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SP-Type Extragradient Iterative Methods for
Solving Split Feasibility and Fixed Point Problems
in Hilbert Spaces

Paiwan Wongsasinchai

Abstract—In this paper, we introduce the SP-type extragradi-
ent method with regularization for finding a common element of
the solution set of the split feasibility and fixed point problems
of pseudo-contractive mappings in real Hilbert spaces.

Index Terms—Split feasibility problem, SP-type extragradi-
ent method, Pseudo-contractive mapping, Fixed point problem.

I. INTRODUCTION

E assume #H; and H, are real Hilbert spaces with
inner product (-,-) and norm || - ||. Let C and Q be
nonempty closed convex subsets of H; and Ha, respectively.
We denote the strong convergence and weak convergence by
— and — respectively.
o A mapping S : C — C is called a nonexpansive mapping
if,

[Sv =8I < |lv—9, Vv, deC. (D

o A mapping 7 : C — C is called a pseudo-contractive if,
(Tv—TO,v—9) < |v-9|? Vuv,9€C. ()

It is well-known that 7 is pseudo-contractive if and
only if

| To=T9|? < |lv=9|*+|(I-T)o—(I=T)I|?*, Vv,9 € C.
3)

The fixed point problem for the mapping 7 is the following:

find v € C such that Tv = v.

Denote by F(7) = {v € C : Tv = v} the set of solutions

of the fixed point problem.

Phuengrattana and Suantai [1] introduced the SP iterative

method as follows:

’Yn)vn + 'YnTvna
Un41 = (1 - an)yn + aanna

Qn:(l_
zn = (1—

where «;,, B, vn € (0,1) and n € N.

The above iterative methods (4) have been extensively
studied by many authors (e.g. [2], [3], [4], [5]) for approxi-
mating fixed points of nonlinear mappings and solutions of
nonlinear operator equations.

On the other hand, the split feasibility problems (SFP)
have the following property:

find velC with Ave Q (5)
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where A is a bounded linear operator from H; to Ho. Denote
Yo ={v e : Av € Q} the set of solutions of the split
feasibility problems (SFP) and 7" = {v € F(T)NC : Av €
F(S) N Q} the set of solutions of the split feasibility and
fixed point problems where 7 : C — C and S : Q — Q.

Censor and Segal [6] studied, in finite-dimensional spaces,
for solving the problem (SCFPP) by using the following
algorithm:

Vpi1 = T (v + AAYS — I) Avy,) (6)

for each n > 1, where A € (0, %) with ~ being the largest
eigenvalue of the matrix A A (A? is matrix transposition).
Moudafi [7] proved some weak convergence theorems in
Hilbert spaces when two mappings 7 and S are quasi-
nonexpansive mappings by the following relaxed algorithm:

Un+1 = (1 - an)qn + anTzn (7)

for each n > 1, where z, = v, + AA*(S — I).Av,, for any
€ (0,1), B € (0,1) and X € (0, %) with «y being the
spectral radius of operator A*A.

Korpelevich [8] introduced the extra-gradient iterative
method for solving a saddle point problems, many re-
searchers have used and applied this iterative method for
solving various problems (see e.g. [9], [10], [11], [12], [13],
[14], [15], [16]).

For solving the split feasibility and fixed point problems,
in 2012, Ceng et al. [17] proposed an iterative method
by combining the extragradient iterative method with the
idea of Nadezhkina and Takahashi [18] and proved that
the sequences generated by their iterative method converge
weakly to an element of the solutions of the split feasibility
and fixed point problems.

Yao et al. [19] studied the split feasibility and fixed point
problems by using the following iterative method for all n €
N:

vp € C chosen arbitrarily,

zn = Pe(ymu + (1 — 7)) (vn — 6A™(Z — SPg)Avy)),

Un+4+1 = (1 - an)qn + anT((l - Bn)zn + BnTzn)7

®)

where ay,, Bn, Yn € (0,1) and § is a constant in (0, W)

Chen et al. [20] introduced an Ishikawa-type extragradi-
ent iterative method for pseudo-contractive mappings with
Lipschitz assumption on 7.

