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Abstract—In this paper, a general form of the Poincaré
inequality is established, and an explicit relationship between
the interpolation error constants of the Raviart-Thomas element
and the geometric characters of the triangulation is firstly
obtained, which is consistent with the maximal angle condition.
In addition, explicit representations of the constants in the final
error estimates of the Raviart-Thomas mixed finite element
method are studied in detail. This explicit prior error estimation
can be effectively used as an error bounds calculation.

Index Terms—Raviart-Thomas element, Explicit error esti-
mate, Maximal angle condition, Poincaré inequality.

I. INTRODUCTION

AS a method of numerically solving elliptic boundary
value problems, the finite element method (FEM) has

been widely used in the numerical solution of various
structural problems for the field of engineering mechanics.
Moreover, it also establishes a solid theoretical foundation
in terms of the priori and posterior error estimation ([1],
[2], [3]). In the classical finite element prior error analysis,
interpolation error based on two-points is the key to derive
the final error estimation. One of the two points here is the
transformation inequality of the function semi-norm between
the general element and the reference element, and the
other is the interpolation error on the reference element
[4]. Various positive constants appear in this process, which
we call interpolation error constants. The interpolation error
constant is independent of the element size, but may be
related to the sine value of the minimum angle of the
triangulation for the 2D case [5]. In fact, if the minimum
angle condition for the finite elements is relaxed, it can be
obtained that the anisotropic elements which are found for
a long time before in [6]. Since late 1980’s, many different
methods of dealing with the anisotropic interpolation error
estimation have emerged, and some important results have
been obtained ([7], [8], [9]).

It is well known that various constants are likely to appear
in the process of deriving the final finite element error
estimate. For the purpose of quantitative error bounds, it
is good to evaluate or constrain these constants as well as
interpolation error constants. Recently, some research work
on the estimation of the error constants for the finite elements
has appeared, for example, ([8], [10]) for linear triangular
finite elements, ([11], [12], [13]) for bilinear quadrilater-
al finite elements and [14] for the lowest order Raviart-
Thomas element and nonconforming Crouzeix-Raviart ele-
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ment. However, all of them are only concentrated on low-
order interpolations, such as the constant of interpolation,
linear and bilinear interpolation, and constant L2-projection.
As mentioned in [14], there is no explicit error bounds for
general Raviart-Thomas mixed finite elements are given at
present. Therefore, it is necessary to further give explicit
bounds for discrete inf-sup constants.

The purpose of this paper is to derive an explicit error
bound for the mixed finite element in the Poisson problem.
We first give some results of the error constants for arbitrary
order Raviart-Thomas interpolation, which play an important
role in the prior error estimation of finite element methods.
Our way is based on Durán’s some anisotropic results about
Rarviart-Thomas elements [15]. In this process, it is vital
to introduce the Poincaré inequality [16] and sharp trace
theorem [14]. However, we need to establish a generalized
form of the Poincaré inequality that will be frequently used to
get higher-order norms of the function and its some partial
derivatives with vanishing averages. At the same time, we
get an explicit expression of the discrete inf-sup constant.
Based on the above results, a constructive error bound for
the mixed finite element is derived. The explicit prior error
estimation obtained in this paper not only provides a com-
putable error boundary, but also can be used as a posterior
error estimation of the finite element method. Moreover, our
explicit interpolation error estimates for the Raviart-Thomas
element are proved to be consistent with the maximal angle
condition.

The rest of the paper is organized as follows. In Section
II, we establish a general form of the Poincaré inequality
and explicit error estimates of auxiliary interpolation opera-
tors. Then we present some primary results about the set-
up and approximation of the model problem. Section III
gives bounds of interpolation error constants for the Raviart-
Thomas element. We study the explicit expression of the
discrete inf-sup constant for the Raviart-Thomas element in
Section IV. Then we present explicit error estimates for the
Raviart-Thomas mixed finite element method in Section V.
In order to test the error bounds for lowest order mixed
finite element method, the numerical experiment given in
[14] is introduce in Section VI. Finally, some comments and
extensions of the results are described in Section VII.

