine the final POSns2 set of NSGA-Ⅱalgorithm

Take the POSns2 set as the initial population of INSGA-
Ⅲ algorithm

Itens3=1

Update each power flow solution based on NSGA-Ⅲ 
model

Conduct the NAD dominant strategy to determine the 
POSns3 set at current itreration

Itens3=Itens3(max)

Determine the final POSns3 set of INSGA-Ⅲ algorithm

Determine the final BCS solution of INSGA-Ⅲ 
algorithm based on the fuzzy affiliation function

Output: the final POSns3 set and BCS solution

End

Itens2=Itens2+1

Itens3=Itens3+1

No

Yes

No

Yes

Fig. 1. Flow-chart of INSGA-Ⅲ algorithm 
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where Ns is the population size of INSGA-Ⅲ algorithm and 

Fuelreal is the real fuel cost calculated by Newton-Raphson 

power flow method. 

IV. EXPERIMENTS AND RESULTS 

Three MOOPF cases on IEEE 30-node system with 

different goal combinations shown in TABLE Ⅱ are studied. 

The structure of standard 30-node system is shown in Fig. 2 

and the effective operating ranges of electrical equipment are 

clarified in [5, 27, 28]. 
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TABLE Ⅰ 

MAIN STEPS OF BP FUEL-COST PREDICTION NETWORK 

Begin 

Input 2000 power flow scheduling schemes and the corresponding Fcost values; 

for i=1:5 

Select the random 1900 schemes for network-training (Inputtrain) and the other 100 schemes for testing (Inputtest); 

Identify the 1900 training-output (Outputtrain) and 100 testing-output (Outputtest); 

Perform the data normalization; 

% Clarify the structure of BP network 

NBP(i)=newff (Inputtrain, Outputtrain,[24,24]); 

NBP(i).trainParam.epochs=30; 

NBP(i).trainParam.lr=0.1; 

NBP(i).trainParam.goal=0.000001; 

Generate the ith candidate fuel-cost prediction network NBP(i); 

Predict the fuel cost of Inputtest set (OutBPtest) according to NBP(i) model; 

Perform the inverse-normalization on OutBPtest set to obtain the predictive fuel cost value (Fuelpre); 

Save the ith BP model NBP(i); 

   end for 

Evaluate the quality of five BP fuel-cost models based on Outputtest and Fuelpre values; 

Determine the relatively-best model N
best 

BP ; 

Schall=50; 

Schelite=10; 

Input the control variables set of BCS solution obtained by INSGA-Ⅲ algorithm (C
NSGA 

BCS ); 

Set the valid ranges of BP exploration within [0.999C
NSGA 

BCS , 1.001C
NSGA 

BCS ]; 

Randomly generate Schall control-variables sets within the valid ranges; 

Regulate the unqualified Schall sets based on (14);  

Obtain the Fuelpre values of Schall sets based on N
best 

BP network; 

Pick out the Schelite elite schemes with smaller Fuelpre values from Schall candidate schemes; 

Perform the Newton-Raphson power flow calculation to Schelite schemes and obtain the real Fcost, Femis and Floss values; 

Determine the EPL solutions which dominate the current BCS from Schelite schemes; 

End 
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Fig. 2. IEEE 30-node system 

A. Parameters 

The influence of Itens2(max) and Itens3(max), two involved 

maximum iterations of INSGA-Ⅲ algorithm, in solving 

MOOPF problems is firstly discussed. 

Fig. 3 gives the PFs of CASE-1 with different maximum 

iterations. It clearly indicates that the Itens3(max)=150 

(Itens2(max)=50) only finds the feasible PF while Itens3(max) 

=150 (Itens2(max)=70) achieves the relatively-optimal PF. In 

addition, Fig. 4 which gives the PFs of CASE-2 with different 

iterations also demonstrates INSGA-Ⅲ algorithm can find the 

superior PF with Itens3(max)=150 (Itens2(max)=70). Therefore, 

it is reasonable to set the Itens2(max), Itens3(max) to 70 and 150, 

respectively. 

The parameters of NSGA-Ⅱ, which is used for the 

preliminary optimization of INSGA-Ⅲ algorithm, can refer to 

[5]. Furthermore, the other parameters of proposed 

INSGA-Ⅲ algorithm and the basic NSGA-Ⅲ algorithm for 

comparison are set as TABLE Ⅲ. 

B. Verification Experiments 

Massive results of three MOOPF cases are used to verify 

the applicability of INSGA-Ⅲ method and BP prediction 

model. 

1) CASE-1 

The PFs of bi-objective CASE-1 obtained by traditional 

NSGA-Ⅲ and modified INSGA-Ⅲ algorithms are, 

respectively, given in Fig. 5 and Fig. 6. Intuitively, the 

PF-distribution of INSGA-Ⅲ algorithm is much better than 
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the one of NSGA-Ⅲ method. 

