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Abstract—The spectral clustering (SC) method has a good
clustering effect on arbitrary structure datasets because of its
solid theoretical basis. However, the required time complexity
is high, thus limiting the application of SC in big datasets. To
reduce time complexity, we propose an SC algorithm based on
OptiSim Selection (SCOSS) in this study. This new algorithm
starts from selecting a representative subset by using an
optimizable k-dissimilarity selection algorithm (OptiSim) and
then uses the Nyström method to approximate the eigenvectors
of the similarity matrix. Theoretical deductions and experiment
results show that the proposed algorithm can use less clustering
time to achieve a good clustering result.

Index Terms—spectral clustering, Nyström method, OptiSim
selection, eigen-decomposition.

I. INTRODUCTION

A. Background

As an essential issue in machine learning, clustering
analysis is widely used in image processing, text min-
ing, and social networking1−3. Clustering analysis divides
a dataset into clusters such that intra-cluster similarity is
maximized and inter-cluster similarity is minimized without
priori knowledge4. Commonly used clustering algorithms,
including k-means5, FCM6, and DBSCAN7, have some
disadvantages, such as quickly obtaining an optimal local
solution, being sensitive to the initial setting, or relying
heavily on data distribution8. The spectral clustering (SC)
method has recently been a trending topic because it can
obtain an optimal global solution for nonconvex spatial data9.

Based on spectral graph theory, the SC method has a
robust theoretical basis10. Regarding each data point as a
vertex of an undirected graph, SC starts by calculating each
pair similarity between vertices to obtain a similarity matrix,
which is then converted into a Laplacian matrix. It solves
the eigenvectors of the Laplacian matrix for clustering. Thus,
an optimal global solution of the spectral partition criterion
in the relaxed continuous domain is obtained. However, the
spatial complexity of SC in storing the similarity matrix
is O(N2), and the time complexity in decomposing the
Laplacian matrix is O(N3). In the current big data era, such
high computational complexity limits the application of the
SC method.
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B. Related work

Some progress has already been made to solve the effi-
ciency problem of SC. Song et al. proposed a parallel SC
approach, in which the similarity matrix was transformed
into a sparse one, and the speed of clustering was improved
by using computer clusters11. Yan et al. used a k-means
or RP tree method as a data preprocessor to obtain repre-
sentative samples, utilized the SC method to cluster these
representatives, and then finally assigned each data point with
a label according to its distance to each representative12.
Lin and his collaborators found that the similarity matrix
eigenvectors were convergent. They picked the first eigenvec-
tor obtained by multiple iterative calculations to cluster the
overall dataset13. In [14-16], an incomplete Cholesky decom-
position method was applied in constructing an approximate
Laplacian matrix to reduce computation complexity. In [17],
a sampling method based on a neural network was used to
accelerate the speed of the SC method. In [18], random
Fourier features were used to represent data explicitly in
kernel space and thus reduce the computational complexity
of SC.

The Nyström extension method is a well-known accel-
eration means for SC, which only uses some samples to
approximate the clustering. Fowlkes et al. first proposed that
the Nyström method could be applied in SC to improve the
efficiency of clustering19. In their study, a small randomly
selected subset was utilized to approach the eigenspace of
the Laplacian matrix, and it was used in image segmen-
tation with a good performance. For the quality of repre-
sentatives playing an essential role in the approximation of
Nyström, Zhang et al. used the k-means clustering method
to preprocess the dataset and then extracted samples20. In
[21], a sampling method based on the farthest and nearest
strategy was developed to get good samples. In this method,
each data object was assigned a sampling probability, and
whether it could be selected as a sample depended on
probabilities. Kumar and his collaborators established an
integrated Nyström scheme to minimize the clustering time
of SC but at the expense of clustering quality22. In [23], the
projections on the leading eigenvectors learned from training
datasets were used to replace the affinity vector for Nyström
extension. Other works that applied the Nyström method
in SC include sampling methods based on alternate24 and
maximum diversity25. In short, the key to SC acceleration
schemes based on the Nyström extension is the selection
of better samples because they have an important effect on
clustering quality.

