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Abstract—This paper presents a finite volume elemen-
t method (FVEM) to solve the parabolic optimal control
problems. Variational discretization is applied to discrete the
optimality conditions and the derivation of the estimate becomes
very simple. It reflects the power of variational discretizaton.
Semi-discrete and fully discrete error estimates are presented
separately by using both the transposition techniques [ J.
L. Lions et al. Non-homogeneous boundary value problems
and applications, volume 1. Springer Berlin, 1972.] and the
variational discretization. Numerical examples are given to
confirm the theoretical results.

Index Terms—PDE-constrained optimization, variational dis-
cretization, finite volume elements, parabolic optimal control.

I. INTRODUCTION

The optimal control problems governed by parabolic par-
tial differential equations (PDEs) have many applications
in different areas, including physical, social, and economic
processes. The numerical research on optimal control prob-
lems with the PDE constraint is becoming more important in
science and engineering technology [11, 16]. Many works on
the parabolic optimal control problems [1, 2, 10, 12, 13, 15]
have been published to attract people’s attention. However,
there are only a few papers adopt the finite volume element
method (FVEM). The FVEM [7] as an numerical tool to
treat the numerical solutions of PDEs has been proposed.
It’s accuracy is higher than the finite difference method and
almost equal to the finite element method (FEM), while its
computational cost is less than that of the FEM. In this paper,
the following linear-quadratic optimal control problem [9] for
the control u and state y is considered:

Min J(y, u) =
1

2

∫ T

0

∫
Ω

(y − yd)
2dxdt

+
α

2

∫ T

0

∫
Ω

u2dxdt

(1)

subject to
∂y
∂t − µ∆y + σy = f + u, (x, t) ∈ Ω× [0, T ], (2)

y(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ], (3)

y(x, 0) = ϕ(x), x ∈ Ω. (4)
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Here u obeys the control constraints ua ≤ u ≤ ub.
In recent article[10], the authors give some estimates

of the FVEM for parabolic optimal control problems. We
differ from it on the deducing process of the error es-
timates. It seems to be more simple that we derive the
error estimates using the transposition techniques [8] and the
variational discretization [3] in optimal control with control
constraints. Once the optimal adjoint state which had been
treated numerically is known, variable discretization tailors
the discretization of the control to the discrete treatment of
the adjoint through the projection equation.

This paper aimes at proposing a FVEM for the parabolic
PDE constrained optimization problem and presenting the
error estimates of optimal order in the L2 norm. While for
elliptic PDE constrained optimization problems the error esti-
mates of numerical methods are developed far, less have been
done for numerical treatment of time-dependent optimization
problems. Firstly, the Lagrange multiplier method [4, 5, 6] is
applied to the deduction of the Karush-Kuhn-Tucker (KKT)
conditions. The KKT-system contains the state equation, the
adjoint equation and the variational inequality. Then, we
apply a concept called variational discretization proposed
by Hinze [3]to discritize the control space implicitly via
the state equation. Due to the variational discretization, the
error estimate becomes so simple and that reflects the power
of variational discretizaton. At last, the L2-error estimates
of optimal order and the fully discrete error estimates are
obtained. Some examples are provided to test and verify the
error estimates.

In Section II, we give the KKT conditions for the problem
considered. It is discretized by the variational discretization
concept and the FVEM in Section III. The error estimates
in the sense of L2 norm are presented in Section IV. In
Section V, some examples are given to test and verify
the effectiveness of the above method and results of error
estimates. In the last section, conclusions are made.

II. MODEL PROBLEM AND OPTIMALITY CONDITIONS

Consider the following parabolic PDE equations:

∂y
∂t − µ∆y + σy = f + u, (x, t) ∈ Ω× [0, T ], (5)

y(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ], (6)

y(x, 0) = ϕ(x), x ∈ Ω, (7)

where Ω ⊂ R2 is a bound convex domain, ∂Ω is the
boundary of Ω, µ, σ are constants, and f ,ϕ are smooth
functions.
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For y(t), v(t) ∈ H1
0 (Ω), we may use Green’s formulation

and write (5) in an integral form:

(yt, v) + a(y, v) = (f + u, v), (8)

where y(·, t) is written as y(t) for short, (y, v) =
∫
Ω
yvdx,

yt =
∂y
∂t and a(y, v) =

∫
Ω
(µ∇y · ∇v + σyv)dx.

