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Abstract—In this paper, we classify affine factorable surfaces
in the three dimensional simply isotropic space, which satisfy
some algebraic equations in terms of the coordinate functions
and the Laplacian operator with respect to the first and second
fundamental forms of the surface. We also give explicit forms
of these surfaces.

Index Terms—Isotropic space, Affine factorable surface,
Laplace operator.

I. INTRODUCTION

AEuclidean submanifold is said to be of finite Chen-
type if its coordinate functions are a finite sum of

eigenfunctions of its Laplacian [11].
Chen posed the problem of classifying the finite type surfaces
in the three-dimensional Euclidean space E3. Further, the
notion of finite type can be extended to any smooth function
on a submanifold of a Euclidean space or a pseudo-Euclidean
space.
A well-known result due to Takahashi [20] states that an n-
dimensional submanifold of En is of 1-type if and only if
it is either a minimal submanifold of En, or a minimal sub-
manifold of some hypersphere. In other words, the solutions
of the equation

∆r = λr, λ ∈ R, (1)

where ∆ is the Laplace operator associated with the induced
metric, and r is a position vector field of M in En.
Bekkar and Senoussi [6] studied the factorable surfaces in
the 3-dimensional Minkowski space under the condition

∆ri = λiri, (2)

where λi ∈ R and ri are the coordinate functions of the
surface.
The authors in [22], [16], [2], classified factorable surfaces
in the 3-dimensional Minkowski, Euclidean and pseudo-
Galilean spaces.
Lopez and Moruz [15] studied translation and homothetical
surfaces with constant Gaussian curvature in E3. Zong, Xiao
and Liu [23] defined affine factorable surfaces in R3, as the
graphs

z = (f1(x)f2(y + ax)), a ∈ R, a 6= 0. (3)

Aydin, Erdur and Ergut [3] studied the problem of finding
the affine factorable surfaces in a 3-dimensional isotropic
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space with a prescribed Gaussian curvature (K) and mean
curvature (H).

Recently, in [4] Azzi, Zoubir and Bekkar studied surfaces
as graphs of functions in ˜SL(2,R) which has a finite type
immersion.

In this paper, we classify affine factorable surfaces of Type
1 in the three dimensional simply Isotropic space under the
condition

∆jri= λiri,

where λi ∈ R and ∆j denotes the Laplace operator with
respect to the fundamental forms I and II .

II. PRELIMINARIES

Differential geometry of isotopic spaces has been intro-
duced by K. Strubacker [19], H. Sachs [17] and many others.

The three-dimensional isotropic space I3 is a Cayley-Klein
space obtained from the three-dimensional projective space
P (R3) with the absolute figure which is an ordered (p, l1, l2)
where p is a plane in P (R3) and l1, l2 are two complex-
conjugate straight lines in p. The homogeneous coordinates
in P (R3) are introduced in such a way that the absolute
plane p is given by x0 = 0 and the absolute lines l1, l2 by
x0 = x1 ± ix2 = 0. The intersection point P (0, 0, 0, 1) of
these two lines is called the absolute point.

The group of motions of I3 is a six-parameter group given
in affine coordinates x = x1

x0
, y = x2

x0
, z = x3

x0
by

(x, y, z)→ (x, y, z) =

 x = a+ x cosϕ− y sinϕ,
y = b+ x sinϕ+ y cosϕ,
z = c1 + c2x+ c3y + z,

where a, b, c1, c2, c3, ϕ ∈ R.
Such affine transformations are called isotropic congru-

ence transformations or merely i-motions.
On the orther hand, the isotropic distance, called i-distance

of two points A (x1, x2, x3) and B (y1, y2, y3) is defined by

‖A−B‖i =

√
(y1 − x1)

2
+ (y2 − x2)

2
.

The i-motions is degenerate along the lines in z-direction.
These lines are called isotropic lines.

Let v1 = (x1, x2, x3) and v2 = (y1, y2, y3) be vectors in
I3. The isotropic inner product of v1 and v2 is defined by

〈v1, v2〉i =

{
x3y3 if xi = yi = 0
x1y1 + x2y2 otherwise

We call a vector of the form v = (0, 0, x) in I3 an isotropic
vector, and a non-isotropic vector otherwise.

A surface M2 immersed in I3 is called admissible if it
has no isotropic tangent planes. We restrict our framework
to admissible regular surfaces.
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Let M2 be regular admissible graph surfaces in I3 locally
parametrized by

r (u, v) = (u, v, z (u, v)) .