Besides, the BCS and comparison results of CASE-1 are 

given in TABLE Ⅳ. TABLE Ⅳ shows that comparing with 

NSGA-Ⅲ method, INSGA-Ⅲ algorithm achieves the 

obviously smaller Fcost value with small differences in Femis 

goal. Furthermore, the BCS solution of INSGA-Ⅲ method 

including 0.2369 ton/h of Femis and 831.6315 $/h of Fcost 

dominates the ones of published MODFA and NHBA 

methods.  

TABLE Ⅱ 

CASE-SETTING 

Goal CASE-1 CASE-2 CASE-3 

Fcost √ √ √ 

Femis √  √ 

Floss  √ √ 

Repeated number 30 30 30 

TABLE Ⅲ 

ALGORITHM PARAMETERS 

Algorithm NSGA-Ⅲ INSGA-Ⅲ 

Ns 100 100 

Itens2(max) - 70 

Itens3(max) 300 150 

mutation indictor/ percentage 20/1 20/1 

crossover indictor/ percentage 20/0.1 20/0.1 

number of divisions 10 10 

 

 
Fig. 3. PF of CASE-1 with different iterations 
 

 
Fig. 4. PF of CASE-2 with different iterations   

Meanwhile, TABLE Ⅴ gives the minimal Fcost and minimal 

Femis of CASE-1. It indicates that the proposed INSGA-Ⅲ 

algorithm finds 800.8147 $/h of minimal Fcost and 0.1944 

ton/h of minimal Femis. In general, two minimal goals found by 

INSGA-Ⅲ algorithm in CASE-1 are both superior to basic 

NSGA-Ⅲ algorithm. 

To quantitatively evaluate the PF-distribution and 

PF-diversity, the GD and HV indicators are adopted in this 

paper. The application of GD and HV indexes on MOOPF 

problems can refer to [5, 29]. In detail, the boxplots, the 

average and deviation of two related indictors for CASE-1 are 

given in Fig. 7 and TABLE Ⅵ. The smaller GD-average 

value shows the uniform-distribution of PF obtained by 

INSGA-Ⅲ and the larger HV-average shows the better 

diversity. Then, the closer boxplot, the smaller GD and HV 

deviations prove the operational stability of INSGA-Ⅲ 

algorithm. 

More notably, five candidate BP predictive models which 

take the basic fuel cost as the entry-point are built for CASE-1. 

TABLE Ⅶ, which gives the MAE, MAPE, RMSE errors of 

five candidate models, indicates that the NBP(5) with three 

smaller errors achieves the relatively-best performance. Fig. 8 

and Fig. 9, respectively, show the fitting results and relative 

error of CASE-1 based on NBP(5) network. It turns out the 

proposed BP fuel-cost model can effectively predict Fcost 

value based on the 24-dimensional control variables. 

 

 
Fig. 5. PF of CASE-1 obtained by NSGA-Ⅲ 
 

 
Fig. 6. PF of CASE-1 obtained by INSGA-Ⅲ 
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TABLE Ⅳ 

BCS AND COMPARISON OF CASE-1 

Variables 
CASE-1 

NSGA-Ⅲ INSGA-Ⅲ MODFA [5] NHBA [8] 

PG2(MW) 59.0446 60.3662 56.6689  58.1990 

PG5(MW) 27.8098 25.5531 28.2520  25.6741 

PG8(MW) 34.9985 35.0000 35.0000  27.0218 

PG11(MW) 27.3828 26.1379 26.3123  26.3626 

PG13(MW) 28.1427 23.8845 25.7403  31.3704 

VG1(p.u.) 1.0588 1.0411 1.0989  1.1000 

VG2(p.u.) 1.0457 1.0270 1.0909  1.0890 

VG5(p.u.) 1.0240 0.9873 1.0676  1.0537 

VG8(p.u.) 1.0269 0.9893 1.0804  1.0639 

VG11(p.u.) 1.0683 1.0571 1.0966  1.0880 

VG13(p.u.) 1.0861 1.0508 1.0999  1.0517 

T11(p.u.) 0.9999 0.9928 1.0151  1.0711 

T12(p.u.) 0.9007 0.9732 0.9493  0.9304 

T15(p.u.) 0.9759 0.9618 0.9903  1.1000 

T36(p.u.) 0.9370 0.9387 0.9666  1.0097 

QC10(p.u.) 0.0022 0.0300 0.0000  0.0299 

QC12(p.u.) 0.0341 0.0303 0.0423  0.0473 

QC15(p.u.) 0.0000 0.0198 0.0463  0.0157 

QC17(p.u.) 0.0045 0.0124 0.0462  0.0450 

QC20(p.u.) 0.0201 0.0176 0.0243  0.0291 

QC21(p.u.) 0.0302 0.0500 0.0421  0.0333 

QC23(p.u.) 0.0478 0.0396 0.0415  0.0500 

QC24(p.u.) 0.0454 0.0263 0.0198  0.0235 

QC29(p.u.) 0.0477 0.0160 0.0198  0.0088 

Femis (ton/h) 0.2278 0.2369 0.2432 0.2375 

Fcost($/h) 839.1713 831.6315 831.6652 832.6471 

TABLE Ⅴ 

MINIMAL SOLUTIONS OF CASE-1  

Variables 

CASE-1 

Minimal Fcost  Minimal Femis 

NSGA-Ⅲ INSGA-Ⅲ  NSGA-Ⅲ INSGA-Ⅲ 

PG2(MW) 50.9118 49.7022 

 