C. Contribution

We develop an SC algorithm based on OptiSim Selection
(SCOSS) in this study. The novelty of SCOSS is introducing
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an optimizable k-dissimilarity selection algorithm (OptiSim)
and the utilization of the Nyström method. The OptiSim
selection algorithm is a balanced sampling method by which
the extracted samples can evenly cover the entire data space.
In SCOSS, we use the OptiSim method to pick a represen-
tative subset and utilize Nyström method to approximate the
resolution of SC.

We organize the rest of the paper as follows: In Section
II, we introduce SC method based on graph theory. In
Section III, we state the principle of the Nyström extension
and OptiSim selection, and present SCOSS algorithm in
detail. In Section IV, we conduct experiments to verify the
effectiveness of the proposed algorithm. We conclude the
study in Section V.

II. SC
For a given dataset X = {x1, · · · , xN}, where N is the

size of X , SC algorithm treats clustering thing as a partition
of an undirected graph G = (X,S)10. In SC, each data
point xi is considered as a vertex in an undirected graph
G. The similarity sij between xi and xj is the weight of
the edge connecting the two vertices which forms similarity
matrix S = {sij |i = 1, · · · , N, j = 1, · · · , N}. Then, an
optimal graph cut criterion is used to divide the graph G
into k disjoint subsets C1, . . . , Ck so that data points in the
same subset are as similar as possible and in different subsets
are as dissimilar as possible.

A popular cut criterion is a normalized cut, which in-
troduces the notion of volume to normalize the correlation
between subsets to measure the similarities between inter-
and intra-subsets simultaneously26. Its constraint function is
shown in Equation (1).

NCut(C1, C2) =
Cut(C1, C2)

V ol(C1)
+
Cut(C1, C2)

V ol(C2)
(1)

where Cut(C1, C2) equals to the sum of weights within
C1 and C2, and V ol(C1) = Cut(C1, G). Cut(C1, C2) is
computed as follows.

Cut(C1, C2) =
∑

xi∈C1,xj∈C2

Sij (2)

The normalized cut criterion can only cut an undirected
graph into two clusters, so the multiple normalized cut
criterion is a preferred choice when a graph has multiple
clusters27. Equation (3) defines the constraint function of
multiple normalized cuts.

MNCut(C1, · · · , Ck) =
k∑

i=1

Cut(Ci, G− Ci)

V ol(Ci)
(3)

However, the optimization of the multiple normalized
cut is an NP-hard problem, and an alternative way is to
obtain its approximate solution in the relaxed continuous
real domain. Gu et al. indicated that the relaxed spectral
solution of multiple normalized cut is located in the subspace
spanned by the eigenvectors of the Laplacian matrix, which
corresponds to the top maximum eigenvalues28. Therefore,
the key process of SC is to resolve the eigenvectors and
eigenvalues of the Laplacian matrix, which is shown in
Equation (4)29:

L = D−1/2(D − S)D−1/2 = I −D−1/2SD−1/2 (4)

where D is a diagonal matrix, and each diagonal element
dii in D is the sum of all elements of the ith row in matrix
S. A low-dimensional space Sk can be formed with the
eigenvectors of matrix L; then, Sk is clustered to obtain the
final clustering result by using a classical clustering method.

The time complexity for the decomposition of matrix L
is O(N3), and such high computational complexity limits
SC’s application in big data. When L is a sparse matrix, the
Lanczos method can be utilized to resolve the eigenvectors
and thus increase the decomposition speed, whereas its
effectiveness has yet to be verified26. In 2004, Fowlkes
proposed a spectral grouping using the Nyström extension
method, which just utilized a small sample dataset to obtain a
low-rank approximation of the eigenvectors of the Laplacian
matrix to reduce computational complexity19.

III. SCOSS

A. Nyström extension

The Nyström extension method is an approximation
technique that is commonly used to solve eigenfunction
problems30−32. Supposing a subset has n samples, the re-
maining dataset’s size is m = N − n, and the similarity
matrix S can be defined as Equation (5) when the Nyström
extension is applied to SC.

