
 

 
Abstract—Many researchers have sought to solve inventory 

models without using calculus so that practitioners who have no 
knowledge of calculus can still understand and apply inventory 
models in their studies. Algebraic methods, which include 
completing the square for the constant term, completing the 
square for the middle term, determining the 
arithmetic–geometric mean inequality, and cost difference 
comparison are critical algebraic approaches with distinct 
features. However, all lack the elegance of the more challenging 
computations of calculus. This paper provides an intuitive 
algebraic solution for inventory models. 
 

Index Terms—Economic ordering quantity model, Economic 
production quantity model, Algebraic method 
 

I. INTRODUCTION 

pproximately one hundred papers have been written on 
strategies for solving inventory models without the use 
of calculus, which indicates the degree of concerted 

efforts made by researchers to help practitioners who lack 
analytic skills to establish inventory systems. One series of 
papers considers inventory models that use algebraic 
methods to deal with linear backorder costs. These include 
papers by Grubbström and Erdem [9], Cárdenas-Barrón [2], 
Ronald et al. [15], Chang et al. [3], and Luo and Chou [12]. 
Here, we briefly review these five papers and identify their 
questionable results, then suggest specific improvements. 
Our approach realizes a genuine algebraic spirit by solving 
inventory models without the need for lengthy computations. 

In this paper, we discuss the following two inventory 
models: the economic order quantity (EOQ) and economic 
production quantity (EPQ) models. The EOQ model used by 
Grubbström and Erdem [9], and Ronald et al. [15] is as 
follows: 
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where Q  is the maximum inventory level and B  is the 

maximum backorder level. 
The EPQ model used by Cárdenas-Barrón [2], Chang et al. 

[3], and Luo and Chou [12] is as follows: 
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where Q  is the maximum inventory level and B  is the 

maximum backorder level. 
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If we compare Equations (1.1) and (1.2), we find that the 
EOQ model of Equation (1.1) and EPQ model of Equation 
(1.2) have almost identical expressions, such that a solution 
approach used for the EOQ model of Equation (1.1) can be 
directly applied to the EPQ model of Equation (1.2). 

II. NOTATION AND ASSUMPTIONS 

Achieving compatibility between Grubbström and Erdem 
[9], Cárdenas-Barrón [2], Ronald et al. [15], Chang et al. [3], 
and Luo and Chou [12] is difficult because although the 
notations they use are the same, they have different meanings. 
For example, "Q" denotes the maximum inventory level of 
the EOQ models of Grubbström and Erdem [9] and Ronald et 
al [15]. In contrast, "Q" represents the economic production 
quantity of the EPQ models used by Cárdenas-Barrón [2], 
Chang et al. [3], and Luo and Chou [12]. The paper by 
Grubbström and Erdem [9] was the first to apply an algebraic 
method for solving inventory models. Therefore, we will 
follow the notation as Grubbström and Erdem [9] as possible. 

B  maximum backorder level, 
b   backorder cost per unit per unit of time, 
c   cost of production per unit 
D  demand rate, 

( ) ( ) ( )22 +1+= kbkhkf , an auxiliary function proposed 

by Ronald et al. [15], 
h   holding cost per unit per unit of time, 
K   setup cost, 
P   production rate, with DP  , for EPQ models, 
Q  maximum inventory level, 

( ) PD-Pρ = , 

 BQC ,  the average cost per unit time. 

The goal is to solve minimum problems in the EOQ model, 
i.e.,  BQC ,  in Equation (1.1), or in the EPQ model, i.e., 

 BQC ,  in Equation (1.2), under the restrictions 0Q  and 

0B , from a purely algebraic perspective without reference 
to the analytic approach and calculus. 

III. REVIEW OF GRUBBSTRÖM AND ERDEM [9] 

Grubbström and Erdem [9] use 
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to represent 
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with  hbbDKh  2  and  hbhDKb  2 . 

They convert the objective function,  BQC , , as follows 
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and then they complete the square to derive that 
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  (3.4) 
They mention that QhBb    contains a factor of QB   

such that  

QhBb    QB                                             (3.5) 

with 
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to imply 
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Based on Equation (3.7), Grubbström and Erdem [9] claim 
that *B , *Q  and   **, BQC . 

IV. REVIEW OF CÁRDENAS-BARRÓN [2] 

Cárdenas-Barrón [1] examined an Economic Production 
Quantity (EPQ) model. He followed Grubbström and Erdem 
[4] to use 
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to derive his optimal solution. 
Hence, we can claim that Cárdenas-Barrón [2] applied the 

same approach proposed by Grubbström and Erdem [9] to 
solve his EPQ model. 

V. REVIEW OF RONALD ET AL. [15] 

Ronald et al. [15] claimed that Grubbström and Erdem [9] 
and Cárdenas-Barrón [2] to use Equations (3.1) and (3.2), 
with  hbbDKh  2  and  hbhDKb  2 , to 

derive that 
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such that QhBb    contain the desired factor, QB  . 

However, the decomposition of Equation (3.1) is beyond 
the ability of ordinary practitioners. Hence, Ronald et al. [15] 
propose their next two-step solution method. The original 
domain is 0Q  and 0B  to minimize  BQC , .  