Motivation and inspiration from the work of Ceng et al.
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[17] and Yao et al. [19] as the following:

vg € C chosen arbitrarily,

qn = Pc(vp — v A*(Z — SPo)Avy,),

wy, = Pe(vy, — 1A (Z — SPg)Agn), Q)
zn = (1 = Bp)wn + BT wy,

Upt+1 = (1 — ap)wy + anT zn,

for all n € N, where S : Q — Q is a nonexpansive mapping,
A : H1 — Ho is a bounded linear operator with its adjoint
A* and they proved that their sequences generated by their
iterative methods converge weakly to solutions of the split
feasibility and fixed point problems.

Here, we assume that the solution set of the split feasibility
problems are nonempty. Let f : 7; — R be a continuous
differentiable function, the minimization problem:

min f(v) := %HAU — PoAv|? (10)

velC

is 1ill-posed. Hence, Xu [22] considered the following
Tikhonov regularized problem:

1 1
epoy . L _ 2 2
min f4(v) 1= 5[l Av = PoAv|? + Splol? (1D
where p > 0 is the regularization parameter.
We can find the gradient that
V() =Vfw)+pl=A"(T—-Po)A+pI (12)

is (p+||.AJ|?)-Lipschitz continuous and p-strongly monotone.
It is worth to emphasize that the traditional Tikhonov regu-
larization is usually used to solve the ill-posed optimization
problems. The advantage of a regularization method is its
possible strong convergence to the minimum-norm solution
of the optimization problems (see e.g. [23], [24], [25]).
Chen et al. [26] studied the split feasibility and fixed point
problems by using the following iterative method:

vp € C chosen arbitrarily,

zn =Pe (I - 'anfp")vnv

Ung1 = PBnn + (1 - Bn)SPC('Un — WV frr (Zn))a

(13)

for all n € N, where Y | pn, < 00, {7n} C [a, b] for some
a,b € (0, 7zpz) and {Ba} C [c,d] for some c,d € (0,1).
Then,both the sequences {v,,} and {z,} converge weakly to
an element 0 € 7.

Motivated and inspired by Chen et al. [26], Chen et al.
[20], and Phuengrattana and Suantai [1], we introduce the
iterative methods by using a combination of an extragradient
method with regularization due to a generalized SP iterative
method for solving the split feasibility and the fixed point
problems of pseudo-contractive mappings with Lipschitz
assumption on C and nonexpansive mappings on Q.

II. PRELIMINARIES

Let C be a closed convex subset of a Hilbert space H. The
mapping P¢ : H — C is called the metric projection if Pcv
is the unique point in C with the property:

[lv = Pev|| = min{|jv —¥| : ¥ € C} forallv € H. (14)

Proposition IL.1 (see [27]). For given v € H and n € C :
(i) n="Pcve (x—n,9—n<0 forall J €C;

(i) n="Pcv & |lv—nl? < |lv—-"3|*—||9 —n|? for all
¥ € C;
(iii) (v =10, Pev — Ped) > ||Pev — Ped||* for all ¥ € C

We also need other properties of nonlinear operators as
the following:
(a) A mapping 7 : C — C is called an L-Lipschitzian if
there exists £ > 0 such that

| Tv—TY| < L|jv—"2], forallv,9eH, (15)

if £ =1, then T is called a nonexpansive;
(b) A mapping 7 : C — C is called a firmly nonexpansive
if 27 — T is nonexpansive, or equivalently,

(v—0,Tv—TV) > ||Tv—TI|? forall v,9 € H,
(16)
alternatively, 7 is firmly nonexpansive if and only if T

can be expressed as
1

where S : ‘H — H is a nonexpansive;

Let 7 : H — H be a mapping. A mapping Z — 7 is said

to be demiclosed at zero if for any sequence {v,} C H

with v,, — v, and v, — Tv, — 0, we have v = Tv.
(¢) A mapping T : C — C is called a monotone if