S =

[
A B
BT C

]
(5)

where A∈Rn×n(A = U∧UT ) represents the similarity
matrix of the sampled subset, B∈Rm×n represents the
similarity matrix between the sampled and the remaining,
and C∈Rm×n is of the remaining subset.

Under the assumption that Ū approximates the eigenvec-
tors of matrix S, it can be resolved by using the Nyström
extension as described in Equation (6).

Ū =

[
A

BTU∧−1
]

(6)

If Ŝ is the approximation matrix of S, then Ŝ can be
written as follows:

Ŝ = Ū ∧ ŪT =

[
U

BTU∧−1
]
∧
[
UT∧−1UTB

]
=

[
U∧UT B
BT BTA−1B

]
=

[
A B
BT BTA−1B

] (7)

As shown in Equation (7), the Nyström method uses
matrix BTA−1B to replace C and thus reduce computational
complexity.

Generally, matrix Ū cannot be used directly because it
does not satisfy the orthogonality of eigenvectors. Still, the
following step is a satisfactory method to solve the diagonal-
ization of matrix Ŝ. Assume A is a positive matrix and A1/2

represents the symmetric square roots of the semi-positive
matrices of A, P is defined as P = A + A1/2BBTA−1/2.
Furthermore, P can also be written in its diagonal form as
P = UP ∧P UT

P , and matrices V and Ŝ can be written as
Equations (8) and (9), respectively. In this case, V is the
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eigenvector of Ŝ, and V T & V are a pair of orthogonal
vectors because V TV = I .

V =

[
A
BT

]
A−1/2UP∧−1/2P (8)

Ŝ =

[
A B
BT BTA−1B

]
=

[
A
BT

]
A−1

[
A B

]
=

{[
A
BT

]
A−1/2UP∧−1/2P

}
∧p{

∧−1/2P UT
P A
−1/2 [A B

]}T

= V ∧p V

(9)

Before clustering in SC, the similarity matrix should be
normalized to obtain an ideal result when using the Nyström
method. The matrix d̂ was proposed in [19] to normalize
matrices A and B, and d̂ could be calculated as in Equation
(10).

d̂ = Ŝ1 =

[
UA1n +B1m

BT 1n +BTA−1B1m

]
=

[
ar + br

bc +BTA−1br

] (10)

where 1 is a vector in which every element is 1, ar, br∈Rm

is the sum of the rows in matrices A and B, and bc∈Rn

represents the sum of the columns in matrix B. Hence,
matrices A and B can be normalized using Equations (11)
and (12), respectively.

Aij ←
Aij√
d̂id̂j

, i, j = 1, · · ·n (11)

Bij ←
Bij√
d̂id̂j+n

, i = 1, · · ·n, j = 1, · · ·m (12)

B. OptiSim Selection Method

The OptiSim selection algorithm is a novel sampling
method that can flexibly control the balance between the
samples representativeness and diversity by defining the size
of subset K33. The smaller the K value, the better the
representativeness of the sample set. On the contrary, the
larger the K value, the better the diversity of the sample set.

Four data structures, namely, sample dataset M , subsample
dataset M ′, candidate buffer pool C, and recycling station
R, are defined in the OptiSim algorithm. M stores a subset
sampled by OptiSim, and its size is n. M ′ stores a subsam-
pled set whose size is K, and the similarity between each
data point in M ′ and M is lower than a given threshold θ.
Candidates that can be selected in M ′ are placed in C. Data
in M ′ that cannot be sampled in M are moved into R.

OptiSim is an iterative algorithm, except the first sample
is randomly selected from the dataset X , all the others in M
are iteratively selected from M ′. Each iteration begins with
the establishment of a subsample set M ′, which contains
K objects chosen from the candidate buffer pool C. The
pairwise similarity of data points between datasets M and
M ′ must be less than the threshold value θ. When data
points in C are insufficient, data in R are moved into
C. After the establishment, only the data point with the

minimum similarity to the data in M can be selected as a
sample, and the remaining data M ′ are moved into R. The
sampling process of OptiSim is described in Algorithm 1.

Algorithm 1. OptiSim selection algorithm

Input: dataset X, size of sample dataset n, size of subsample
dataset K, and threshold θ.