72.6508 72.1929 

PG5(MW) 22.3327 21.4528 47.7526 50.0000 

PG8(MW) 32.5199 20.2328 34.9127 34.8866 

PG11(MW) 15.8096 13.0020 29.9436 30.0000 

PG13(MW) 22.5486 12.0609 40.0000 39.9993 

VG1(p.u.) 1.0628 1.0830 1.0566 1.0249 

VG2(p.u.) 1.0517 1.0630 1.0447 1.0157 

VG5(p.u.) 1.0152 1.0294 0.9907 0.9842 

VG8(p.u.) 1.0241 1.0352 1.0365 0.9840 

VG11(p.u.) 1.0251 1.0340 1.0400 1.0397 

VG13(p.u.) 1.0781 1.0677 1.0605 1.0119 

T11(p.u.) 0.9954 1.0147 0.9770 1.0104 

T12(p.u.) 0.9255 0.9343 0.9180 0.9781 

T15(p.u.) 1.0035 1.0757 1.0517 0.9485 

T36(p.u.) 0.9304 1.0080 0.9295 0.9518 

QC10(p.u.) 0.0000 0.0306 0.0059 0.0339 

QC12(p.u.) 0.0442 0.0216 0.0421 0.0361 

QC15(p.u.) 0.0051 0.0414 0.0149 0.0268 

QC17(p.u.) 0.0052 0.0369 0.0159 0.0071 

QC20(p.u.) 0.0150 0.0281 0.0131 0.0158 

QC21(p.u.) 0.0286 0.0233 0.0384 0.0467 

QC23(p.u.) 0.0396 0.0199 0.0364 0.0472 

QC24(p.u.) 0.0446 0.0269 0.0402 0.0282 

QC29(p.u.) 0.0482 0.0488 0.0402 0.0353 

Femis (ton/h) 0.2743 0.3268 0.1952 0.1944 

Fcost($/h) 810.7470 800.8147 944.2417 953.3882 
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Fig. 7. Boxplot of GD and HV indexes for CASE-1 

TABLE Ⅵ 

GD AND HV OF CASE-1 

Quantitative indicators 
GD  HV 

Average Deviation  Average Deviation 

CASE-1 
NSGA-Ⅲ 0.1241 0.0280  10.2723 0.3843 

INSGA-Ⅲ 0.0682 0.0132  17.8356 0.2914 

TABLE Ⅶ 

ERRORS OF CANDIDATE NETWORKS FOR CASE-1 

Networks MAE MAPE RMSE 

NBP(1) 0.0455 5.4167E-05 0.0836 

NBP(2) 0.0593 7.0785E-05 0.0916 

NBP(3) 0.0610 7.2672E-05 0.0971 

NBP(4) 0.0599 7.1354E-05 0.1086 

NBP(5) 0.0441 5.2533E-05 0.0781 

TABLE Ⅷ 

Schelite CANDIDATE ELITE SOLUTIONS OF CASE-1 

Candidate Solution1 Solution2 Solution3 Solution4 Solution5 

Fuelpre 832.4020 832.4279 832.4353 832.4366 832.4415 

Fcost 831.5722 831.5168 831.6050 831.6046 831.6054 

Femis 0.2369 0.2370 0.2370 0.2369 0.2370 

Dominance √ - - √ - 

      
Candidate Solution6 Solution7 Solution8 Solution9 Solution10 

Fuelpre 832.4435 832.4438 832.4497 832.4513 832.4516 

Fcost 831.6101 831.5956 831.5835 831.5910 831.5606 

Femis 0.2369 0.2370 0.2370 0.2369 0.2369 

Dominance √ - - √ √ 

Then, TABLE Ⅷ gives the Schelite candidate elite 

solutions of CASE-1. It includes the predictive and real fuel 

cost, the real emission and the dominant relationship 

compared with the BCS of INSGA-Ⅲ. It turns out five EPL 

solutions are determined by NBP(5) network. 

In the end, five EPL solutions of CASE-1 which dominates 

the current BCS are given in TABLE Ⅸ. By adjusting the 

electrical devices based on the control variables of obtained 

EPL solutions, the more desirable grid operation state can be 

realized. 

2) CASE-2 

The PFs of another bi-objective CASE-2 obtained by 

NSGA-Ⅲ and novel INSGA-Ⅲ algorithms are given in Fig. 

10 and Fig. 11, respectively. Fig. 11 shows comparing with 

NSGA-Ⅲ, the suggested INSGA-Ⅲ algorithm achieves the 

PF with better distribution-uniformity.  