The components E,F,G of the first fundamental form I of
M2 can be calculated via the metric induced from I3. We
have

E = 〈ru, ru〉i , F = 〈ru, rv〉i , G = 〈rv, rv〉i . (4)

The unit normal vector of M2 is completely isotropic.
Morever, the components of the second fundamental form
II are 

L = det(ruu,ru,rv)√
EG−F 2

,

M = det(ruv,ru,rv)√
EG−F 2

,

N = det(rvv,ru,rv)√
EG−F 2

.

The isotropic Gaussian curvature K and the isotropic mean
curvature H are respectively defined by

K =
LN −M2

EG− F 2
, 2H =

EN − 2FM +GL

EG− F 2
. (5)

It is well known in terms of local coordinates {u, v} of
M2 the Laplacian operators ∆ of the first and the second
fundamental form on M2 are respectively defined by

∆Ir = − 1

W

[
∂

∂u

(
Gru − Frv

W

)
− ∂

∂v

(
Fru − Erv

W

)]
,

(6)
and

∆IIr = −1

e

[
∂

∂u

(
Nru −Mrv

e

)
− ∂

∂v

(
Mru − Lrv

e

)]
,

(7)
where W =

√
|EG− F 2| and e =

√
|LN −M2|.

A surface M2 in the isotropic space I3 is said to be
harmonic or isotropic minimal (resp. II-harmonic) if it
satisfies the condition ∆Ir = 0 (resp. ∆IIr = 0).

III. AFFINE FACTORABLE SURFACES IN ISOTROPIC
SPACES

Let M2 be an affine factorable surface of type 1 in I3
which is defined as a parameter surface in I3 which can be
written as

r(u, v) = (u, v, f(u+ av)g(v)), (8)

for some non-zero constant a and smooth functions f and g.
The coefficients of the first and the second fundamental forms
are

E = 1, F = 0, G = 1, (9)

and

L = fuug, M = afuvg+fugv, N = a2fvvg+2afvgv+fgvv.
(10)

The mean curvature H and the Gaussian curvature K of M2

are given by

2H = fuug + a2fvvg + 2afvgv + fgvv, (11)

and

K = fuug(a2fvvg+2afvgv+fgvv)−(afuvg+fugv)
2. (12)

By the transformation{
x = u+ av
y = v,

and ∂(x,y)
∂(u,v) 6= 0. Then (8) can be written as

r(x, y) = (x− ay, y, f(x)g(y)), (13)

therefore,

E = 1, F = −a, G = a2 + 1, (14)

and

L = f ′′ (x) g (y) , M = f ′ (x) g′ (y) , N = f (x) g′′ (y) .
(15)

Therefore, (11) and (12) become

2 H =
(
a2 + 1

)
f ′′(x)g(y) + 2af ′(x)g′(y) + f(x)g′′(y),

and

K = f (x) f ′′ (x) g (y) g′′ (y)− (f ′(x)g′(y))2,

respectively.

IV. AFFINE FACTORABLE SURFACES SATISFYING
∆Iri = λiri

In this section, we classify affine factorable surface given
by (13) in I3 satisfying the equation

∆Iri = λiri, (16)

where λi ∈ R, i = 1, 2, 3 and

∆Ir =
(
∆Ir1,∆

Ir2,∆
Ir3
)
, (17)

where

r1 = x− ay, r2 = y, r3 = f(x)g(y). (18)

The determinant of the first fundamental form is given by

W =
√
|EG− F 2| = 1. (19)

Suppose that the surface has non-zero Gaussian curvature,
so

f(x)f ′′(x)g(y)g′′(y)− (f ′(x)g′(y))2 6= 0,∀x, y ∈ R.

By a straightforward computation, the Laplacian operator on
M2 with the help of (6) and (14) turns out to be

∆Ir = (0, 0,−[(a2 + 1)f ′′g + 2af ′g′ + fg′′]). (20)

Next, suppose that M2 satisfies (16). Then from (20), we
have λ1 (x− ay) = 0,

λ2y = 0,
λ3fg = −[(a2 + 1)f ′′g + 2af ′g′ + fg′′],

(21)

where λ1, λ2 and λ3 ∈ R. This means that M2 is at most of
1−type. We discuss two cases according to the values of λ3.