II. DISCRETIZATION OF THE MODEL PROBLEM

In this paper, let Ω ⊆ R2 be a bounded convex polygonal
domain and Pk(Ω) the space of all polynomials of degree
≤ k on Ω. Define the semi-norm in Sobolev space Hm(Ω)
as follows

|v|m,Ω =
( ∑
|α|=m

|α|!
α!

∥Dαv∥20,Ω
) 1

2 , ∀v ∈ Hm(Ω), (II.1)
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where α = (α1, α2), |α| = α1 + α2, α! = α1!α2! and
Dα = ∂|α|

∂x
α1
1 ∂x

α2
2

.
We observe that the coefficients in (II.1) are helpful to

simplify the final forms of our results.
The following classic Poincaré inequality which correctly

proved by Bebendorf in [17], was firstly presented in [16].
Lemma 2.1: Let v ∈ H1(Ω) be a function with vanishing

average. Then

∥v∥0,Ω ≤ dΩ
π
|v|1,Ω, (II.2)

where dΩ is the diameter of Ω.
As mentioned in Introduction, we can establish a general-

ized form of the Poincaré inequality (II.2) as follows.
Lemma 2.2: Let v ∈ Hk+1(Ω) be a function satisfying∫

Ω

Dαvdx = 0, |α| ≤ k. (II.3)

Then there holds

|v|m,Ω ≤ (
dΩ
π
)k+1−m|v|k+1,Ω, (II.4)

where 0 ≤ m ≤ k + 1.
Proof: (II.4) is obvious for m = k + 1. Consider for

0 ≤ m < k + 1. According to (II.3) and Lemma 2.1, we
have (II.5), that is, |v|m,Ω ≤ dΩ

π |v|m+1,Ω. Consequently, we
can get (II.4) for all 0 ≤ m ≤ k + 1 by analogy.

Let us denote by T̂ the reference unit triangle in the
(x̂1, x̂2) space with vertices â0 = (0, 0), â1 = (1, 0), and
â2 = (0, 1). Let γ̂i = â0âi, i = 1, 2. For each edge γ̂i, we
define the auxiliary interpolation operator Î(i)k : H1(T̂ ) →
Pk(T̂ ) satisfying{ ∫

T̂
(v − Î

(i)
k v)pdx̂, ∀p ∈ Pk−1(T̂ ),∫

γ̂i
(v − Î

(i)
k v)qdŝ = 0, ∀q ∈ Pk(γ̂i),

(II.6)

where v ∈ H1(T̂ ), i = 1, 2 and k is a non-negative
integer. The interpolation problem (II.6) is well posed, ref.
[15]. In order to explicitly estimate the interpolation error
∥v − Î

(i)
k v∥0,T̂ , we introduce a sharp trace theorem on T̂

given in [14].
Lemma 2.3: ∀v ∈ H1(T̂ ), ∀ε > 0, then there holds

∥v∥20,γ̂i
≤ (2 +

2

ε2
)∥v∥2

0,T̂
+ ε2|v|2

1,T̂
, i = 1, 2. (II.7)

For convenience, we define two index sets as follows:

A = {1, 2, . . . , 1
2
(k + 1)k}, B = {1

2
(k + 1)k + 1,

1

2
(k + 1)k + 2, · · · , 1

2
(k + 2)(k + 1)}. (II.8)

Let {pj ; j ∈ A} be a basis of Pk−1(T̂ ) and {pj ; j ∈ B}
a basis of Pk(γ̂i) such that ∥pj∥0,T̂ = 1 for j ∈ A and
∥pj∥0,γ̂i = 1 for j ∈ B. Then for each interpolation operator
Î
(i)
k , there exists a corresponding basis {ϕ̂j , j ∈ A ∪B} in
Pk(T̂ ) such that