For CASE-2, the BCS solutions determined by NSGA-Ⅲ, 

INSGA-Ⅲ methods and the ones found by published NHBA, 

HFBA-COFS algorithms are given in TABLE Ⅹ. It indicates 

the BCS of INSGA-Ⅲ method including 832.0140 $/h of Fcost 

and 5.0766 MW of Floss is more advantageous than the ones of 

NSGA-Ⅲ and HFBA-COFS methods. For INSGA-Ⅲ and 

NHBA algorithms, although the Floss values obtained are 

similar, the former finds the significantly-smaller Fcost value. 

 
Fig. 8. Fitting results of CASE-1 

 
Fig. 9. Relative error of CASE-1 
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TABLE Ⅸ 

EPL SOLUTIONS OF CASE-1 

Variables 
CASE-1 

EPL1 EPL2 EPL3 EPL4 EPL5 

PG2(MW) 60.3738 60.3412 60.3425 60.3597 60.3235 

PG5(MW) 25.5367 25.5499 25.5757 25.5520 25.5764 

PG8(MW) 35.0000 35.0000 35.0000 34.9689 34.9788 

PG11(MW) 26.1245 26.1611 26.1309 26.1326 26.1237 

PG13(MW) 23.8720 23.8804 23.8662 23.9077 23.9031 

VG1(p.u.) 1.0407 1.0403 1.0406 1.04069 1.0415 

VG2(p.u.) 1.0277 1.0273 1.0276 1.0269 1.0269 

VG5(p.u.) 0.9879 0.9880 0.9878 0.9882 0.9882 

VG8(p.u.) 0.9898 0.9897 0.9893 0.9896 0.9900 

VG11(p.u.) 1.0579 1.0577 1.0569 1.0577 1.0577 

VG13(p.u.) 1.0517 1.0517 1.0513 1.0510 1.0501 

T11(p.u.) 0.9929 0.9927 0.9927 0.9928 0.9929 

T12(p.u.) 0.9732 0.9732 0.9732 0.9732 0.9733 

T15(p.u.) 0.9618 0.9618 0.9618 0.9618 0.9618 

T36(p.u.) 0.9387 0.9387 0.9387 0.9387 0.9387 

QC10(p.u.) 0.0300 0.0300 0.0300 0.0300 0.0300 

QC12(p.u.) 0.0303 0.0303 0.0303 0.0303 0.0303 

QC15(p.u.) 0.0198 0.0198 0.0198 0.0198 0.0198 

QC17(p.u.) 0.0124 0.0124 0.0124 0.0124 0.0124 

QC20(p.u.) 0.0176 0.0176 0.0176 0.0176 0.0176 

QC21(p.u.) 0.0500 0.0500 0.0500 0.0500 0.0500 

QC23(p.u.) 0.0396 0.0396 0.0396 0.0396 0.0396 

QC24(p.u.) 0.0263 0.0263 0.0263 0.0263 0.0263 

QC29(p.u.) 0.0160 0.0160 0.0160 0.0160 0.0160 

Fcost ($/h) 831.5722 831.6046 831.6101 831.5910 831.5606 

Femis (ton/h) 0.2369 0.2369 0.2369 0.2369 0.2369 

TABLE Ⅹ 

BCS AND COMPARISON OF CASE-2 

Variables 
CASE-2 

NSGA-Ⅲ INSGA-Ⅲ NHBA [8] HFBA-COFS [29] 

PG2(MW) 53.7299 52.2117 54.7737 53.1358 

PG5(MW) 32.9401 30.0472 34.1273 32.4210 

PG8(MW) 34.9692 35.0000 35.0000 35.0000 

PG11(MW) 27.7402 29.8958 26.3571 26.5747 

PG13(MW) 23.7350 22.2722 20.5383 22.2063 

VG1(p.u.) 1.0851 1.1000 1.0993 1.1000 

VG2(p.u.) 1.0684 1.0874 1.0857 1.0881 

VG5(p.u.) 1.0432 1.0645 1.0629 1.0718 

VG8(p.u.) 1.0546 1.0729 1.0749 1.0767 

VG11(p.u.) 1.0941 1.1000 1.0754 1.0938 

VG13(p.u.) 1.0926 1.1000 1.0984 1.0951 

T11(p.u.) 0.9441 1.0285 0.9911 1.0304 

T12(p.u.) 1.0115 0.9098 0.9871 0.9469 

T15(p.u.) 0.9852 0.9803 0.9802 1.0078 

T36(p.u.) 0.9409 0.9709 0.9628 0.9818 

QC10(p.u.) 0.0384 0.0082 0.0169 0.0489 

QC12(p.u.) 0.0146 0.0500 0.0000 0.0314 

QC15(p.u.) 0.0475 0.0203 0.0297 0.0324 

QC17(p.u.) 0.0121 0.0362 0.0391 0.0460 

QC20(p.u.) 0.0147 0.0462 0.0108 0.0265 

QC21(p.u.) 0.0434 0.0494 0.0500 0.0249 

QC23(p.u.) 0.0338 0.0449 0.0264 0.0421 

QC24(p.u.) 0.0292 0.0434 0.0500 0.0424 

QC29(p.u.) 0.0069 0.0491 0.0500 0.0457 

Fcost ($/h) 837.5766 832.0140 835.1034 832.3203 

Floss (MW) 5.0926 5.0766 5.0658 5.0796 
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Fig. 10. PF of CASE-2 obtained by NSGA-Ⅲ 