Output: indices of samples.
1. Create four empty data structures: sample dataset M , sub-
sample dataset M ′, candidate buffer pool C, and recycling
station R.
2. Randomly select a data point from X to be placed into
M and remove the remaining to C.
3. Randomly select a data point x from C. If the similarity
between x and each data point in M is lower than a given
threshold θ, then x is selected into M ′; otherwise, it is moved
into R.
4. Repeat Step 3 until K data points in M ′ or C is empty.
5. If C is empty and the size of M ′ is less than K, then
remove all the data in R to C, and return to Step 3.
6. If M ′ is empty, then exit.
7. Find the data point in M ′ that has the minimum similarity
to the data in M and place it into M .
8. Move all the other unselected data points in M ′ into R.
9. If the size of M equals n, then exit; otherwise, return to
Step 3.

As shown in Algorithm 1, the computational complexity
in OptiSim is O(Kn). In the sampling process, OptiSim
requires that the pairwise similarity among each object in
M ′ and M is less than the threshold θ and that each sample
obtained must have the minimum similarity to the data in
M . These steps ensure the representativeness of the samples
to a certain extent. Meanwhile, the setting of K can further
guarantee the representativeness of the sample.

C. SCOSS algorithm

The SCOSS algorithm uses Algorithm 1 to obtain
adequate samples, which are used in approximating
similarity matrix S to get the approximate matrix Ŝ. A
low-dimensional embedding space Y ∈RN×kis formed by
the eigenvectors of Ŝ whose eigenvalues are the top k
largest. Finally, Y is to be clustered by using the k-means
algorithm. The SCOSS algorithm is described in Algorithm
2.

Algorithm 2. SCOSS algorithm

Input: dataset X, size of samples n, and the number
of clusters k.

Output: k clusters.
1. Compute similarity matrix S of X: S∈RN×N and each
element sij∈S represents the similarity between xi and xj .
2. Use Algorithm 1 to obtain a sample dataset whose size
is n. Then, compute A∈Rn×n and B∈R(N−n)×N , which
represents the similarity matrix among samples and between
samples and the remaining, respectively.
3. Calculate matrix d̂ with Equation (10). Then, normalize
matrices A and B by Equations (11) and (12), respectively.
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4. Apply normalized matrices A and B to compute matrix P:
P = A+A1/2BBTA−1/2.
5. Diagonalize matrix P, and let P = UP ∧p UT

P .
6. Resolve orthogonal eigenvector V by adding UP ,∧P in
Equation (8).
7. Use the eigenvectors of Ŝ with the top k largest eigenvalue
to form matrix W : W∈RN×k.
8. Normalize each row of W to obtain matrix Y : yij =

wij/
√∑k

j=1 w
2
ij , and Y ∈RN×k.

9. Use k-means algorithm to cluster Y, and the ith row of
Y corresponds to data point xi in X. If the ith row of Y is
clustered in Cj , then xi belongs to the jth cluster.

D. Efficiency analysis of SCOSS algorithm

The time complexity of SCOSS is first analyzed, then
the proof that SCOSS can achieve good clustering quality
is deduced.

In Algorithm 2, Step 1 computes each pair similarity of
N data points and the time complexity is O(N2). In Step 2,
n samples are selected using Algorithm 1, matrices A and
B are calculated, and the complexity is O(Kn2 +mn). The
required time for computing d̂ and normalizing A and B in
Step 3 is O(mn) and O(n2) +O(mn) , respectively. Given
n�m, the complexity of Step3 is O(mn). Steps 4-6 use the
Nyström extension method to approach the eigenvectors of
ŝ, and the complexity is O(n3). Steps 7 and 8 require the
calculations of O(k) and O(kN) times, respectively. In Step
9, the time complexity is O(kNt), where t is the time of
iteration in the k-means algorithm. Specifically, the entire
time complexity of SCOSS is O(n3). However, the time
complexity of SC is O(N3). By comparing the complexities
of these two algorithms, SCOSS can achieve acceleration
against the original SC method.