Î
(i)
k v =

∑
j∈A

(

∫
T̂

vpjdx̂)ϕ̂j +
∑
j∈B

(

∫
γ̂i

vpjdŝ)ϕ̂j . (II.9)

Combining Lemma 2.3 and the Hölder inequality, we get

∥v − Î
(i)
k v∥2

0,T̂

=

∫
T̂

(v − Î
(i)
k v)2dx̂

≤ [1 +
1

2
(k + 2)(k + 1)](∥v∥2

0,T̂

+
∑
j∈A

∥ϕ̂j∥20,T̂ ∥v∥
2
0,T̂

+
∑
j∈B

∥ϕ̂j∥20,T̂ ∥v∥
2
0,γ̂i

)

≤ N [(M1 + 2M2(1 +
1

ε2
))∥v∥2

0,T̂
+M2ε2|v|21,T̂ ],

(II.10)

where M1 = 1+
∑

j∈A ∥ϕ̂j∥20,T̂ ,M2 =
∑

j∈B ∥ϕ̂j∥20,T̂ , N =

1 + 1
2 (k + 2)(k + 1).

Let pv ∈ Pk(T̂ ) such that
∫
T̂
Dα(v+pv)dx̂ = 0, |α| ≤ k.

According to Lemma 2.2, it implies that

∥v − Î
(i)
k v∥2

0,T̂

= ∥v + pv − Î
(i)
k (v + pv)∥20,T̂

≤ N [(M1 + 2M2(1 +
1

ε2
))∥v

+ pv∥20,T̂ +M2ε
2|v + pv|21,T̂ ]

≤ N [
2

π2
(M1 + 2M2(1 +

1

ε2
))|v + pv|21,T̂

+M2ε
2|v + pv|21,T̂ ]

≤ N [
2

π2
(M1 + 2M2) +

4M2

π2ε2
+M2ε

2]|v + pv|21,T̂ .

(II.11)

Let ε2 = 2
π in the above inequality, that implies

∥v − Î
(i)
k v∥2

0,T̂

≤ 2N

π2
[M1 + 2(1 + π)M2]|v + pv|21,T̂

≤ 2k+1N

π2(k+1)
[M1 + 2(1 + π)M2]|v|2k+1,T̂

.

(II.12)

Therefore, we establish the following lemma.
Lemma 2.4: ∀v ∈ Hk+1(T̂ ), there holds

∥v − I
(i)
k v∥0,T̂ ≤ dk|v|k+1,T̂ , i = 1, 2, (II.13)

where

dk =
1

πk+1

√
2k+1N [M1 + 2(1 + π)M2], (II.14)

and N,M1,M2 are given in (II.12).
Next, we consider the following Poisson problem: Find

u ∈ H1
0 (Ω) such that{

−∆u = f, in Ω,
u = 0, on ∂Ω.

(II.15)

It is known that (II.15) has a unique solution u ∈ H2(Ω)∩
H1

0 (Ω) for the convex domain with ∂Ω ∈ C2. Moreover, the
Miranda-Talente estimate is valid, ref. ([18], [19]),

|u|2,Ω ≤ ∥f∥0,Ω, (II.16)

which is extended to a general convex polygonal domain in
[20].

In order to get a mixed variational formulation of the
Poisson problem (II.15), we introduce the Hilbert space
H(div) , {φ; φ = (φ1, φ2) ∈ L2(Ω)2, divφ ∈ L2(Ω)}
and the norm in H(div) which is defined by

∥φ∥H(div) , (∥φ∥20,Ω + ∥divφ∥20,Ω)
1
2 , (II.17)
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|v|2m,Ω =
∑

|α|=m

m!

α!
∥Dαv∥20,Ω

≤ (
dΩ
π
)2

∑
|α|=m

|Dαv|21,Ω

= (
dΩ
π
)2

∑
|α|=m

m!