With the transposition techniques ([8]), problem (5)-(7)
has a unique solution y ∈ L2(0, T ;H1

0 (Ω) ∩ H2(Ω)) ∩
H1(0, T ;L2(Ω)) in the sense that

−
∫ T

0

(
y,

∂v

∂t

)
dt−

∫ T

0

∫
Ω

(µy∆v − σyv)dxdt

=

∫ T

0

(f + u, v)dt,

(9)

for all v ∈ V , where

V := {v ∈ L2(0, T ;H1
0 (Ω) ∩H2(Ω)) ∩H1(0, T ;L2(Ω))

: v(T ) = 0}.
(10)

Problem II.1. (P) Consider the optimization problem of
minimizing

J(y, u) =
1

2

∫ T

0

∫
Ω

(y−yd)
2dxdt+

α

2

∫ T

0

∫
Ω

u2dxdt (11)

over all (y, u) ∈ L2(0, T ;H1
0 (Ω) ∩ H2(Ω)) ∩

H1(0, T ;L2(Ω))×L2(0, T ;L2(Ω)) subject to the parabolic
system (5)-(7) and the control constraints

ua ≤ u ≤ ub. (12)

Here α is a fixed positive number which called regulariza-
tion parameter and yd ∈ L2(0, T ;L2(Ω)) is a given function.
The admissible controls set of (P) is written by

Uad = {u ∈ L2(0, T ;L2(Ω)) : ua ≤ u ≤ ub

almost everywhere in (0, T ]},
(13)

here ua < ub are given constants.
Due to the linear-quadratic property and convexity, the

standard techniques in [4, 14] and be used and then the
existence of solutions and KKT conditions can be proofed
directly.

Theorem II.2. The problem (P) admittes a unique optimal
control u∗, an associated state y∗ and an adjoint state p∗

that satisfy the KKT conditions which contain the following
state equation(

∂y∗

∂t
, v

)
+ a(y∗, v) = (f + u∗, v), ∀v ∈ H1

0 (Ω), (14)

the adjoint equation

−
(
∂p∗

∂t
, v

)
+ a(p∗, v) = (y∗ − yd, v), ∀v ∈ H1

0 (Ω), (15)

and the variational inequality∫ T

0

(αu∗ + p∗, w − u∗)dt ≥ 0 ∀ w ∈ Uad. (16)

Here, the variational inequality can be replaced by the
projection equation

u∗ = P[ua,ub]

(
− 1

α
p∗
)
, (17)

where P[ua,ub](v) means the projection of v ∈ R onto the
interval [ua, ub].

The above adjoint equation (15) is the weak form of the
following parabolic equations which run backwards in time:

−∂p∗

∂t − µ△p∗ + σp∗ = y∗ − yd, Ω× [0, T ], (18)

p∗(x, t) = 0, (x, t) ∈ Γ× [0, T ], (19)

p∗(x, T ) = 0, x ∈ [0, L]. (20)

III. DISCRETIZATION

The optimization problem (P) is the one in infinite dimen-
sional space, and its solution is not easy to be computed on
the computer. Applying the FVEM to solve the problem (P),
so we discretize it to get a finite dimensional one which can
be computed numerically. Then the variational disretization
concept [3] is used, and with it the state becomes a finite
volume element approximation of the state equation (5)-(7).

We place a quasi-uniform triangulation Th of Ω. We
choose T ∗

h to be the barycenter or circumcenter dual de-
composition relative to Th. We choose the linear element
space to be the trial space Uh related to the triangulation Th,
and we take the piecewise constant function space as the test
function space Vh which is related to the dual decomposition
T ∗
h . Nh denotes the set of the interior nodes of Th. For

pi ∈ Nh, T ∗
i ∈ T ∗

h denotes the dual element containing pi.
The operator Ih : Uh → Vh is defined as follows to connect
the trial and test spaces

Ihvh =
∑

pi∈Nh

vh(pi)χi, Ihvh|T∗
i
= vh(pi) ∀pi ∈ Nh,

where χi is the characteristic function of T ∗
i .

Define the bilinear form, for all uh ∈ Uh, vh ∈ Uh,

Ah(uh, vh)
.
= ah(uh, Ihvh)

=
∑

pi∈Nh

(
vh(pi)

∫
∂T∗

i

µ∇uh · nds+
∫
T∗
i

σuhvhdx

)
.

(21)
The semi-discrete finite volume element scheme of (8) is:
Find yh = yh(·, t) ∈ Uh (0 ≤ t ≤ T ), ∀vh ∈ Uh such that

(
∂yh
∂t

, vh) +Ah(yh, vh) = (f + u, vh). (22)

Using the variational discretization concept presented in
[3], we define the discrete problem (Ph).