In SCOSS, the process of OptiSim selection can be viewed
as getting samples from the (n − 1) subsampled dataset
M ′, and the construction of each subsample dataset M ′ is
equivalent to a traverse of dataset X . The (n − 1) samples
in M are the results of a traverse of the union dataset
T = M ′1∪M ′2· · ·M ′n−1. First to prove that with the scale of
T increases, that is with the increase of the sampling number,
sampling error will be reduced. Theorem 1 was demonstrated
in the literature [19].

Theorem 1. For a given matrix A∈Rm×n, Z⊆Rn is an
vector subspace, πk(A) is the best Rank-k approximation of
A, and πk(A) = πRn,k(A) . M ′ is a subsample dataset, then
have

Es(‖A− πZ+span(M ′),k(A)‖2F )≤‖A− πk(A)‖2F + ε‖E‖2F
(13)

Theorem 1 is right for a subsample dataset M ′. Defining
E = A − πM ′1∪···∪M ′n−1

(A), and for the union T , Formula
(14) can also be established.

ET (‖A− πM ′1∪···∪M ′n−1,k
(A)‖2F )≤‖A− πk(A)‖2F + ε‖E‖2F

(14)
Also owing to

‖E‖2F≤‖A− πM ′1∪···∪M ′n−2,k
(A)‖2F (15)

Replace the Formula (15) into the Formula (14)

ET (‖A− πM ′1∪···∪M ′n−1,k
(A)‖2F )

≤ ‖A− πk(A)‖2F + ε‖A− πM ′1∪···∪M ′n−2,k
(A)‖2F

≤ ‖A− πk(A)‖2F + εEM ′1∪···∪M ′n−2

(‖A− πM ′1∪···∪M ′n−2,k
(A)‖2F )

≤ ‖A− πk(A)‖2F + ε(
1

1− ε
‖A− π(A)‖2F + εn−2‖A‖2F )

=
1

1− ε
‖A− πk(A)‖2F + εn−1‖A‖2F

(16)
In Formula (16), the first item is a constant. The second will
decrease with the increase of n, that is, the sampling error
will become smaller with the rise of the size of samples.

Therefore, the definition of the subsample dataset and
selection of the smallest similarity to the selected samples
in the OptiSim method ensure that it can get a better sample
dataset.

TABLE I
THE UCI DATASETS

Dataset Instances Attributes Clusters
Breast 699 8 2

banknote 1372 4 2
Steel 1941 27 7

Imageseg 2100 19 7
Wilt 4839 4 2

pageblocks 5473 10 5

IV. EXPERIMENTS

We condeucted experiments on two synthetic and six
UCI datasets to verify whether SCOSS could accelerate
the SC algorithms speed. The synthetic datasets include a
nonspherical (Test 1) and spherical set (Test 2), as shown
in Figure 1. The UCI datasets used in the experiments are
shown in Table 1. All the UCI datasets were normalized
before running the experiments. In dataset Breast, the column
where some values are missing was deleted. The proposed
algorithm was compared with three other algorithms, namely,
SC, SC based on random sampling (SRS)19, and SC based on
Maximum dissimilarity Sampling (SMDS)25. Experiments
were conducted with MATLAB 2014a; the processor was
Intel (R) Core (TM) i5-3210m, 2.5 GHz, and the memory
size was 4 GB.

Under the assumption that C = {c1, · · · , ck} and S =
{s1, · · · , st} are the experimental and actual clustering re-
sults, k and t are the number of clusters in C and S,
respectively. Ni,j is defined as the number of objects jointly
contained in Ci and Sj , N c

i and Ns
j count the number of ob-

jects in ci and sj , respectively. Indicators, namely, Clustering
Accuracy (CA) and Normalized Mutual Information (NMI),
were used to evaluate the clustering quality. CA compares
the real label of each data point with its experimental label
and is defined as Equation (17):

CA =
1

N

k∑
i=1

maxtjNi,j (17)

NMI utilizes external information to evaluate the clustering
effect, and it can be calculated as Equation (18):
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Fig. 1. The synthetic datasets. Test1 is generated by the points whose cluster centers are (1,2),(1.6,2.5) and (2,2). Test 2 is made up of two spherical
sudsets.