α!
[∥Dα+(1,0)v∥20,Ω + ∥Dα+(0,1)v∥20,Ω +

∑
|α|=m

m!

α!
∥Dα+(0,1)v∥20,Ω]

= (
dΩ
π
)2[

∑
|α|=m+1
α1 > 0

m!

(α1 − 1)!α2!
∥Dαv∥20,Ω +

∑
|α|=m+1
α2 > 0

m!

α1!(α2 − 1)!
∥Dαv∥20,Ω]

= (
dΩ
π
)2[

∑
|α|=m+1

α1>0,α2>0

(
m!

(α1 − 1)!α2!
+

m!

α1!(α2 − 1)!
)∥Dαv∥20,Ω + ∥D(m+1,0)v∥20,Ω + ∥D(0,m+1)v∥20,Ω]

= (
dΩ
π
)2[

∑
|α|=m+1

α1>0,α2>0

m!(α1 + α2)

α!
∥Dαv∥20,Ω + ∥D(m+1,0)v∥20,Ω + ∥D(0,m+1)v∥20,Ω]

= (
dΩ
π
)2|v|2m+1,Ω,

(II.5)

where divφ = ∂φ1

∂x1
+ ∂φ2

∂x2
.

Let ψ = −∇u. Then the mixed variational formulation of
(II.15) is to find (ψ, u) ∈ H(div)× L2(Ω) such that{

a(ψ,φ) + b(φ, u) = 0, ∀φ ∈ H(div),
b(ψ, v) = F (v), ∀v ∈ L2(Ω),

(II.18)

where a(ψ,φ) =
∫
Ω
ψ · φdx, b(φ, v) = −

∫
Ω
vdivφdx and

F (v) = −
∫
Ω
fvdx.

The well-posedness of the problem (II.18) has been well
established in [21]. Generally speaking, the final error con-
stants for the mixed finite element method will be dependent
on the constant in the inf-sup condition. The following
lemma give an explicit lower bound of the inf-sup constant,
which can be found in [14].

Lemma 2.5: Let the domain Ω be star-shaped with respect
to a point which we just choose to be the origin for simplicity,
and the boundary of Ω be represented in the plane polar
coordinates by r = ρ(θ). Then we get the following inf-sup
condition

inf
v∈L2(Ω)

sup
φ∈H(div)

b(φ, v)

∥v∥0,Ω∥φ∥H(div)
≥ β, (II.19)

where
β =

1√
1 + maxρ(θ)

. (II.20)

III. BOUNDS OF INTERPOLATION ERROR CONSTANTS FOR
THE RAVIART-THOMAS ELEMENT

We firstly give an introduction of the Raviart-Thomas
mixed finite element space, ref. [15]. To this end, let Th
be a finite element triangulation of Ω. For a general element
T ∈ Th with vertices a0, a1 and a2, we denote by hT and
ρT the diameter of T and the supremum of the diameters
of T , respectively. And we can get h = max

T∈Th

hT . Without

loss of generality, assume that the maximal angle of T is
θT = ∠a1a0a2, γi = a0ai, and ni, τi, li are respectively
the unit exterior normal, direction and length of the edge γi,
where i = 1, 2.

For any T ∈ Th, the affine transformation FT : T̂ → T is
defined by

x = FT (x̂) = Bx̂+ a0, (III.1)

where B = (l1τ1, l2τ2) and T̂ is the reference element given
in Section II, seeing Fig. 1 as for an illustration.
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Fig. 1. An illustration of the affine transformation

The local Raviart-Thomas element on T of the order k ≥ 0
is defined by

HT = Pk(T )
2 ⊕ xP̄k(T ), (III.2)

where P̄k(T ) = span{xi1x
j
2; i+ j = k, i, j ≥ 0}.