(v=0,To—TY) >0, forall v,¥ € H,; a7

(d) A mapping 7 : C — C is called a 8-strongly monotone
with 3 > 0, if

(v —1,Tv—TY) > pllv—2| forall v,d € H,;
(18)
(e) A mapping 7 : C — C is called a v-inverse strongly

monotone (v-ism), with v > 0, if

(v—0,Tv—TY >v||Tv—T9I|? foral v,9 € H;
19)
It is well-known that the metric projection Pc : H — C is

firmly nonexpansive, that is,

(v =9, Pev — Pcvd) > ||[Pev — Pcd|?
& Pev —Ped||* < lo = 9)* = (T — Pe)v — (T~ Pe)d|?,
forall v, ¥ € H.
(20)
Let H be a real Hilbert space. Then the following results
hold:

) Jo+9*> = ||v]|? + 2(v,9) + ||9||> forall v,d € H;
Q) v +9)* < |||* + 20,0 +9) forall v, € H;

3)
lav + (1 — )92
= allv]* + 1 = a)[[9]* - a1 - a)llv - I|*, @D
where o € [0, 1];

“

low + B + yn||?

= allv[* + B19]1> +~[Inll* = aBllo - 9|?
—avy|lo =l = By[9 —nl?,

where a, 8,7 € [0,1] with o + 4+ v = 1.

(22)
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Lemma IL2 ([20]). Let Q be a nonempty closed convex sub-
set of a Hilbert space H and S : Q — Q be a nonexpansive
mapping. Set VS = A*(T — SPg)A, then

(0= 0,V (0) -V (0) >~

> SV -V @)

(23)
Lemma IL.3 ([21]). Let H be a real Hilbert space, C be a

closed convex subset of H . Let T : C — C be a continuous
pseudo-contractive mapping. Then

(1) F(T) is a closed convex subset of C;
(ii) Z — T is demiclosed at zero.

III. MAIN RESULTS

We propose the generalized SP-type extragradient with
regularization iterative method for pseudo-contractive map-
pings with Lipschitz assumption for solving the split feasi-
bility and fixed point problems.

Theorem IIL.1. Let Hq and Hs be two real Hilbert spaces
and let C and Q be two nonempty closed convex subsets of
Hq and Ha, respectively. Let A : Hi — Hao be a bounded
linear operator with its adjoint A*. Let S : Q — Q be a
nonexpansive mapping and T : C — C be an L-Lipschitzian
pseudo-contractive mapping. For vy € Hy arbitrarily, let
{vn} be a sequence defined by

qn = Pe(vn — (A" (Z — SPo) A+ pnT)vn),
wy, = Pe(vn — (AT — SPo)A+ pnI)gn),
(1 = p)wy + 0, Twy,
zn = (1= Bn)s$n + BnT sn,
=(1—an)zn + anT zn,

(24)

where {y,} C [a,b] for some a,b € (0, m), {pn} C
(0,00), >0 gpn <00 and 0 < a < a, <b< f, <c<

1
On < d < === Then the sequence {vn} generated

by (24) have a fixed point.

Proof: Firstly, we show that the sequence {v,} is
bounded. Let z € 7. We obtain that z € F(T)NC
and Az € F(S)N Q. Setting u, = PoAvy,, t, = v, —
V(A (T — SPo) A+ pnT)v,, VfSPm = A*(T — SPo) A+
pnZ and V9 = A*(T — SPg)A, for all n > 0. From the
nonexpansive property of P, we have

lgn = 201> = [ Petn — 2|* < [t — 2|
= ||vn = Y (AY(Z — SPo) A+ pnT)vn — Z||2
= |lvn — 2||? + 290 (vp — 2, A*(SPg — I)Avy,)
+ A (SPg — I) Av,|®

- ’ann<2(tn - Z) + ’annruny vn>-
(25

Since {v,} C [a, b] for some a,b € (0, W), we obtain
lgn = 211 = llvn = 21 + Ml S P Av, — Av,||?
+ 29, (v, — 2, A" (SPg — I)Av,,)
— VP (2(tn = 2) + Ynpnvn, Un)
= llon — 2l + 2 AP S e — Ava|?
+ 27, (v, — 2, A" (SPg — I)Av,,)