 
Fig. 11. PF of CASE-2 obtained by INSGA-Ⅲ 

TABLE Ⅺ 

MINIMAL SOLUTIONS OF CASE-2 

Variables 

CASE-2 

Minimal Fcost  Minimal Floss 

NSGA-Ⅲ INSGA-Ⅲ  NSGA-Ⅲ INSGA-Ⅲ 

PG2(MW) 51.1181 49.9739 

 

60.2227 78.6055 

PG5(MW) 20.7737 22.2181 49.5555 50.0000 

PG8(MW) 32.8864 21.4304 34.2479 34.9974 

PG11(MW) 15.6043 11.6367 29.5579 29.9772 

PG13(MW) 15.2981 12.0003 39.2370 40.0000 

VG1(p.u.) 1.0967 1.0830 1.0703 1.0784 

VG2(p.u.) 1.0768 1.0668 1.0628 1.0706 

VG5(p.u.) 1.0504 1.0274 1.0440 1.0604 

VG8(p.u.) 1.0595 1.0401 1.0554 1.0642 

VG11(p.u.) 1.0816 1.0743 1.0997 1.0681 

VG13(p.u.) 1.0990 1.0991 1.0892 1.0581 

T11(p.u.) 0.9471 0.9725 0.9832 1.0520 

T12(p.u.) 1.0038 0.9698 0.9688 0.9588 

T15(p.u.) 0.9803 0.9581 0.9768 0.9824 

T36(p.u.) 0.9499 0.9894 0.9745 0.9949 

QC10(p.u.) 0.0480 0.0250 0.0451 0.0346 

QC12(p.u.) 0.0094 0.0078 0.0180 0.0280 

QC15(p.u.) 0.0423 0.0403 0.0437 0.0415 

QC17(p.u.) 0.0064 0.0085 0.0142 0.0099 

QC20(p.u.) 0.0038 0.0479 0.0261 0.0240 

QC21(p.u.) 0.0452 0.0455 0.0472 0.0274 

QC23(p.u.) 0.0143 0.0212 0.0222 0.0369 

QC24(p.u.) 0.0260 0.0394 0.0241 0.0242 

QC29(p.u.) 0.0094 0.0449 0.0166 0.0263 

Floss(MW) 7.4131 8.9075 3.3536 3.1271 

Fcost ($/h) 803.9893 800.6080 928.0639 964.6998 

TABLE Ⅻ 

GD AND HV OF CASE-2 

Quantitative indicators 
GD  HV 

Average Deviation  Average Deviation 

CASE-2 
NSGA-Ⅲ 0.0955 0.0216  617.3241 47.8720 

INSGA-Ⅲ 0.0808 0.0177  886.6208 42.7006 

Additionally, the schemes with minimum single-objective 

of CASE-2 are shown in TABLE Ⅺ. The INSGA-Ⅲ 

algorithm put forward in this paper obtains 800.6080 $/h of 

minimal Fcost and 3.1271 MW of minimal Floss. Both minimal 

Fcost and Floss goals found by INSGA-Ⅲ method are smaller 

than the ones found by NSGA-Ⅲ, which verifies the 

competitive edge of INSGA-Ⅲ in solving MOOPF problems. 

Furthermore, Fig. 12 and TABLE Ⅻ show the evaluation 

results of PF-distribution and PF-diversity according to GD 

and HV criteria. In addition to verifying the advantages of 

INSGA-Ⅲ algorithm in PF-uniformity and PF-diversity, the 

smaller GD-deviation and HV-deviation values also prove the 
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better consistency of results from 30 MOOPF independent 

experiments. 

Meanwhile, three related errors of five candidate BP 

fuel-cost models for CASE-2 are given in TABLE ⅩⅢ. The 

NBP(2) network with relatively-minimal MAE, MAPE and 

RMSE errors is adopted to explore the preferable EPL 

solutions of CASE-2. Then, the fitting results and relative 

error corresponding to NBP(2) network are given in Fig. 13 and 

Fig. 14. 

The detail of Schelite candidate elite solutions for CASE-2 

are shown in TABLE ⅩⅣ. It indicates that four EPL 

solutions are obtained by proposed NBP(2) fuel-cost forecasting 

network. And the control variables of EPL schemes are given 

in TABLE ⅩⅤ. 

3) CASE-3 

In CASE-3, Fcost, Floss and Femis goals are optimized at the 

same time. Obviously, the triple-goal MOOPF case is more 

difficult than the double-goal ones and it can further verify the 

performance of INSGA-Ⅲ algorithm. 

The PFs of CASE-3, which are respectively obtained by 

NSGA-Ⅲ and INSGA-Ⅲ algorithms, are shown in Fig. 15 

and Fig. 16. Fig. 16 clearly states that the presented 

INSGA-Ⅲ method is also able to find the satisfactory PF even 

in the triple-goal MOOPF case. 