The corresponding local interpolation operator RT k
T :

H1(T ) → HT is defined by{ ∫
γ
qRT k

Tφ · nds =
∫
γ
qφ · nds, ∀q ∈ Pk(γ), γ ⊂ ∂T,∫

T
RT k

Tφ · pdx =
∫
T
φ · pdx, ∀p ∈ Pk−1(T )

2,
(III.3)

where n is the unit exterior normal vector of the edge γ.
Let Hh = {φ

h
∈ H(div); φ

h
|T ∈ HT , ∀T ∈ Th}. Then

the global interpolation operator is defined by

RT k
h |T = RT k

T , ∀T ∈ Th. (III.4)

Furthermore, let Mh be the finite element space which
is the discrete approximation of L2(Ω). The operator P k

h :
L2(Ω) →Mh is defined by

P k
h |T = P k

T , ∀T ∈ Th, (III.5)
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where P k
T is the k order L2-projection operator on T .

It has been proved that the operator RT k
h satisfies

divRT k
hφ = P k

h divφ, ∀φ ∈ H(div). (III.6)

For any φ ∈ HT , we introduce the relations between
derivatives of φ and derivatives of its divergence, which are
given in [15].

Lemma 3.1: ∀T ∈ Th, ∀φ ∈ HT , there holds

∂k+1φ

∂xk+1
1

= (k+1
k+2

∂k(divφ)

∂xk
1

, 0),

∂k+1φ

∂xk+1
2

= (0, k+1
k+2

∂k(divφ)

∂xk
2

),

∂k+1φ

∂xi
1∂x

j
2

= ( i
k+2

∂k(divφ)

∂xi−1
1 ∂xj

2

, j
k+2

∂k(divφ)

∂xi
1∂x

j−1
2

),

i+ j = k + 1, i > 0, j > 0.

(III.7)

For the projection operator P k
T̂

, we have the following
result that is also found in [15].

Lemma 3.2: ∀v ∈ Hk(T̂ ), i, j ≥ 0, i+j = k, there holds

∥
∂kP k

T̂
v

∂x̂i1∂x̂
j
2

∥0,T̂ ≤ ĉij∥
∂kv

∂x̂i1∂x̂
j
2

∥0,T̂ , (III.8)

where ĉij = 1
∥qij∥2

0,T̂

∥ ∂kqij

∂x̂i
1∂x̂

j
2

∥0,T̂ ∥x̂i1x̂
j
2(1 − x̂1 − x̂2)

k∥0,T̂
and qij(x̂) = ∂k

∂x̂i
1∂x̂

j
2

(x̂i1x̂
j
2(1− x̂1 − x̂2)

k).
Remark 3.3: The expression of ĉij in Lemma 3.2 is not

explicitly given in [15]. However, we can obtain it from the
proof of Lemma 3.2 that is Lemma 2.3 in [15].

With the above preparations, we start to explicitly estimate
error constants for the interpolation operator RT k

T .
Theorem 3.4: ∀T ∈ Th, ∀φ ∈ Hk+1(T )2, there holds

∥φ−RT k
Tφ∥0,T

≤ 4dk
sin θT

[
∑

|α|=k+1

|α|!
α!

l2α∥
∂k+1φ

∂τα1
1 ∂τα2

2

∥20,T

+
3 + 2

√
2

4

k + 1

k + 2
b2kh

2
T

∑
|α|=k

|α|!
α!

l2α∥
∂k(divφ)
∂τα1

1 ∂τα2
2

∥20,T ]
1
2 ,

(III.9)

where bk = max
|α|=k

{ĉα}, l2α = l2α1
1 l2α2

2 , ĉα is given in

Lemma 3.2 and dk is given in (II.14).
Proof: Let N0 = (n1, n2), then |detN0| = sin θT . Since

φ−RT k
Tφ = N−1

0 ((φ−RT k
Tφ)·n1, (φ−RT k

Tφ)·n2)T , then
it implies ∥φ − RT k

Tφ∥20,T ≤ 2
sin2 θT

∑2
i=1 ∥(φ − RT k

Tφ) ·
ni∥20,T . Let wi = (φ−RT k

Tφ) · ni and ŵi = wi ◦FT . Since
(III.3) implies I(i)k ŵi = 0, according to Lemma 2.4 we have
(III.10).