- ’ann<2(tn - Z) + ’annvna Un)-
(26)

Since A is a linear operator with its adjoint A*, we get

(U, — 2, A" (Spn — Avy))
= (Av, — Az, Spy, — Avy)
= <Avn - .AZ + S/J/n - Avn - S/'(‘n + -Avn7 S/J'n - AUN)

= (Spin — Az, Spp — Avn) — [|Spn — Avy ||
(27)
Using combination (21) in (27), we obtain

<Sun - AZ)‘SMn - -Avn>

1
= SIS = Az|* + [[Spn = Ava||* — [ Av, — A2]]%).
(28)
From § is a nonexpansive mapping and (20), we get

1Spn — Az[|” = |SPoAv, — SPoAz|?
< |[PoAv, — PoAz|?
< ”-AUTL - -AZ||2 - ||,Un - -/4'Un||2-

From (27), (28) and (29), we have
(Spn, — Az, Sy, — Avy)
= 2 (1Spn — AP + 1St — Avall? ~ [ Ay — Az]?)
— St Av?
< 5 (M = A2l ~ llin — Avn? +11Spn — Av?
[ Avn — A2P) ~ Syt — Ava
= St — Ava = S Span — Ava .

(29)

(30)
Substituting (30) into (27), we get

(U — 2, A" (S — Avy))

1 1 3D
< _§HMH - AvnH2 - iHSNn - -A'Unuz'

Substituting (31) into (26), we get
lgn — 211> < llvn = 2[1> + V2N AIP|IS . — Avp[|®
1 1
2 (=3l = AP = 310 = Ava?)
- ’ann<2(tn - Z) + ’annvna Un)
= [lvn = 21> + 2 Al IS n — Avy|?
= Ynlltin — -A'Un”2 — Ynl|Spin — Avn”2
- Vnpn<2(tn - Z) + YnPnVn, Un>
= [[on = 2[1* =l — Avn|?
=Y (1= Al IS ptn — Avy||?
- ’YnPn<2(tn - Z) + YnPnUn, vn>
< lvn — 2”2 = Ynpn(2(tn — 2) + YnPrVn, Un)
(32)
Next, we show that
(V159 (0) = V15 (9),0 = 9)

1
> \V4 Spn v) —V Spn 9 2.
> IV ) = V)]

Using Lemma I1.2, we have

(33)

(0=, VFS () =V FS(9)) > ﬁuw%)—wsww
(34)
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So,

(v + 2 APV 507 (0) = V50 (9),0 — 0)

= (3 + 2 AP (v llo = 91> + (V[ (0) = VfE(9),0 — D)

=yl = IIP + 7 (VIS (v) = Vf5(9),0 =)

+ 27 | AP [lo = 917 + 2] AIIP(V 5 (v) = V5 (9),0 =
> yallo = 9P + 1 (VS (v) = VIE(9),0 =)

+ 23 | AP [lo = 9| + V5 (v) = Vf(0)|7
> yallo = 9° + 29 (VS (v) = VIS (9),0 - )

+V S (w) = VW)
= [0 = 9) + Vf5(0) = V()
= V[ (v) = V£ (9)|1%.

(35
Using Proposition II.1(ii), we obtain

[y — 22
< lvn — 'anfsp" (qn) — Z||2

— lvn — 'anfSp" (gn) — wn||2
= [jvn — Z||2 — 29 (vn — 2, vapn (qn))

+ 1V S (@) |12 = llon — wa?

+ 290 (v, — Wy, vap" (qn)) — ’Y’I2L||stp" (qn)H2
= [jvn — 2”2 — lvn — wnH2 + 27n<vf8pn(Qn)7Z — wy)
= llon = 2|* = [lon — wal|?