Problem III.1. (Ph) Consider the problem

minJh(yh, u) =
1

2

∫ T

0

∫
Ω

(yh − yd)
2dxdt

+
α

2

∫ T

0

∫
Ω

u2dxdt

(23)

subject to

(
∂yh
∂t

, vh) +Ah(yh, vh) = (f + u, vh), ∀vh ∈ Uh, (24)

and the control constraints

ua ≤ u ≤ ub. (25)
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Lemma III.2. For a constant coefficient µ, the bilinear form
Ah(·, ·) is symmetric, that is

Ah(uh, vh) = Ah(vh, uh) ∀uh ∈ Uh,∀vh ∈ Uh.

Proof: Please see [7, page 122].

Theorem III.3. The optimal control u∗
h ∈ L2(Ω), associated

state y∗h ∈ Uh and adjoint state p∗h ∈ Uh of (Ph) satisfy the
state equation

(
∂y∗h
∂t

, vh) +Ah(y
∗
h, vh) = (f + u∗

h, vh), ∀vh ∈ Uh, (26)

the adjoint equation

−(
∂p∗h
∂t

, vh)+Ah(p
∗
h, vh) = (y∗h−yd, vh), ∀vh ∈ Uh, (27)

and the projection equation

u∗
h = P[ua,ub]

(
− 1

α
p∗h

)
. (28)

In addition, (28) is equivalent to∫ T

0

(αu∗
h + p∗h, w − u∗

h)dt ≥ 0, ∀w ∈ Uad. (29)

IV. ERROR ANALYSIS OF OPTIMAL CONTROL PROBLEM

First, we introduce auxiliary functions ỹ and p̃ satisfying

(ỹt, v) + a(ỹ, v) = (f + u∗
h, v), ∀v ∈ H1(Ω),

− (p̃t, v) + a(p̃, v) = (y∗h − yd, v), ∀v ∈ H1(Ω),
(30)

where u∗
h and y∗h are the solutions to (Ph).

A. Error estimates for the semi-discrete schemes

The following lemma, we restate some results of the finite
volume discretization for the state equation.

Lemma IV.1. Let y and yh be the solutions to the problem
(8) and the semi-discrete generalized scheme (22) respective-
ly. Then there holds the following error estimates

∥y − yh∥0 ≤ Ch2. (31)

Proof: Please see [7, Lem. 5.1.3].
Now we will prove the error estimates for the proposed

method in the following theorem.

Theorem IV.2. Let (u∗, y∗, p∗) and (u∗
h, y

∗
h, p

∗
h) be the

solutions of the problems (P ) and (Ph) respectively. Then
there exists a constant C > 0, independent of h, such that
√
α∥u∗ − u∗

h∥L2(0,T ;L2(Ω)) + ∥y∗ − y∗h∥L2(0,T ;L2(Ω))

+ ∥p∗ − p∗h∥L2(0,T ;L2(Ω)) ≤ Ch2.
(32)

Proof: Testing (16) with u∗
h and (29) with u∗, we obtain∫ T

0

(α(u∗ − u∗
h) + (p∗ − p∗h), u

∗
h − u∗)dt ≥ 0. (33)

Therefore,

α∥u∗ − u∗
h∥2L2(0,T ;L2(Ω))

≤
∫ T

0

(p∗ − p∗h, u
∗
h − u∗)dt

≤
∫ T

0

(p∗ − p̃, u∗
h − u∗)dt

+

∫ T

0

(p̃− p∗h, u
∗
h − u∗)dt.

(34)

Following (9), (14) and (30) we have

−
∫ T

0

(y∗ − ỹ, vt)dt−
∫ T

0

∫
Ω

[µ(y∗ − ỹ)∆v

− σ(y∗ − ỹ)v]dxdt =

∫ T

0

(u∗ − u∗
h, v)dt.

(35)

Setting v = p̃− p∗ in (35) yields∫ T

0

(p̃− p∗, u∗ − u∗
h)dt

=−
∫ T

0

(ỹ − y∗, p̃t − p∗t )dt−
∫ T

0

∫
Ω

[µ(y∗ − ỹ)∆(p̃− p∗)

− σ(y∗ − ỹ)(p̃− p∗)]dxdt

=−
∫ T

0

(p̃t, ỹ − y∗)dt+

∫ T

0

a(p̃, ỹ − y∗)dt

+

∫ T

0

(p∗t , ỹ − y∗)dt−
∫ T

0

a(p∗, ỹ − y∗)dt

=

∫ T

0

(y∗h − yd, ỹ − y∗)dt−
∫ T

0

(y∗ − yd, ỹ − y∗)dt

=

∫ T

0

(y∗h − y∗, ỹ − y∗)dt

=−
∫ T

0

∥y∗h − y∗∥20dt+
∫ T

0

(y∗h − y∗, y∗h − ỹ)dt

≤− 1

2
∥y∗h − y∗∥2L2(0,T ;L2(Ω))

+
1

2
∥y∗h − ỹ∥2L2(0,T ;L2(Ω)).