We need to estimate the second term in the above inequal-
ity. For a given φ ∈ Hk+1(T )2, we define the corresponding
function φ̂ ∈ Hk+1(T̂ ) via the Piola transformation such that

φ =
B

|detB|
φ̂, ∇̂ = BT∇,

∇̂ = Λ∇τ ,∇τ = BT
0 ∇,

(III.11)

where ∇̂ = ( ∂
∂x̂1

, ∂
∂x̂2

)T , ∇ = ( ∂
∂x1

, ∂
∂x2

)T , ∇τ =

( ∂
∂τ1

, ∂
∂τ2

)T , B0 = (τ1, τ2) and Λ =

(
l1 0
0 l2

)
.

(III.11) implies

divφ = ∇ · φ =
1

|detB|
d̂ivφ̂. (III.12)

Since ∥B∥2 ≤ hT

ρ̂ and ρ̂ = ρT̂ , then we have

∥
∂k+1RT k

Tφ

∂τα1
1 τα2

2

∥20,T

=
|detB|
l2α

∥ B

|detB|
∂k+1RT k

T̂
φ̂

∂x̂α1
1 ∂x̂α2

2

∥2
0,T̂

≤ h2T
ρ̂2l2α|detB|

∥
∂k+1RT k

T̂
φ̂

∂x̂α1
1 ∂x̂α2

2

∥2
0,T̂
.

(III.13)

Combining Lemmas 3.1–3.2 and (III.6), for α = (k + 1, 0)
we get

∥
∂k+1RT k

T̂
φ̂

∂x̂α1
1 ∂x̂α2

2

∥2
0,T̂

= (
k + 1

k + 2
)2∥

∂k(d̂ivRT k
T̂
φ̂)

∂x̂k1
∥2
0,T̂

= (
k + 1

k + 2
)2∥

∂k(P k
T̂

d̂ivφ̂)

∂x̂k1
∥2
0,T̂

= (
k + 1

k + 2
)2ĉ2k0l

2k
1 |detB|∥

∂k(divφ)
∂τk1

∥20,T .

(III.14)

For α = (0, k + 1), similarly there exists

∥
∂k+1RT k

T̂
φ̂

∂x̂α1
1 ∂x̂α2

2

∥2
0,T̂

≤ (
k + 1

k + 2
)2ĉ20kl

2k
2 |detB|∥

∂k(divφ)
∂τk2

∥20,T .
(III.15)

For α > 0 (α1 > 0 and α2 > 0), we get III.16
According to (III.13–III.16), we obtain III.17.
Let bk = max

|α|=k
{ĉα}. Then there holds

∑
|α|=k+1

|α|!
α!

l2α∥
∂k+1RT k

Tφ

∂τα1
1 ∂τα2

2

∥20,T

≤ k + 1

k + 2
(
bkhT
ρ̂

)2
∑
|α|=k

|α|!
α!

l2α∥
∂k(divφ)
∂τα1

1 ∂τα2
2

∥20,T .
(III.18)

Combining (III.10) and (III.18), and observing ρ̂ = 2−
√
2,

we obtain (III.9).
Remark 3.5: If θT = π

2 , we can get better results. Without
loss of generality, let the right triangle T has two edges
respectively parallel to the coordinate axes. Then (III.10) can
be replaced by

∥φ−RT k
T ∥

2

0,T
≤ 4d2k

∑
|α|=k+1

|α|!
α!

l2α(∥
∂k+1φ

∂xα1
1 ∂xα2

2

∥20,T

+ ∥
∂k+1RT k

Tφ

∂xα1
1 ∂xα2

2

∥20,T ).