Case 1: Let λ3 = 0, the last equation in (21) becomes

(a2 + 1)f ′′g + 2af ′g′ + fg′′ = 0, (22)

IAENG International Journal of Applied Mathematics, 51:2, IJAM_51_2_14

Volume 51, Issue 2: June 2021

 
______________________________________________________________________________________ 



we have some cases to solves (22).
Case 1.1. f or g constant, both situations give rise to a

contradiction with our assumption saying that the solution
must be non-degenerate second fundamental form.

Case 1.2. f ′ = c0, c0 ∈ R− {0} . Then (22) can be
rewritten as

1

f
= − g′′

2ac0g′
. (23)

Since f is a non-constant function, the right side of (23)
is either a constant or a function of y. Both cases are not
possible and we deduce f ′ 6= 0. In a similar way g′′ 6= 0 can
be shown.

Case 1.3. f ′′g′′ 6= 0. By dividing (22) by the product
f ′′g′′, one can write

(a2 + 1)
g

g′′
+ 2a

f ′

f ′′
g′

g′′
+

f

f ′′
= 0. (24)

Taking partial derivatives of (24) with respect to x and y,
we get

2a

(
f ′

f ′′

)′(
g′

g′′

)′
= 0,

and so we again have two situations.
Case 1.3.1. f ′′ = c1f

′, c1 ∈ R− {0} . We obtain
f (x) = c2

c1
ec1x, c2 6= 0. By substituting it into (22), we

obtain
g′′ + 2ac1g

′ + (a2 + 1)c21g = 0, (25)

This differential equation admits the solutions

g (y) = e−ac1y [c3 cos (c1y) + c4 sin (c1y)]

where c3, c4 ∈ R.
Case 1.3.2. g′′ = c5g

′, c5 ∈ R− {0} . In this case, we
obtain g (y) = c6

c5
ec5y, c6 6= 0.By considering (22), we get

(a2 + 1)f ′′ + 2ac5f
′ + c25f = 0, (26)

After solving (26), we obtain

f (x) = e−aAx (c7 cos (Ax) + c8 sin (Ax)) ,

where A = c5
1+a2 and c7, c8 ∈ R.

Case 2: Let λ3 6= 0. By dividing the last equation in (21)
by the product fg we get(

a2 + 1
) f ′′
f

+ 2a
f ′

f

g′

g
+
g′′

g
= −λ3. (27)

Taking partial derivatives of (27) with respect to x and y,
we find

2a

(
f ′

f

)′(
g′

g

)′
= 0.

We have two cases:
Case 2.1. f ′ = b1f, b1 ∈ R− {0} . We get

f (x) = b2e
b1x, b2 ∈ R − {0}. Considering Equation (27),

we obtain

g′′ + 2ab1g
′ +
((
a2 + 1

)
b21 + λ3

)
g = 0. (28)

In order to solve (28), we have to consider three situations
this time

Case 2.1.1.
(
b21 + λ3

)
< 0, the general solution of (28) is

given by

g (y) = e−ab1y
(
b3e
√
−By + b4e

−
√
−By

)
,

where B = b21 + λ3 and b3, b4 ∈ R.
Case 2.1.2

(
b21 + λ3

)
> 0, the general solution of (28) is

given by

g (y) = e−ab1y [b5 cos (By) + b6 sin (By)] ,

where B =
√
b21 + λ3 and b5, b6 ∈ R.

Case 2.1.3. b21 = −λ3, the general solution of (28) is given
by

g (y) = e−ab1y (b7y + b8) , b7, b8 ∈ R.

Case 2.2. g′ = d1g, d1 ∈ R− {0} . Then we get
g (y) = d2e

d1y, d2 ∈ R− {0}. Substituting this in Equation
(27) we obtain(

a2 + 1
)
f ′′ + 2ad1f

′ +
(
d21 + λ3

)
f = 0. (29)

To solve this equation, we have the following situations to
be discussed:

Case 2.2.1.
(
d21 +

(
a2 + 1

)
λ3
)
< 0. The general solution

of
(28) is given by

f (x) = e
−ad1
a2+1

x
(
d3e

√
−C

a2+1
x

+ d4e
−
√
−C

a2+1
x
)
,

where C = d21 +
(
a2 + 1

)
λ3, and d3, d4 ∈ R.

Case 2.2.2. d21 +
(
a2 + 1

)
λ3 > 0. The general solution of

(28) is given by

f (x) = e
− ad1
a2+1

x
[
d5 cos

(
C

a2 + 1
x

)
+ d6 sin

(
C

a2 + 1
x

)]
,

where C = d21 +
(
a2 + 1

)
λ3, and d5, d6 ∈ R.