(36)
With Young’s inequality, we have∫ T

0

(p̃− p∗h, u
∗
h − u∗)dt

≤1

2
α∥u∗

h − u∗∥2L2(0,T ;L2(Ω))

+ C(α)∥p̃− p∗h∥2L2(0,T ;L2(Ω)).

(37)

Therefore, we have

α∥u∗ − u∗
h∥2L2(0,T ;L2(Ω)) + ∥y∗h − y∗∥2L2(0,T ;L2(Ω))

≤C
(
∥y∗h − ỹ∥2L2(0,T ;L2(Ω)) + ∥p̃− p∗h∥2L2(0,T ;L2(Ω))

)
.

(38)
From Lemma IV.1, there exists a constant C > 0, indepen-
dent of h such that

∥ỹ − y∗h∥0 ≤ Ch2, ∥p̃− p∗h∥0 ≤ Ch2. (39)

Combining (38) and (39) we get
√
α∥u∗ − u∗

h∥L2(0,T ;L2(Ω)) + ∥y∗ − y∗h∥L2(0,T ;L2(Ω))

≤Ch2.
(40)

Using (15) and (30) we obtain

−(p∗t − p̃t, v) + a(p∗ − p̃, v) = (y∗ − y∗h, v). (41)

This implies

∥p∗ − p̃∥L2(0,T ;L2(Ω)) ≤ C∥y∗ − y∗h∥L2(0,T ;L2(Ω)). (42)

With (39), (40) and (42) we now conclude

∥p∗ − p∗h∥L2(0,T ;L2(Ω))

≤∥p∗ − p̃∥L2(0,T ;L2(Ω)) + ∥p̃− p∗h∥L2(0,T ;L2(Ω))

≤Ch2.

(43)
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This, together with (40), completes the proof of the theorem.

B. Fully discrete schemes and error estimates

Problem IV.3. (Phk) Consider the problem of minimizing

Jh(yhk, u) =
1

2

∫ T

0

∫
Ω

(yhk − yd)
2dxdt

+
α

2

∫ T

0

∫
Ω

u2dxdt

(44)

subject to ∫
Ω

ynhk − yn−1
hk

∆t
vhdx+Ah(y

n
hk, vh)

=

∫
Ω

(fn + u)vhdx, ∀ vh ∈ Uh,

(45)

where k = ∆t, tn = n∆t, ynhk = yh(x, tn) ∈ Uh, and
fn = f(x, tn), and the control constraints

ua ≤ u ≤ ub. (46)

Lemma IV.4. Let y and yhk be the solutions to and the
fully discrete scheme (45) of the problem (8) respectively.
Then there holds the following error estimates

∥y − yhk∥0 ≤ C(k + h2). (47)

Proof: Please see [7, Chap. 5.2].

Theorem IV.5. Let (u∗, y∗, p∗) and (u∗
hk, y

∗
hk, p

∗
hk) be the

solutions of the problems (P) and (Phk) respectively. Then
there exists a constant C > 0, independent of h and k, such
that

√
α∥u∗ − u∗

h∥L2(0,T ;L2(Ω)) + ∥y∗ − y∗h∥L2(0,T ;L2(Ω))

≤C(k + h2).
(48)

Proof: Define the auxiliary functions ŷ and p̂ satisfying

(ŷt, v) + a(ŷ, v) = (f + u∗
hk, v), ∀v ∈ H1(Ω), (49)

− (p̂t, v) + a(p̂, v) = (y∗hk − yd, v), ∀v ∈ H1(Ω). (50)

Replacing u∗
h in the proof of Theorem IV.2 by u∗

hk, we have

α∥u∗ − u∗
hk∥2L2(0,T ;L2(Ω)) + ∥y∗hk − y∗∥2L2(0,T ;L2(Ω))

≤C(∥y∗hk − ŷ∥2L2(0,T ;L2(Ω)) + ∥p̂− p∗hk∥2L2(0,T ;L2(Ω))).
(51)

By Lemma IV.4 and similar to the proof of Theorem IV.2,
we obtain the desired results.