TABLE ⅩⅢ 

ERRORS OF CANDIDATE NETWORKS FOR CASE-2 

Networks MAE MAPE RMSE 

NBP(1) 0.0441 5.2512E-05 0.0930 

NBP(2) 0.0241 2.8809E-05 0.0362 

NBP(3) 0.0373 4.4448E-05 0.0737 

NBP(4) 0.0377 4.5000E-05 0.0538 

NBP(5) 0.0576 6.8646E-05 0.1046 

TABLE ⅩⅣ 

Schelite CANDIDATE ELITE SOLUTIONS OF CASE-2 

Candidate Solution1 Solution2 Solution3 Solution4 Solution5 

Fuelpre 831.5948 831.5999 831.6043 831.6077 831.6088 

Fcost 831.9510 831.9339 831.9426 831.9225 831.9401 

Floss 5.0827 5.0759 5.0755 5.0765 5.0832 

Dominance - √ √ √ - 

      

Candidate Solution6 Solution7 Solution8 Solution9 Solution10 

Fuelpre 831.6094 831.6129 831.6142 831.6262 831.6359 

Fcost 831.9504 831.9374 831.9460 831.9659 831.9667 

Floss 5.0789 5.0804 5.0783 5.0819 5.0743 

Dominance - - - - √ 

 

 
Fig. 12. Boxplot of GD and HV indexes for CASE-2 

 

 
Fig. 13. Fitting results of CASE-2                                                                      Fig. 14. Relative error of CASE-2
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TABLE ⅩⅤ 

EPL SOLUTIONS OF CASE-2 

Variables 
CASE-2 

EPL1 EPL2 EPL3 EPL4 

PG2(MW) 52.2027 52.1697 52.1631 52.1698 

PG5(MW) 30.0363 30.0300 30.0395 30.0503 

PG8(MW) 35.0000 35.0000 35.0000 35.0000 

PG11(MW) 29.8691 29.8798 29.8797 29.8801 

PG13(MW) 22.2646 22.2869 22.2574 22.2779 

VG1(p.u.) 1.1000 1.1000 1.1000 1.1000 

VG2(p.u.) 1.0882 1.0881 1.0883 1.0884 

VG5(p.u.) 1.0645 1.0647 1.0638 1.0638 

VG8(p.u.) 1.0736 1.0734 1.0737 1.0733 

VG11(p.u.) 1.0993 1.1000 1.1000 1.1000 

VG13(p.u.) 1.1000 1.1000 1.0989 1.1000 

T11(p.u.) 1.0286 1.0284 1.0285 1.0285 

T12(p.u.) 0.9098 0.9098 0.9098 0.9098 

T15(p.u.) 0.9803 0.9803 0.9803 0.9802 

T36(p.u.) 0.9709 0.9709 0.9709 0.9710 

QC10(p.u.) 0.0082 0.0082 0.0082 0.0082 

QC12(p.u.) 0.0500 0.0500 0.0500 0.0500 

QC15(p.u.) 0.0203 0.0203 0.0203 0.0203 

QC17(p.u.) 0.0362 0.0362 0.0362 0.0362 

QC20(p.u.) 0.0462 0.0462 0.0462 0.0462 

QC21(p.u.) 0.0494 0.0494 0.0494 0.0494 

QC23(p.u.) 0.0449 0.0449 0.0449 0.0449 

QC24(p.u.) 0.0434 0.0434 0.0434 0.0434 

QC29(p.u.) 0.0491 0.0491 0.0491 0.0491 

Fcost ($/h) 831.9339 831.9426 831.9225 831.9667 

Floss (MW) 5.0759 5.0755 5.0765 5.0743 

 
Fig. 15. PF of CASE-3 obtained by NSGA-Ⅲ                                                   Fig. 16. PF of CASE-3 obtained by INSGA-Ⅲ

TABLE ⅩⅥ gives two BCS solutions and the comparison 

result found by the published MOFA-PFA method. The BCS 

of INSGA-Ⅲ method composed by 876.9736 $/h of Fcost, 

4.2439 MW of Floss and 0.2073 ton/h of Femis is superior to the 

relatively-best scheme of typical NSGA-Ⅲ. Besides, TABLE 

ⅩⅦ shows the minimal Fcost (799.5961 $/h), minimal Floss 

(3.1242 MW), minimal Femis (0.1943 ton/h) are all achieved 

by INSGA-Ⅲ algorithm. 

The errors of five fuel-cost prediction networks are shown 

in TABLE ⅩⅧ and the NBP(3) model with smaller MAE, 

MAPE, RMSE is finally adopted. For CASE-3, the fitting 

results and relative-error are, separately, given in Fig. 17 and 

Fig. 18.  