Case 2.2.3. d21 = −
(
a2 + 1

)
λ3. The general solution of

(28) is given by

f (x) = e−ad1x (d7x+ d8) , d7, d8 ∈ R,

where di ∈ R , i ∈ {3, 4, 5, 6, 7, 8} .
Therefore, we have proven the following statements:

Theorem IV.1. Let M2 be a affine factorable surface given
by (8) in I3 . If M2 is harmonic or isotropic minimal, then
it is congruent to an open part of the surfaces

• z (u, v) = c2
c1
ec1u+av+ac1v [c3 cos (c1v) + c4 sin (c1v)] ,

• z (u, v) = c6
c5
e
c5v−ac5u

1+a2

[c6 cos (A (u+ av)) + c7 sin (A (u+ av))] ,

where A = c5
1+a2 , c1, ..., c7 ∈ R and c1, c5 6= 0.

Theorem IV.2. (Classification). Let M2 be a non harmonic
affine factorable surface given by (8) in the three di-
mensional isotropic space I3. The surfaces M2 satisfy the
condition ∆Iri= λiri where λi ∈ R, then it is congruent to
an open part of the surfaces

• z (u, v) = b2e
b1u
(
b3e
√
−Bv + b4e

−
√
−Bv

)
,

where B = b21 + λ3 < 0
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• z (u, v) = b2e
b1u

[
b5 cos

(√
Bv
)

+ b6 sin
(√

Bv
)]
,

where B = b21 + λ3 > 0,
• z (u, v) = b2e

b1u (b7v + b8) ,

where b21 = −λ3,

• z (u, v) = d2e
d1v−ad1u
a2+1

[
d3e

√
−C

a2+1
(u+av)

+d4e
−
√
−C

a2+1
(u+av)

]
,

where C = d21 +
(
a2 + 1

)
λ3 < 0,

• z (u, v) = d2e
d1v−ad1u
a2+1

[
d5 cos (α (u+ av))
+d6 sin (α (u+ av))

]
,

where α =
√
C

a2+1 , and C = d21 +
(
a2 + 1

)
λ3 > 0,

• z (u, v) = d2e
d1v−ad1(u+av) (d7 (u+ av) + d8) ,

where d21 = −
(
a2 + 1

)
λ3, bi, di ∈ R, i ∈ {1, ..., 8} and

b1, b2, d1, d2 6= 0.

V. AFFINE FACTORABLE SURFACES SATISFYING
∆IIri = λiri

In this section, we classify affine factorable surfaces with
non-degenerate second fundamental form in I13 satisfying the
equation

∆IIri = λiri, (30)

where λi ∈ R, i = 1, 2, 3, and

∆IIr =
(
∆IIr1,∆

IIr2,∆
IIr3

)
, (31)

and
r1 = x− ay, r2 = y, r3 = f(x)g(y). (32)

Using (7) and (13), a straightforward computation, proves
that the Laplacian operator on M2 is given by

∆IIr =
(
∆II (x− ay) ,∆IIy,∆II (f(x)g(y))

)
, (33)

where

∆II(x− ay) =
1

2e4
(Ω1 (x, y) + aΩ2 (x, y)) , (34)

∆IIy =
1

2e4
Ω2 (x, y) , (35)

∆IIfg =
1

2e4

[
f ′g (Ω1 (x, y) + aΩ2 (x, y))
+ (af ′g + fg′) Ω2 (x, y)

]
− 2, (36)

where
Ω1 (x, y) = ff ′f ′′gg′′2 + f2f ′′′gg′′2 − 3ff ′f ′′g′2g′′ −

ff ′f ′′gg′g′′′ + 2f ′3g′2g′′,
Ω2 (x, y) = −3f ′2f ′′gg′g′′ − ff ′f ′′′gg′g′′ + 2f ′2f ′′g′3 +

ff ′′2gg′g′′ + ff ′2g2g′′′ and e =
√
|ff ′′gg′′ − f ′2g′2|. The

equation (30) by means of (33) gives rise to the following
system of ordinary differential equations

1

2e4
(Ω1 (x, y) + aΩ2 (x, y)) = λ1(x− ay), (37)

1

2e4
Ω2 (x, y) = λ2y, (38)

1

2e4

[
f ′g (Ω1 (x, y) + aΩ2 (x, y))
+ (af ′g + fg′) Ω2 (x, y)

]
− 2 = λ3fg, (39)

where λ1, λ2, λ3 ∈ R. This means that M2 is most of 3−
type.
Combining Equations (37), (38) and (39), we have

(λ1x+ (λ2 − λ1) ay) f ′g + λ2yfg
′ − 2 = λ3fg. (40)

According of the choices of constants λ1, λ2 and λ3, we
discuss all possible cases of λi, i ∈ {1, 2, 3} .