TABLE II
THE COMPARISONS OF CA VALUES(%)

Sampling
ration(%) Algorithm Datasets

Test1 Test2 Breast Banknote Steel Imageseg Wilt Pageblocks
100 Spectral 99.8 95.3 95.1 62.6 34.5 65.7 51.1 38.1

1
SRS 55.1 61.5 81.2 48.4 31.4 53.4 48.5 23.1

SMDS 54.3 65.0 72.4 52.1 32.0 54.6 49.3 24.5
SCOSS 62.7 68.2 81.9 57.2 32.2 59.3 48.7 26.2

3
SRS 58.2 63.1 80.1 50.4 30.5 54.7 48.8 24.1

SMDS 64.7 66.7 75.5 52.2 32.2 55.2 50.3 24.9
SCOSS 77.2 72.6 84.6 59.6 33.4 61.5 51.3 27.5

5
SRS 75.0 68.7 80.7 53.6 32.5 55.8 49.2 24.6

SMDS 72.1 71.2 80.3 55.7 32.3 56.2 50.6 25.7
SCOSS 89.5 84.1 86.2 61.5 34.2 62.7 52.0 33.6

10
SRS 79.7 73.4 85.7 54.6 32.9 56.3 50.2 26.3

SMDS 81.6 78.8 82.4 56.9 33.5 56.5 51.5 26.7
SCOSS 91.3 88.9 92.3 61.9 34.6 63.3 52.1 35.7

15
SRS 84.5 82.9 85.6 54.9 33.8 57.9 50.3 28.3

SMDS 85.4 85.1 83.2 57.8 33.6 58.2 51.9 28.9
SCOSS 96.7 92.4 93.0 62.3 34.9 64.6 52.3 36.9

NOTES:Table2 provides the comparisons of Clustering Accuracy(CA) values among Spectral Clustering(SC), Sc based on Random Sampling(SRS), Sc
based on Maximum Dissimilarity Sampling(SMDS) and the proposed algorithm (SCOSS) methods in synthetic datasets and UCI datasets. The values
of SC method are first provided, then followed with the other three sampling schemes . The largest CA value is shown in bold. As shown in Table2,
SCOSS obtains the highest CA values in almost all datasets for each given sampling ratio.

TABLE III
THE COMPARISONS OF NMI VALUES(%)

Sampling
ratio(%) algorithm Datasets

Test1 Test2 Breast Banknote Steel Imageseg Wilt Pageblocks
100 Spectral 99.3 94.7 96.9 75.7 19.4 62.8 55.6 27.1