Furthermore, TABLE ⅩⅨ gives the detail of Schelite 

candidate elite solutions of CASE-3. It intuitively states that 

five EPL solutions of CASE-3 are determined. Although the 

prediction effect of the tri-objective MOOPF case is not as 

good as that of the bi-objective one, the brand-new NBP(3) 

model still finds multiple EPL solutions. The control 

variables of five EPL scheme are shown in TABLE ⅩⅩ. 
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TABLE ⅩⅥ 

BCS AND COMPARISON OF CASE-3 

Variables 
CASE-3 

NSGA-Ⅲ INSGA-Ⅲ MOFA-PFA [30] 

PG2(MW) 65.1562 61.4422 57.890 

PG5(MW) 37.3055 37.1152 36.290 

PG8(MW) 29.8221 34.0397 35.000 

PG11(MW) 29.5921 29.7562 29.271 

PG13(MW) 35.4797 35.8105 40.000 

VG1(p.u.) 1.0343 1.0890 1.0985 

VG2(p.u.) 1.02146 1.0788 1.0869 

VG5(p.u.) 0.9952 1.0652 1.0625 

VG8(p.u.) 1.0013 1.0673 1.0767 

VG11(p.u.) 1.0231 1.0228 1.0857 

VG13(p.u.) 1.0392 1.0387 1.0386 

T11(p.u.) 1.0080 1.0535 1.0860 

T12(p.u.) 0.9768 0.9129 0.9930 

T15(p.u.) 1.0220 1.0199 1.0520 

T36(p.u.) 0.9688 0.9846 1.0770 

QC10(p.u.) 0.0454 0.0428 0.0140 

QC12(p.u.) 0.0325 0.0203 0.020 

QC15(p.u.) 0.0050 0.0500 0.0080 

QC17(p.u.) 0.0278 0.0409 0.0250 

QC20(p.u.) 0.0223 0.0086 0.0390 

QC21(p.u.) 0.0087 0.0271 0.0270 

QC23(p.u.) 0.0294 0.0359 0.0100 

QC24(p.u.) 0.0500 0.0191 0.0170 

QC29(p.u.) 0.0130 0.0213 0.0500 

Fcost ($/h) 878.1387 876.9736 879.91 

Floss (MW) 4.7932 4.2439 4.2179 

Femis (ton/h) 0.2092 0.2073 0.2165 

 

TABLE ⅩⅦ 

MINIMAL SOLUTIONS OF CASE-3 

Variables 

CASE-3 

Minimal Fcost  Minimal Floss  Minimal Femis 

NSGA-Ⅲ INSGA-Ⅲ  NSGA-Ⅲ INSGA-Ⅲ  NSGA-Ⅲ INSGA-Ⅲ 

PG2(MW) 57.1339 48.4456 

 

65.3614 79.3481  65.3614 72.7707 

PG5(MW) 23.4779 21.5648 49.0766 50.0000  49.0766 50.0000 

PG8(MW) 34.8481 22.2846 30.8966 35.0000  30.8966 35.0000 

PG11(MW) 18.7528 11.8287 30.0000 29.5703  30.0000 30.0000 

PG13(MW) 15.3990 12.0000 40.0000 40.0000  40.0000 40.0000 

VG1(p.u.) 1.0541 1.1000 1.0236 1.0873  1.0236 1.0870 

VG2(p.u.) 1.0389 1.0809 1.0154 1.0810  1.0154 1.0810 

VG5(p.u.) 0.9862 1.0608 0.9883 1.0673  0.9883 1.0648 

VG8(p.u.) 0.9986 1.0634 1.0090 1.0696  1.0090 1.0673 

VG11(p.u.) 1.0410 1.0545 1.0366 1.0474  1.0366 1.0487 

VG13(p.u.) 1.0173 1.0809 1.0485 1.0365  1.0485 1.0320 

T11(p.u.) 0.9683 1.0896 0.9930 1.0734  0.9930 1.0715 

T12(p.u.) 1.0375 0.9394 0.9926 0.9204  0.9926 0.9194 

T15(p.u.) 0.9646 1.0151 0.9512 0.9989  0.9512 0.9859 

T36(p.u.) 0.9551 1.0006 0.9214 1.0168  0.9214 1.0126 

QC10(p.u.) 0.0435 0.0496 0.0403 0.0412  0.0403 0.0420 

QC12(p.u.) 0.0305 0.0231 0.0301 0.0196  0.0301 0.0198 

QC15(p.u.) 0.0200 0.0324 0.0050 0.0463  0.0050 0.0462 

QC17(p.u.) 0.0419 0.0412 0.0325 0.0414  0.0325 0.0411 

QC20(p.u.) 0.0142 0.0080 0.0178 0.0110  0.0178 0.0111 

QC21(p.u.) 0.0240 0.0390 0.0174 0.0287  0.0174 0.0296 

QC23(p.u.) 0.0442 0.0375 0.0393 0.0361  0.0393 0.0361 

QC24(p.u.) 0.0406 0.0285 0.0500 0.0179  0.0500 0.0186 

QC29(p.u.) 0.0125 0.0124 0.0077 0.0206  0.0077 0.0220 

Fcost ($/h) 813.1989 799.5961 932.9870 965.4179  932.9870 953.3341 

Floss (MW) 7.5542 8.6646 3.9027 3.1242  3.9027 3.1834 

Femis (ton/h) 0.2681 0.3268 0.1974 0.1950  0.1974 0.1943 
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Fig. 17. Fitting results of CASE-3    