— 27, (<Vf8pn (gn) — vapn (2):qn — 2)

(TS (2), 2 = g+ VI () 0 — )
< v — 2”2 — lvn — wnH2 + 27n<vf8pn(Qn)7Qn — Wn)

= ||U7l - Z||2 - ||Un - QnHQ - Hq’I’L - wnH2

+ 2||Un - ’anfspn(Qn) — Qn, Wn — Qn>-
(36)
Using Proposition II.1(i) in (34), we get
<Un - 'anfspn (Qn) — Qn, Wn — Qn>
= <Un - 'anfspn (Un) — Qn, Wp — Qn>
nvspn n _V Spn n) Wn = UYn
+ (V2P () = V2P (), wn — Gn) a7

S ’Yn<vf5pn (Un) - vfspn (Qn)v Wy, — yn>
<l V5P () = V£ (gn) | wn — ga
< Ynlpn + 2”-'4”2)an — qnlllwn — gul|-

It follows from the hypothesis on {7, } and (37), we obtain

l[wn — 2|1 < flvn = 2l = lvn = @nll? = llgn — wn?
+ 2<Un - ’7nvf$pn (Qn) — Gn, Wn — Qn>
< lvw = 2)1* = llvn = @ull* = llgn — wall?

+ 29 (pn + 2l A1) [vn — gallllwn — gnll
< lvn — Z||2 — [Jvn — Qn||2 — [lgn — wn”2
+ lwn = gull® + 2 (o0 + 2/l A17)? lon — gnll®

= llon = 2[* = (1 = 72 (pn + 2 A1) 00 — gn]
< |lon — =|1*
(38)
Since 7 is a pseudo-contractive mapping, we get
1 Twn = 2l* < llwn = 2* + llwn = Twal®. (39)

Then,

1T sn — zII”
= HT((l — Op)Wn + 5nTwn) - Z”2
< (1 = dn)(wn — 2) + 6n(Twn — Z)||2

+ [[(1 = 6p)wn + 6, Tw, — T((1 = 8,)w, + 8, Twy)|?

(40)

Using (21) and 7 is an L-Lipschitzian pseudo-contractive
mapping, we get

(1 = 6,)wn 4 6, Twn — T((1 = 8p)wy + 6, Twy)||?
= [|(1 = 6n)(wn — T((1 = 0p)wn + 6, Twy)

4+ 6 (Twn — T((1 = 6wy, + 6, Twy)|?
= (1= 6)[lwn — T((1 = 82)wn + 6, Twy)|?

+ 6| Twn — T((1 = 8wy, + 6, Twy)|?

— 00 (1 = 6,) ||lwn — Twnl?
< (1 =) Jwn — T((1 = dp)wn + 6, Twy) |2

+ 62£2Hwn - Twn||2 = 0n(1 = 6n)llwn — Twn”2
= (1= 6,)|lwn — T((1 = 8w + 6, Twy)|?

—0n(1 =0, — 6,2L£2)||wn — ’Twn||2.
(41)
Using (21), (39) and (38), we get

(1= 6n)(wn — 2) + 6n(Twn — Z)||2

= (1= 6n)llwn — ZHz + 0p[| Twy, — z||2
—00(1 = 6,) |lwn — Twnl?

< (1= 0p)|lwn — ZH2 + 5n(||'wn - ZH2 + |lwn, — Twn||2)
= 6n(1 = 6n)|lwn — Twn||2

= Jw — 2[|* + 63 [wn — Tw,||?

< v — Z||2 + 5721||wn - TwnH2~
(42)
Using (41) and (42), we get

T80 — 2|
= |7((Q = 6wy + 6, Tw,) — z||?
< (1 = dn)(wp — 2) + 6n(Twn — Z)||2
+ (1 = 6p)wp + 6, Twy — T (1 = 8,)wy + 8, Twy)|?
< lm = 2)12 + (1 = 0)||wn — T((1 = 6wy, + 6, Twy)|?