1
SRS 45.1 46.5 72.1 53.8 9.1 47.5 46.3 20.6

SMDS 54.3 58.4 71.2 56.5 10.3 50.6 49.2 21.8
SCOSS 68.4 64.2 76.4 62.9 12.6 53.2 52.0 23.5

3
SRS 54.2 62.9 72.9 54.9 11.1 48.4 46.9 21.4

SMDS 55.3 63.2 73.5 58.9 11.7 51.2 50.2 21.9
SCOSS 72.7 69.9 81.8 64.1 15.9 54.7 52.3 23.7

5
SRS 65.6 66.5 73.5 58.4 12.2 50.2 47.1 22.7

SMDS 64.1 64.3 76.9 60.4 13.5 53.1 51.7 22.1
SCOSS 84.6 81.1 86.3 66.8 17.8 56.2 52.8 24.2

10
SRS 82.1 74.3 73.6 60.7 13.4 52.8 51.3 23.2

SMDS 83.0 76.6 81.4 62.8 15.7 54.9 52.1 23.5
SCOSS 91.3 85.8 90.2 72.9 17.5 58.9 53.8 25.8

15
SRS 86.7 81.5 81.9 61.2 14.0 54.6 52.0 23.3

SMDS 88.9 85.9 84.7 64.8 15.9 55.2 52.9 23.7
SCOSS 95.1 90.4 92.1 73.6 17.9 60.1 54.2 26.1

NOTES:Table3 provides the comparisons of Normalized Mutual Information (NMI) values among Spectral Clustering(SC), Sc based on Random
Sampling(SRS), Sc based on Maximum Dissimilarity Sampling(SMDS) and the proposed algorithm (SCOSS) methods in synthetic datasets and UCI
datasets. The values of SC method are also first provided, then followed with the other three sampling schemes. The largest NMI is shown in bold
too. As shown in Table3, SCOSS performs better than SRS and SMDS.
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Fig. 2. The comparisons of SR values. NOTES: Figure 2 presents the comparisons of Speedup Ratio (SR) among Sc based on Random Sampling(SRS),
Sc based on Maximum Dissimilarity Sampling(SMDS) and the proposed algorithm (SCOSS) methods in synthetic datasets and UCI datasets. The x-axis
stands for sampling ratio and the y-axis stands for SR value. Each subgraph reveals a comparison on a certain dataset. The blue line shows the trend of
SR with the increase of sampling ration for SRS, the green for SCOSS, and the orange for SMDS.
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TABLE IV
THE COMPARISONS OF CT VALUES(S)

Sampling
ration(%) Algorithm Datasets

Test1 Test2 Breast Banknote Steel Imageseg Wilt Pageblocks
100 Spectral 27.8 45.9 25.3 68.9 325 5131 692 1516

1
SRS 2.7 3.6 3.1 4.5 20.2 25.8 17.8 52.6

SMDS 3.1 3.9 3.6 10.2 60.5 63.7 142 278
SCOSS 3.0 3.7 3.2 5.1 21.9 27.1 21.7 56.5

3
SRS 3.3 3.8 3.8 5.0 20.8 27.9 21.9 57.8

SMDS 3.9 5.9 4.2 12.9 63.9 77.6 156 305
SCOSS 3.2 4.0 4.0 5.6 23.1 30.0 25.8 62.9

5
SRS 3.7 4.0 4.5 5.5 24.8 30.7 25.0 65.2

SMDS 4.5 6.2 4.9 12.6 69.8 88.9 160 336
SCOSS 3.8 4.2 4.6 6.3 25.3 32.6 29.2 68.7

10
SRS 4.2 4.7 5.9 6.7 30.5 35.5 30.8 78.7

SMDS 6.8 7.8 7.7 13.5 72.8 112.3 178 375
SCOSS 4.4 4.8 6.1 7.6 31.7 39.9 36.7 83.4

15
SRS 6.8 7.8 6.8 8.8 35.9 43.8 37.9 92.4

SMDS 8.7 9.3 9.8 17.6 81.9 135.7 215 392
SCOSS 7.2 8.2 7.5 8.5 36.2 46.9 43.3 98.2

NOTES:Table4 provides the comparisons of Cluster Time (CT) among Spectral Clustering(SC), Sc based on Random Sampling(SRS), Sc based on
Maximum Dissimilarity Sampling(SMDS) and the proposed algorithm (SCOSS) methods in synthetic datasets and UCI datasets. The values of SC
method are also first provided , then followed with the other three sampling schemes’. The least CT is shown in bold. It can be get that the three
sampling methods only uses less time than SC, and SRS method has the minimum CT in every case. The CTs of SCOSS are almost the same as
SRS’s.

NMI =

∑k
i=1

∑t
j=1Ni,j log

N ·Ni,j

Nc
i ·Ns

j√∑k
i=1N

c
i ·log

Nc
i

N ·
∑t

j=1N
s
j ·log

Ns
j

N

(18)

The larger the value of CA and NMI, the better the
clustering quality; the maximum value of both indicators is
1. Indicators, namely, Cluster Time (CT) and Speedup Ratio
(SR), were used to evaluate the clustering speed. CT is the
time used for clustering. SR is the clustering time ratio of
SC to the sampling-based SC clustering methods, and it is
defined as Equation (19):

SR =
TSC

TSSC
(19)

where TSC is the time used for the spectral method and TSSC

the time used for the sampling-based SC method.
In all the other methods except for SC methods, the

sampling ratios were set as R=1%, 3%, 5%,10%and 15%.The
parameters of minimum similarity threshold in SCOSS and
SMDS were all assigned as θ = 0.7∗maxdistance, and the
K value in SCOSS was set as K = 0.05∗N . Every clustering
method was run ten times to obtain the average clustering
effect.