Case 1: Let λ1 = λ2 and λ3 ∈ R. From (40), we have

λ1xf
′g + λ1yfg

′ − 2 = λ3fg. (41)

By dividing (41) by the produt fg, then taking partial
derivatives of (27) with respect to x and y, we find(

1

f

)′(
1

g

)′
= 0

which implies that f or g is constant. Both situations
contradict our assumption stating that the solution must be
non-degenerate second fundamental form. Therefore, in this
case, there are no affine factorable surfaces satisfying (30).

It should be noted that, there exists no II−harmonic affine
factorable surface in I13.

Case 2: Let λ1 = λ3 = 0 and λ2 6= 0. (40) can be
rewritten as

λ2ayf
′g + λ2yfg

′ − 2 = 0. (42)

By dividing (42) by the produt fg, then taking partial
derivative with respect to y gives(

g′

g

)′
(

2
λ2yg

)′ =
1

f
. (43)

Both sides of (43) are equal to some nonzero constant,
namely (

g′

g

)′
= c1

(
2

λ2yg

)′
and

1

f
= c1. (44)

Therefore, the function f must be constant. This solution
gives rise to a similar type of contradition as in case 1. Hence,
there are no affine factorable surfaces satisfying (30) in this
Case.

Case 3: Let λ2 = λ3 = 0 and λ1 6= 0. Hence we get
from (40)

(x− ay) g =
2

λ1f ′
. (45)

The partial derivative of (45) with respect to x leads to

g =
2

λ1

(
1

f ′

)′
(46)

Therefore the function g is constant. This solution gives rise
to a similar type of contradition as in Case 1.

Case 4: Let λ1 = 0, λ2 6= 0 and λ3 6= 0. By dividing
(41) by the produt fg, we have

λ2y

(
a
f ′

f
+
g′

g

)
− 2

fg
= λ3. (47)

Taking the partial derivative of (47) with respect to x gives(
f ′

f

)′
− 2

aλ2yg

(
1

f

)′
= 0, (48)

which means that g = c2
y , c2 ∈ R−{0} . Considering it into

(47) gives the following polynomial equation in y

(aλ2f
′ − 2c2) y − (λ2 + λ3) f = 0, (49)
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where the coefficients must vanish, i.e.

(aλ2f
′ − 2c2) = 0 and (λ2 + λ3) f = 0. (50)

Integrating the first equality leads to f (x) = 2c2
aλ2

x+c3, c3 ∈
R. The second equality gives λ2 = −λ3.

Case 5: Let λ2 = 0, λ1 6= 0 and λ3 6= 0. From (40), we
obtain

λ1(x− ay)f ′g − 2 = λ3fg. (51)

By dividing (51) by the g and taking the partial derivative
with respect to y gives

− λ1a

2
f ′ =

(
1

g

)′
. (52)

Since the left side of (52) is a function of x and the right side
is a function of y, both sides have to be equal to a nonzero
constant, i.e.

− λ1a

2
f ′ = c4 =

(
1

g

)′
. (53)

From the right side of (53), we deduce g (y) = 2
c4y+c5

.
Substituting it into (51) leads to the polynomial equation
in y

λ1xf
′ − λ3f − 2c5 − (2c4 + λ1af

′)y = 0, (54)

where the coefficients must vanish, i.e.

2c4 + λ1af
′ = 0 (55)

λ1xf
′ − λ3f − 2c5 = 0 (56)

Integrating of (55) yields f (x) = −c4
aλ1

x + c6, c6 ∈ R.
Substituting it into (56) gives λ1 = λ3 and c6 = −2c5

λ3
. Then

f (x) =
−2c4
aλ1

x− 2c5
λ1

=
−2

λ1

(c4
a
x+ c5

)
. (57)

Case 6: Let λ1 6= 0, λ2 6= 0, λ3 = 0 and λ1 6= λ2. From
(40), we obtain

(λ1x+ (λ2 − λ1) ay) f ′g + λ2yfg
′ − 2 = 0. (58)

By dividing (58) by the f ′, we get

[λ1x+ (λ2 − λ1) ay] g + λ2yg
′ f

f ′
=

2

f ′
. (59)

Taking partial derivative of (59) with respect to x gives

λ1g + λ2yg
′
(
f

f ′

)′
= 2

(
1

f ′

)′
. (60)

Now, taking partial derivative of (60) with respect to y, we
find

λ1g
′ + λ2 (yg′)

′
(
f

f ′

)′
= 0, (61)

and so we have to consider two cases.
Case 6.1. f ′ = c7f, c7 ∈ R−{0} . Then (60) reduces to

λ1g = 2

(
1

f ′

)′
. (62)

The left side in (62) is a function of y while other sideis a
constant or function of x. That is not possible.