—0n(1 =26, — 02 L2)||wn — Twnl?.
(43)
Since 7 is a pseudo-contractive mapping, we obtain

1Tz = 21 < llzn = 2l* + ll2n = Tzal®. @4

Then,

|2 720 — Z||2

= T((1 = Bn)sn + BnT sn) — Z||2
< (1 = Bn)(sn — 2) + Bu(Tsn — Z)||2
Using (21) and 7 is an L-Lipschitzian pseudo-contractive

Volume 51, Issue 2: June 2021



TAENG International Journal of Applied Mathematics, 51:2, [JAM 51 2 08

mapping, we get

(1= Bn)sn + BaTsn — T((1— Bn)sn + 5n7-3n)||2
= [[(1 = Bn)(sn = T((1 = Bn)sn + BnT sn)

+ Bu(Tsn = T((1 = Br)sn + /8nT3n)||2
= (1= Bn)llsn = T((1 = Bn)sn + 6n7—5n)”2

+ BalTsn —T((1 = Bn)sn + ﬂnTSn)”z

= Bn(1 = Bu)llsn — TSnH2
<A =Bu)lsn = T((1 = Bn)sn + BnTSn)HQ

+ BS)L['Q”Sn - T5n||2 = Bn(1 = Bu)llsn — TSnHQ
= (1= Bn)llsn = T((1 = Brn)sn + ﬁnTSn)Hz

= Bu(L = Bn = BoL?) |50 — Tsnl*.

Using (21) and (44), we get

(46)

1(1 = Ba)(sn = 2) + Bu(Tsn — 2)|1?

= (1= Bu)llsn — 21> + BuTsn — |?
- Bn(l - Bn)”Sn - T3n||2

< (1=Bn)llsn — Z||2 + Bn(”‘sn - ZH2 + |80 — TanQ)
= Bn(1 = Bu)llsn — T5n||2

= llsn = 2lI> + Ballsn — Tsull®.
A7)
Using (46) and (47), we get

1Tz — 212
= [T((L = Bn)sn + BnTsn) — ZH2
<X = Bn)(sn = 2) + BulTsn — Z)HZ
+ (L = Bn)sn + BnTsn — T((1 = Bn)sn + 6717-371)||2
= llsn = 2lI> + (1 = Ba)llsn = T((1 = Bu)sn + BuTs0)|1?

— Bu(1 =28, — B2L?) |50 — Tsnll*
(43)
Consider,

I8 — 2|

= (1 = 8p)wn + 6, Twy, — 2|)?

= (1= 8,)|Jwn — 2||* + 6| Tw, — 2|2
—0,(1 = 6,) |lwn — Twnl?

< (1= 6)llwn = 2[* + n(lwn = 2[|” + [lwn — Tw,l*)
— (1 = 6p)|Jwp — ’Twn||2

= [[wn — 2|1 + 67 |l wp — Twn?

< vn = 2l* + 82 lwn — Twal|.
(49)
Since s, = (1 — §p)w, + 6, Tw, and 6, < d <

m, we obtain
[sn — T((1 = Bn)sn + BuTsull”
= ||(1 - 5n)wn + 0, Twp, — T((l - Bn)sn + BnTSn)H
= 5721”“}71 - 7-571”2 + 5721||wn - TwnH2
— 2B,0n(wy, — T S,y Wy — Twy,)
= Bi”wn - TSn”2 + 5721||wn - TwnH2
= 2B800n(wy, — T8p + Twp — Twy, wy, — Twy)
= ﬁi”wn - 7-371”2 + 5721”74)?1 - TwnH2
— 2Bn6n|lwy — Twn||2
— 268000 (Twy, — T $p, wy, — Twy)
< 5Z||wn - TSnH2 + 672L||wn - TwnH2
— 2Bn0n|lwy — Twn||2
+ 28000 || Twn — T splllJwn — Twy]|
< Brllwn — Tsnll® + 63 lwn — Tw,||?
- 2Bn5n||wn - Twn||2
+ 28,02 L|wy, — Twp ||| wn — Twy||
= BZ”wn - 7d5n||2 + 512L||wn - TwnH2
- Qﬁn(snllwn - Twn”2
+ 26,02 L|wyn, — Tw, ||
= 6Z||wn - Tsn||2 + 53”1‘% - TwnH2
— 2660 (1 — 8, L) || wn, — Twyl?