Ronald et al. [15] considered on each ray,   0:, QkQQ  

with  k0 , to find the local minimum on each ray as 
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with    kbkha  122  and  kDKd  1 . 

Hence, they derived that on each ray   0:, QkQQ , the 

optimal ordering quantity  2* 2 bkhDKQ   and the 

minimum value 
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for  k0 . Motivated by Equation (5.3), they assumed an 
auxiliary function, say  kf , with 
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satisfying    kDKfkQQC 2, **  . 

Ronald et al. [15] found that 
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to imply that bhk *  and    hbbhkf * , and then  
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and 

     *** 2, kDKfBQC
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VI. REVIEW OF CHANG ET AL. [3] 

Chang et al. [3] criticized that the two-step solution 
method of Ronald et al. [15] is too complicated for ordinary 
readers, such that Chang et al. [3] applied the following 
solution approach for the EPQ model of Equation (1.2). We 
do not recall the original derivations of Chang et al. [3]. 
Instead, we repeat the derivation of Chang et al. [3] in the 
expression of Cárdenas-Barrón [2]. To solve the minimum 
problem of Equation (1.2), by the solution procedure of 
Chang et al. [3], the objective function is rewritten as 
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to attain the minimum, then they found the relation 
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They converted  BQC ,  to   QBBQC *,  as 
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to derive 
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Consequently, they obtained the optimal backlog level for 
the EPQ model, 

*B
 hbb
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and the minimum cost for the EPQ model, 
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Chang et al. [3] further claimed a direction for future 
research to rewrite Equation (1.2) as 
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Hence, Chang et al. [3] derived a relation 
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     BBBQC ,*   cDhBDKhBhbh  22 .     (6.9) 

They abstractly expressed Equation (6.9) to solve the 
following auxiliary function 

    BBBf  1
2

11  ,                              (6.10) 

with hb1  and hDK 21  . 

They predicted that to solve Equation (6.10) by an algebraic 
method will be an interesting research topic in the future. 

VII. REVIEW OF LUO AND CHOU [12] 

Luo and Chou [12] not only solved the open question 
proposed by Chang et al. [3], but also handled a generalized 
problem proposed by Lau et al. [11] and Chiu et al. [5] as 
follows, 

  xcbxaxxf  2 ,                                     (7.1) 

with   0xf  for 0x . 

We quote theorem 1 of Luo and Chou [12] in the 
following. 
 
Theorem 1 of Luo and Chou [12] 

For the existence and uniqueness of an interior minimum, 
we obtain the necessary conditions as 

(i) When 0b , we find that 1a  and 24 bc  , and 
(ii) When 0b , we derive that 24 bc   and   214 bca  , 

with the minimum point, say *x ,  
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and minimum value, say  *xf , 
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To apply Theorem 1 of Luo and Chou [12], with  hba 1 , 

0b  and hDKc 2 , we derive  
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Hence, we find 
    cDBhfBQC  ***,                                                  
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VIII. OUR INTUITIVE APPROACH 

Until now, the methods described in the five papers 
authored by Grubbström and Erdem [9], Cárdenas-Barrón [2], 
Ronald et al. [15], Chang et al. [3], and Luo and Chou [12] 
have been used to solve the minimum problems of the EOQ 
model or EPQ model using Equations (1.1) or (1.2), 
respectively. Although the algebraic methods described in 
these papers are exciting, they lack the elegance of other 
well-known algebraic methods. 

We observe Equation (1.1) to find out that if we can add an 
extra condition as 

QaBa 21                                                            (8.1) 

then we can rewrite 
  BaaaQB 221                                        (8.2) 

and 
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If we compare Equations (8.2) and (8.3) to find out that if 
we try to simplify the expression of Equation (8.3), such that 

2
1ha  and 2

2ba  have a common factor, if we select ba 1
 and 

ha 2
, then hbaa  21

 and  hbbhbaha  2
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 to have 

a common factor hb  . Therefore, we assume ba 1
 and 

ha 2
, then we can rewrite Equations (8.1~8.3) as 

hQbB  ,                                                            (8.4) 
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and 
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Consequently, we plug Equations (8.4~8.5) into Equation 
(1.1) to convert  BQC ,  as  BhbBC , , then 
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From Equation (7.13), we obtain 
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and then we derive 
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which is identical to the result of Equation (3.6) proposed by 
Grubbström and Erdem [4]. 

IX. NUMERICAL EXAMPLE 

As no numerical examples are provided in the papers by 
Grubbström and Erdem [9], Cárdenas-Barrón [2], Ronald et 
al. [15], Chang et al. [3], and Luo and Chou [12], we provide 
the following numerical example to illustrate our derivations. 
We assume that 4$b ($/unit), 2$c ($/unit), 

800D (unit/year), 3$h ($/unit/year), 400$K ($/setup), 
and 1200P (unit/year). We obtain 861.261* B . In 
addition, we find that 149.349* Q  and 

  446.1047, ** BQC . 