V. NUMERICAL EXPERIMENTS

In this section, we provide some numerical examples
to confirm the theoretical results. We set α = 1 in all
computations. The convergence order of the finite volume
element schemes is evaluated as

Order = log2

(
∥y2h − yexa∥
∥yh − yexa∥

)
,

where yexa means the exact solution. The L2 and L∞ errors
can be evaluated as

L2 =

√√√√ N∑
j=1

|(yh)j − (yexa)j |2h, L∞ = max|yh − yexa|.

A. Example 1

Let
u∗ = (T − t)2sin(πx1)sin(πx2),

p∗ = −α(T − t)2sin(πx1)sin(πx2),

y∗ = etsin(πx)sin(πy).

Then the functions f , y0 and yd can be determined accord-
ingly.

In Figure 1, the discrete solution u∗
h versus the exact

solution u∗ at T = 1 are plotted. From the numerical results
reported in Table I, we can get that the method achieves
O(h2) in the L2 norm which are consisted with Theorem
IV.2. Errors and convergence order for the state, control and
adjoint in the L∞-norm are reported in Table II.

B. Example 2

In this example, we choose ua = 0.2, ub = 0.5. Then we
set the optimal control and the associated adjoint by

u∗ = −max{ua, min{ub, (T − t)2sin(πx1)sin(πx2)}},
(52)

p∗ = −α(T − t)2sin(πx1)sin(πx2). (53)

We also take the optimal state as

y∗ = etsin(πx)sin(πy).

In Figure 2, the exact solution u∗ versus the discrete
solution u∗

h obtained by the FVEM at t = 1 are plotted.
Numerical results reported in Table III also show O(h2)
convergence orders. In Tabel IV, we also present the errors
and convergence order for the state, control and adjoint in
the sense of L∞-norm.

VI. CONCLUSION

In this paper, we proposed an FVEM for optimal control
problems governed by parabolic equation. Error analysis
shows that under reasonable assumptions the approximation
solutions obtained using the finite volume element schemes
have optimal error order in the L2-norm. Numerical exam-
ples are provided to validate the theoretical results.
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Fig. 1. The exact control u∗ versus the computed control u∗
h obtained by the FVEM at T = 1 with N = 16 in Example 1.

TABLE I
L2-ERROR OBTAINED BY THE FVEM AT T = 1 WITH ∆t = h2 IN EXAMPLE 1.

N ∥u∗ − u∗
h∥L2 Order ∥p∗ − p∗h∥L2 Order ∥y∗ − y∗h∥L2 Order

8 2.7748e-003 2.7748e-003 1.6662e-003
16 7.1268e-004 1.96 7.1268e-004 1.96 4.3167e-004 1.95
32 1.7937e-004 1.99 1.7937e-004 1.99 1.0880e-004 1.99
64 4.4917e-005 2.00 4.4917e-005 2.00 2.7252e-005 1.99

TABLE II
L∞-ERROR OBTAINED BY THE FVEM AT T = 1 WITH ∆t = h2 IN EXAMPLE 1.

N ∥u∗ − u∗
h∥L∞ Order ∥p∗ − p∗h∥L∞ Order ∥y∗ − y∗h∥L∞ Order

8 5.5100e-003 5.5100e-003 3.4166e-003
16 1.4164e-003 1.96 1.4164e-003 1.96 8.7952e-004 1.96
32 3.5656e-004 2.00 3.5656e-004 2.00 2.2609e-004 1.96
64 8.9294e-005 2.00 8.9294e-005 2.00 5.6623e-005 2.00
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Fig. 2. The exact control u∗ versus the computed control u∗
h obtained by the FVEM at T = 1 with N = 16 in Example 2.

TABLE III
L2-ERROR OBTAINED BY THE FVEM AT T = 1 WITH ∆t = h2 IN EXAMPLE 2.

N ∥u∗ − u∗
h∥L2 Order ∥p∗ − p∗h∥L2 Order ∥y∗ − y∗h∥L2 Order

8 1.0365e-003 2.7663e-002 1.7161e-003
16 2.5273e-004 2.04 7.0988e-004 1.96 4.5320e-004 1.92
32 7.0633e-005 1.84 1.7871e-004 1.99 1.1350e-004 2.00
64 1.7653e-004 2.00 4.4761e-005 2.00 2.8515e-005 1.99

TABLE IV
L∞-ERROR OBTAINED BY THE FVEM AT T = 1 WITH ∆t = h2 IN EXAMPLE 2.

N ∥u∗ − u∗
h∥L∞ Order ∥p∗ − p∗h∥L∞ Order ∥y∗ − y∗h∥L∞ Order
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