< 53||wn - TSnH2 + 6721”71)71 - TerHZ
(50)
Combining (48) with (50), we get

T 2n — ZHQ

< lon = 21I* + 83 lwn — Tw,||?
+ (1 — ﬁn)(ﬁi”wn - 7d5n||2 + 6721”71)71 - TwnH2)
= Bn(1 =280 = BiL)|lsn — Tsnl®

< lon = 211 + (2 = Ba) (B3 + 63) lwn — Tw,||?

- Bn(]- - Q/Bn - B’?),EQ)HSTL - TSnH2
(51)
Since 5, < c < d, <d< m, we have

1—283, —B2L%>0.
Hence,

[T 20— 21 < llun — 21>+ (2= Bn) (B2 + 62 llwn — Twnl*.
(52)
Consider,

2 — 2|12

= H(l - 6n)wn + ﬂnTwn”z

= (1= Bn)l|wn — ZH2 + Bl Twn — Z||2
— Bn(1 = Bu)|lwn — Twn||2

< (1= Bn)llwn — ZH2 + Bn(llwn — ZH2 + [lw, — Twn||2)
= Bn(1 = Bn)llwy — Twn||2

= Hwn - ZH2 + 572L||wn - 7-wn”Q
(53)
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Using (21), (24), (52) and (53), we have

[vn+1 — ZH2
=|(1 — an)zn + an T2, — 2|?
= (1= an)llzn = 2l” + @ul| T2n — 2|2
—an(l —an)llzn — TZHHQ
< (1= an)(Jlwn — 2[1* + B2 lwn — Twa|?)
+ an([lwn, — Z||2 +(2 - ﬂn)(ﬁi + 5721)”“% - Twn||2)

—an(l—an)|lzn — ’Tzn||2

= |lwn — ZH2 - O‘n(ﬁfz — (2= Ba)( 72L + 53))”“’7» - Twn||2)

—an(1—ap)|lzn — Tzal?
< flwn — 2]
(54)
Equation (54) together with (38)
[vn41 = 2] < Jlon — 2|7, (55)

for every z € 7" and for all n > 0. Hence, the sequence {v,,}
generated by algorithm (24) is Féjermonotone with respect
to 7. Therefore, we obtain lim,, , [|v, — z||* exists im-
mediately, it follows that {v,,} is bounded and the sequence
{||vn, — 2||} is monotonically decreasing. Consequently, from
(32) and (38), {¢»} and {w,} are also bounded.

Using (54) and (38), we obtain

[Vn+1 — Z||2
< [lwn — 2| (56)
< lvn =211 = (1 =72 (pn + 2[ A1) [[on — aull*.
Then, we have
(1- 7721(pn =+ 2”-’4”2)2”% - Qn||2 (57)
< lon = 21I* = o1 — 2|2
and )
Jim f[on, = ga" = 0. (58)
Similarly, we have
lim Jwy — ga]* = 0. (59)
Using (58), (32) and lim,,_, o, p, = 0, we get
Yn (1 — 77,||A||2)HS;L" - Avn”2 + Ynllpn — Avn||2
< lon =201 = llgn — I
- ’ann<2(tn - Z) + YnPnUn, Un> (60)

< (lvn = 2l = llgn = 2D lvn — gnll
- ’ann<2(tn - Z) + YnPnUn, Un>-
This implies that

lim [[Spn — Avy |2 =0 and  lim ||, — Av,|® = 0.
n—oo n—roo

(61)
Hence, lim,, . ||ptn — Spn|[? = 0.
Using (54), we obtain
an (B = (2= Bn)(Bi + 02))lwn — Twn %)
+ an(1 = an)|lzn — T2al)? (62)

< v = 2l* = llvngs — 2.
This implies that

lim |w, — Tw,||* =0 and lim [z, — Tz,[> = 0.
n—oo n—oo

(63)