For completeness, we conduct a sensitivity analysis in 
which we change the values of the constant terms one at a 
time to examine their influence on the maximum backorder 
level B , the maximum inventory level Q , and the average 

cost per unit time  BQC , . In Table 1, we list the results with 

respect to the backorder cost b. 
 

Table 1. Variation of b. 

b B* Q* C(Q*, B*) 

-20% 311.086 331.825 995.473 

-10% 284.268 341.121 1023.363 

-5% 272.587 345.276 1.35.829 

base 261.861 349.149 1047.446 

5% 251.976 352.767 1058.301 

10% 242.833 356.156 1068.467 

20% 226.455 362.329 1086.986 
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We find that Q* and C(Q*, B*) have a positive relation with 
the backorder cost b, and B* has a negative relation with b. In 
Table 2, we list the results with respect to the demand D. 
 

Table 2. Variation of D. 

D B* Q* C(Q*, B*) 

-20% 234.216 312.288 936.864 

-10% 248.424 331.231 993.694 

-5% 255.231 340.308 1020.924 

base 261.861 349.149 1047.446 

5% 268.328 357.771 1073.313 

10% 274.643 366.190 1098.570 

20% 286.855 382.473 1147.419 

 
We find that B*, Q* and C(Q*, B*) all have a positive 

relation with the demand D. In Table 3, we list the results 
with respect to the holding cost h. 
 

Table 3. Variation of h. 

D B* Q* C(Q*, B*) 

-20% 244.949 408.248 979.796 

-10% 253.924 376.184 1015.698 

-5% 258.010 362.120 1032.041 

base 261.861 349.149 1047.446 

5% 265.499 337.141 1061.994 

10% 268.940 325.988 1075.760 

20% 275.299 305.888 1101.196 

 
We find that B* and C(Q*, B*) have a positive relation with 

the holding cost h, and Q* has a negative relation with h. In 
Table 4, we list the results with respect to the setup cost K. 
 

Table 4. Variation of K. 

K B* Q* C(Q*, B*) 

-20% 234.216 312.288 936.864 

-10% 348.424 331.231 993.694 

-5% 255.231 340.308 1020.924 

base 261.861 349.149 1047.446 

5% 268.328 357.771 1073.313 

10% 274.643 366.190 1098.570 

20% 286.855 382.473 1147.419 

 
We find that B*, Q* and C(Q*, B*) all have a positive 

relation with the setup cost K. 

X. AN APPLICATION OF OUR APPROACH 

We call Chang and Schonfeld [20], to know the cost 
function of their first transit model, 

432
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where d1=BDTW, d2=qxLTW/4g, d3=qwzLTW, and 
d4=qvLMTW are four abbreviations to simplify the 
expression of Equation (10.1). 
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Based on Equations (10.4) and (10.5), Chang and Schonfeld 
[20] obtained that minimum solution 
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The above discussion is the analytical method by calculus. 
Next, we consider how to apply our approach to this transit 

problem. Based on the derivations of Equations (10.6) and 
(10.7), with the minimum solution  
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Following our intuitive approach, we assume that r*h* is a 
constant such that we set the following condition 

rh=C0.                                          (10.9) 
Consequently, we convert Equation (10.1) to 

43
0

2
0

10 ++)+(+=),( dhdd
h

C
d

C

d
h

h

C
C .        (10.10) 

We consider the following problem as Bh
h

A
+  as 

ABBh-hABh
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to derive that the minimum is attained when 
BAh /= .                                       (10.12) 

According to Equation (10.12), we know that when  

302
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we convert our minimum problem as follows,  
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We are facing the following minimum problem, with A1>0 
and B1>0, 

xB
x

A
xf 12
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Up to now, we cannot solve the minimum problem of 
Equation (10.15) by a pure algebraic method, so we compute  

13
1 +

2
= B

x
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df and then the minimum solution is  
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Based on Equation (10.16), then the minimum problem of 
Equation (10.14) will occur when  
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We plug Equation (10.17) into Equation (10.13), then 
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that is the same result as Equation (10.7). 
From the above discussion, we demonstrate that our 

approach can be applied to solve other optimization 
problems. 

XI. DIRECTION FOR FUTURE RESEARCH 

Several articles are related to this paper. We list them in the 
following for interested practitioners: Braide and 
Idoniboyeobu [1], Cheng et al. [4], Chung [6], Cui et al. [7], 
Eke et al. [8], Grzybowski [10], Malik et al. [13], Qiu et al. 
[14], Tan et al. [16], Tian et al. [17], Wang et al. [18], and 
Wen et al. [19]. In addition, how to solve the Equation (10.15) 
by pure algebraic method will also be an interesting research 
topic in the future. 

XII. CONCLUSION 

In this paper, we reviewed previously established algebraic 
methods for solving inventory models, including completing 
the square of the constant term, completing the square of the 
intermediate term, determining the arithmetic–geometric 
mean inequality, and cost difference comparison. These 
algebraic approaches for solving inventory problems all 
involve long calculation times and lack elegance. Our 
proposed genuine algebraic method converts a two-variable 
problem into a one-variable problem, thereby helping 
practitioners to directly obtain the optimal solution. 
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