 
Fig. 18. Relative error of CASE-3 

TABLE ⅩⅧ 

ERRORS OF CANDIDATE NETWORKS FOR CASE-3 

Networks MAE MAPE RMSE 

NBP(1) 0.1437 1.6644E-4 0.2688 

NBP(2) 0.1905 2.2066 E-4 0.2754 

NBP(3) 0.0999 1.1562 E-4 0.1927 

NBP(4) 0.1872 2.1683 E-4 0.4364 

NBP(5) 0.1943 2.2498E-4 0.3287 

 

TABLE ⅩⅨ 

Schelite CANDIDATE ELITE SOLUTIONS OF CASE-3 

Candidate Solution1 Solution2 Solution3 Solution4 Solution5 

Fuelpre 877.8448 877.8496 877.8514 877.8550 877.8553 

Fcost 876.9547 876.9620 876.9619 876.9630 876.9643 

Floss 4.2442 4.2437 4.2452 4.2439 4.2445 

Femis 0.2073 0.2073 0.2073 0.2073 0.2073 

Dominance - √ - √ - 

      

Candidate Solution6 Solution7 Solution8 Solution9 Solution10 

Fuelpre 877.8589 877.8590 877.8591 877.8602 877.8602 

Fcost 876.9680 876.9685 876.9652 876.9714 876.9658 

Floss 4.2435 4.2440 4.2438 4.2448 4.2427 

Femis 0.2073 0.2073 0.2073 0.2073 0.2073 

Dominance √ - √ - √ 

TABLE ⅩⅩ 

EPL SOLUTIONS OF CASE-3 

Variables 
CASE-3 

EPL1 EPL2 EPL3 EPL4 EPL5 

PG2(MW) 61.4413 61.4453 61.4445 61.4367 61.4419 

PG5(MW) 37.1136 37.1127 37.1155 37.1148 37.1118 

PG8(MW) 34.0383 34.0420 34.0366 34.0430 34.0411 

PG11(MW) 29.7559 29.7542 29.7550 29.7545 29.7587 

PG13(MW) 35.8090 35.8075 35.8093 35.8100 35.8103 

VG1(p.u.) 1.0890 1.0890 1.0891 1.0890 1.0890 

VG2(p.u.) 1.0789 1.0788 1.0788 1.0787 1.0789 

VG5(p.u.) 1.0652 1.0652 1.0651 1.0651 1.0651 

VG8(p.u.) 1.0672 1.0674 1.0673 1.0674 1.0674 

VG11(p.u.) 1.0228 1.0229 1.0228 1.0229 1.0228 

VG13(p.u.) 1.0387 1.0386 1.0388 1.0387 1.0388 

T11(p.u.) 1.0535 1.0535 1.0535 1.0535 1.0535 

T12(p.u.) 0.9129 0.9129 0.9129 0.9129 0.9129 

T15(p.u.) 1.0199 1.0199 1.0199 1.0199 1.0199 

T36(p.u.) 0.9846 0.9846 0.9846 0.9846 0.9846 

QC10(p.u.) 0.0428 0.0428 0.0428 0.0428 0.0428 

QC12(p.u.) 0.0203 0.0203 0.0203 0.0203 0.0203 

QC15(p.u.) 0.0500 0.0500 0.0500 0.0500 0.0500 

QC17(p.u.) 0.0409 0.0409 0.0409 0.0409 0.0409 

QC20(p.u.) 0.0086 0.0086 0.0086 0.0086 0.0086 

QC21(p.u.) 0.0271 0.0271 0.0271 0.0271 0.0271 

QC23(p.u.) 0.0359 0.0359 0.0359 0.0359 0.0359 

QC24(p.u.) 0.0191 0.0191 0.0191 0.0191 0.0191 

QC29(p.u.) 0.0213 0.0213 0.0213 0.0213 0.0213 

Fcost ($/h) 876.9620 876.9630 876.9680 876.9652 876.9658 

Floss (MW) 4.2437 4.2439 4.2435 4.2438 4.2427 

Femis (ton/h) 0.2073 0.2073 0.2073 0.2073 0.2073 
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It is very difficult to find the EPL solutions with all three 

goals smaller than the current BCS. Thrillingly, the presented 

BP fuel-cost model can effectively solve the mentioned 

difficulties. 

V. CONCLUSION 

To explore the high-performance scheduling schemes with 

zero constraints-violation, the modified INSGA-Ⅲ algorithm 

and an innovative fuel-cost forecasting network are proposed. 

Combining with NAD dominant strategy, the presented 

INSGA-Ⅲ algorithm achieves the evenly-distributed PFs. 

Furthermore, the novel BP fuel-cost prediction model is put 

forward and it successfully finds more than four EPL 

solutions near the current BCS solution. Numerous results 

strongly prove the applicability and advantages of proposed 

INSGA-Ⅲ algorithm and BP fuel-cost model in both 

double-goal and triple-goal MOOPF problems. 

In conclusion, the advanced computer technologies such as 

neural networks and intelligence algorithms offer another 

powerful way to handle the complex MOOPF problems. 
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