For all n € N, we obtain

80 = Tsnll < [Isn — Twall + [[Twn — Tsnll (64)
< |Isn = Twnll + L|lwn — sn -

Since s, = (1 — 0p)wy + 6, Twy, we get
|8 — Tsnll
<N = 0p)wy + 6 Twy, — Twy||
+ Ll|wy — ((1 = 0p)wp + 6, Twy)||
= [[(1 = 0n)(wn — Twp)|| + L|6n(Twn — wy)|]
< (1 - 6n)Hwn - TwnH + 67z£||Twn -
This implies that

(65)

wy|-
nh—{%o |, — Tsnl| = 0. (66)

Using the firmly nonexpansiveness of P¢, (20) and (32), we
obtain
lgn — 21 = [IPetn — 2lI* < |ltn — 2[I* = [|Pctn — tall?

S ||U7L - 2”2 - HQVL - th2~

67)
So,
I = tall? < 1o = 21 = llgn = =I° -
< (llon = 2l + llgn — 2)[lvn = gnll-
Using (58), we have
Jim lgn —ta] =0. (69)

Since the sequence {v,} is bounded, we can choose a
subsequence {v,,} of {v,} such that v,,, — Z.

From the above conclusions, we can obtain that

Zn, = Z,

Av,, — AZ,
iy — AZ.

i

Up, — 7,

qn; -z,

tn, — %,

and (70)

Using Lemma I1.3,
ze F(T)

From g,,, = Pct,, € C and p,,, = Pg.Av,, and using (70),
we obtain

and Az € F(S)

zelC and Az € Q.
Hence,
zZeCNF(T)

This is Z € 7 and shows that wy (v,) C 7. Since the
lim,, o ||vn, — z]|| exists for every z € T and every sub-
sequence of{v,, } converges weakly to z € 7, it is immediate
from Lemma 2 that {v,} converges weakly to z € 7" The
proof is completed. ]

Example IIL.2 ([28]). Let H be the real Hilbert space R?
under the usual Euclidean inner product. If v = (a,b) € H,
define v+ € H to be (b, —a). Let K := {v € H : v < 1}.
and setting

and Az e QN F(S).

1 1
K1 ::{UE’H:Hv||Si}andKQ::{veHzi§||UH§1}.
Define 7 : K — K as follows:
v+ vt if v e Ky,
Tv= 71
Y {lz|—v+vl, if v € Ko, D
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Then 7 is an L-Lipschitzian pseudo-contractive mapping
with £ =5 and F(T) = {0}.

Example IIL3. Let #; = #Ho; = R? under the usual
Euclidean inner product. Let C ={v € H :v <1} and T as
in Example II1.2. Let Q@ = R? and Sv = 1o for all v € R%

Setting Av = v for all v € R?. Let v, = 25, p, =
H%P 8, = 0.05, B, = 0.035, a,, = 0.01 for all n > 1.

is easy to see that 7 = {0}. Let 29 = (—0.5,0.7), then the
sequence {v,} generated iteratively by (24) converges to 0.

TABLE I: Results of Example II1.3

Number of Iterations (z1,x2) |rn+1 — znl|
5 (-0.121765, 0.569494) 0.072246
10 (0.139452, 0.465847) 0.050984
50 (-0.138005, -0.062421) 0.016084
100 (0.004327, -0.030433) 0.003282
150 (0.005884, -0.000843) 0.000636
200 (0.000465, 0.001024) 0.000120
250 (-0.000159, 0.000137) 0.000023
300 (-0.000033, -0.000021) 0.000004
343 (0.000008, -0.000005) 0.000001
0.8 : : : : : :
—ux; = —0.5
0.6 ———19 = 0.7 ||
S 04 1
E 02 ]
[
o
n 0 _
)
=
< -0.2 |
=
-0.4 1
-0.6 | | | | . .
0 50 100 150 200 250 300 350

Number of iterations

Fig. 1: Graph of Example II1.3
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