Case 6.2. f ′ 6= c7f, c7 ∈ R− {0} . Then (61) can be

rewritten as (
f

f ′

)′
= − λ1g

′

λ2 (yg′)
′ . (63)

As in each side of this equation we have a function depending
on x and the other depending on y, there exists c8 ∈ R−{0} ,
such that (

f

f ′

)′
= c8 and λ1g′ + c8λ2 (yg′)

′
= 0. (64)

An integration of the first equation in (64) gives

f (x) = (c8x+ c9)
1
c8 , c9 ∈ R. (65)

Substituting (65) in (60) leads to

λ1g + λ2c8yg
′ = 2 (c8 − 1) (c8x+ c9)

− 1
c8 . (66)

Thus, we have two situations:
Case 6.2.1. c8 6= 1. The left-hand side of (66) is a function

of y or a constant whereas the right-hande side is a function
of x. This is a contradiction.

Case 6.2.2. c8 = 1. Then by (65) and (66) we get

f (x) = x+ c9 and λ1g + λ2yg
′ = 0. (67)

By considering (67) into (59) we get

(λ2 − λ1) ayg + λ2yg
′c9 = 2. (68)

An integration of the second equation in (67) leads to g(y) =

y−
λ1
λ2 . Substituting it into (68) gives a contradiction.

Case 7: Let λ1λ2λ3 6= 0 and λ = λ1 − λ2 6= 0. By
dividing the equation (40) by fg we get

[λ1x+ λay]
f ′

f
+ λ2y

g′

g
− 2

fg
= λ3. (69)

Taking partial derivatives of (69) with respect to x and y,
leads to

λa

(
f ′

f

)′
= 2

(
1

f

)′(
1

g

)′
, (70)

we have to consider two cases.
Case 7.1. f ′ = d1f, d1 ∈ R− {0} . It follows from (70)

that (
1

f

)′(
1

g

)′
= 0. (71)

This implies that f or g is constant, which again leads to a
contradiction.

Case 7.2. f ′ 6= d1f, d1 ∈ R− {0} . Therefore, (70) can
be rewritten as (

f ′

f

)′
(

1
f

)′ =
2
(

1
g

)′
λa

. (72)

Both sides of (72) are equal to some non-zero constant,
namely (

f ′

f

)′
(

1
f

)′ = d2 =
2
(

1
g

)′
λa

. (73)

Form the left side of (73), we deduce f (x) = (d2x+ d3) ,
d3 ∈ R. We may assume d3 = 0. Then we obtain f (x) =
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d2x. Considering it into (69) gives the following polynomial
equotion in x(

λ2y
g′

g
− λ3 + λ1

)
x+ λay − 2

d2g
= 0, (74)

where the coefficients must vanish, i.e

λ2y
g′

g
− λ3 + λ1 = 0, (75)

and
λay − 2

d2g
= 0. (76)

From (76), we deduce g (y) = 2
λad2y

. Substituting it into
(75) gives λ3 = λ1 − λ2.

Therefore, we have shown the following theorems:

Theorem V.1. There is no II-harmonic affine factorable
surface given by (8) in three dimensional isotropic space
I3.

Theorem V.2. (Classification) Let M2 be a non−
harmonic affine factorable surface with non-degenerate
three fundamental form given by (8) in the three dimensional
isotropic space I3. Assume that the surface M2 satisfies the
condition ∆IIri= λiri where λi ∈ R, then it is congruent
to an open part of the surfaces,

• r (u, v) =
(
u, v, c2v

(
2c2
aλ2

(u+ av) + c3

))
,

• r (u, v) =
(
u, v, 2

c4v+c5

(
−c4
aλ1

(u+ av) + c6

))
,

where c6 = −2c5
λ1

,

• r (u, v) =
(
u, v, 2(u+av)aλ3v

)
.
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