A. Analysis of the CA indicator

The comparisons of CA values among the four clustering
methods are shown in Table 2. The results of SC method are
first provided for the convenience of comparison in Table
2, then followed with the values of three sampling schemes
(The same is true in the following comparisons in NMI and
CT indicators). The largest CA value is shown in bold.

The results in Table 2 show that the quality of SC method
is the best, and it is very intelligible because SC utilizes
the whole dataset while the other three ways only use some
samples for clustering. But the superiority of SCOSS is
evident among these three sampling methods. It obtains the
highest CA values in almost all datasets for each given
sampling ratio. Meanwhile, the quality of SCOSS method

is getting better with the increase of sampling proportion,
and the CA value is also closer to the original SC algorithm.

B. Analysis of the NMI indicator

The comparisons of NMI values are presented in Table 3.
The largest CA value is also shown in bold. SC method
also achieves the maximum value in terms of the NMI
indicator, which is the same as in CA. Similarly, the proposed
SCOSS algorithm also obtains better clustering results in
all datasets regardless of any sampling ratio than SRS and
SMDS methods. Moreover, the NMI value of SCOSS is also
getting higher as the number of samples increases and closer
to that of the SC method.

SCOSS outperforms because it utilizes OptiSim selection
to sample data object, which not only takes advantage of
the dissimilarity between data objects but also avoids too
many outliers to be selected in samples. Furthermore, the
clustering effect of SRS is inferior and unstable because
it only randomly extracts some samples from the dataset.
SMDS performs better than SRS but worse than SCOSS just
because it makes the best of the max dissimilarity during
sampling but easily extracts too many outliers meanwhile.

C. Analysis of the CT indicator

The comparisons of CT values are shown in Table 4,
where the least CT is shown in bold. Table 4 reveals that no
matter in which dataset SC method always takes the longest
time, and this is because its complexity is O(N3). In the
meantime, it can also be get from Table 4 that the three
sampling methods only uses less time, that is they all could
achieve the goal of speedup.

Furthermore, SRS method has the minimum CT in each
sampling ration case of any dataset among the three algo-
rithms, and the CT values of SCOSS are almost the same as
SRS’s. This finding can be attributed to the required time of
SRS for sampling being O(n) and the time complexities of
SCOSS and SMDS for sampling respectively being O(Kn)
and O(N2).
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D. Analysis of the SR indicator

The level of speedup of sampling methods against SC can
be reflected by SR indicator, and Figure 2 displays these
comparisons in 2D coordinate maps, where the x-axis stands
for sampling ratio and the y-axis stands for SR value. There
are eight subgraphs in Figure 2, and each subgraph reveals
the SR values of the three sampling methods on a certain
dataset. The blue line in each subgraph shows the trend of
SR with the increase of sampling ration for SRS, the green
for SCOSS, and the orange for SMDS.

As shown in Figure 2, the proposed SCOSS has almost
the same SR values as the SRS’s in whatever dataset, which
means they have nearly the same acceleration effect. Whereas
the SMDS has the worst speedup effect, and it is due
to taking more time in the process of sampling. On the
other hand, all the SR values decrease with the increase of
sampling proportion in each dataset, and it is mainly owing to
the increase of sample size. Furthermore, it can also get that
the larger the scale of the dataset, the better the acceleration
effect regardless of any sampling ration and any sampling
method, and this also implies that the sampling method is
more available for large datasets.

V. CONCLUSION

The Nyström extension method can improve the SC al-
gorithm’s speed by selecting some samples to make an
approximate calculation; however, the quality of clustering
depends heavily on the representativeness of the selected
samples. In the proposed SCOSS algorithm, an OptiSim
sampling method is utilized to extract some good represen-
tatives, and the Nyström method is used to approximate the
clustering. Theoretical analysis and experiments show that
the proposed algorithm has a novel acceleration effect and
can achieve a better clustering quality than the other two
sampling methods.
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