Corollary 3.6: ∀T ∈ Th, ∀φ ∈ Hk+1(T )2, suppose θT =
π
2 , then there holds

∥φ−RT k
Tφ∥0,T

≤ 2dk[
∑

|α|=k+1

|α|!
α!

l2α∥
∂k+1φ

∂xα1
1 ∂xα2

2

∥20,T

+
(3 + 2

√
2)(k + 1)

2(k + 2)
b2kh

2
T

·
∑
|α|=k

|α|!
α!

l2α∥
∂k(divφ)
∂xα1

1 ∂xα2
2

∥20,T ]
1
2 ,

(III.19)
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∥φ−RT k
Tφ∥20,T ≤ 2d2k

sin2 θT

2∑
i=1

∑
|α|=k+1

|α|!
α!

l2α∥
∂k+1(φ−RT k

Tφ) · ni
∂τα1

1 ∂τα2
2

∥20,T

≤ 4d2k
sin2 θT

2∑
i=1

∑
|α|=k+1

|α|!
α!

l2α(∥
∂k+1(φ · ni)
∂τα1

1 ∂τα2
2

∥20,T + ∥
∂k+1(RT k

Tφ · ni)
∂τα1

1 ∂τα2
2

∥20,T )

≤ 4d2k
sin2 θT

2∑
i=1

∑
|α|=k+1

|α|!
α!

l2α(2∥
∂k+1φ

∂τα1
1 ∂τα2

2

∥20,T + ∥
∂k+1RT k

Tφ

∂τα1
1 ∂τα2

2

∥20,T )

=
16d2k
sin2 θT

∑
|α|=k+1

|α|!
α!

l2α∥
∂k+1φ

∂τα1
1 ∂τα2

2

∥20,T +
8d2k

sin2 θT

∑
|α|=k+1

|α|!
α!

l2α∥
∂k+1RT k

Tφ

∂τα1
1 ∂τα2

2

∥20,T .

(III.10)

∥
∂k+1RT k

T̂
φ̂

∂x̂α1
1 ∂x̂α2

2

∥2
0,T̂

= (
α1

k + 2
)2∥

∂k(d̂ivRT k
T̂
φ̂)

∂x̂α1−1
1 ∂x̂α2

2

∥2
0,T̂

+ (
α2

k + 2
)2∥

∂k(d̂ivRT k
T̂
φ̂)

∂x̂α1
1 ∂x̂α2−1

2

∥2
0,T̂

= (
α1

k + 2
)2∥

∂kP k
T̂
(d̂ivφ̂)

∂x̂α1−1
1 ∂x̂α2

2

∥2
0,T̂

+ (
α2

k + 2
)2∥

∂kP k
T̂
(d̂ivφ̂)

∂x̂α1
1 ∂x̂α2−1

2

∥2
0,T̂

≤ (
α1

k + 2
ĉα1−1,α2)

2∥
∂k(d̂ivφ̂)

∂x̂α1−1
1 ∂x̂α2

2

∥2
0,T̂

+ (
α2

k + 2
ĉα1,α2−1)

2∥
∂k(d̂ivφ̂)

∂x̂α1
1 ∂x̂α2−1

2

∥2
0,T̂

= (
α1

k + 2
ĉα1−1,α2)

2l
2(α1−1)
1 l2α2

2 |detB|∥
∂k(divφ)

∂τα1−1
1 ∂τα2

2

∥20,T + (
α2

k + 2
ĉα1,α2−1)

2l2α1
1 l

2(α2−1)
2 |detB|∥

∂k(divφ)

∂τα1
1 ∂τα2−1

2

∥20,T .

(III.16)

∑
|α|=k+1

|α|!
α!

l2α∥
∂k+1RT k

Tφ

∂τα1
1 ∂τα2

2

∥20,T

= l
2(k+1)
1 ∥

∂k+1RT k
Tφ

∂τk+1
1

∥20,T + l
2(k+1)
2 ∥

∂k+1RT k
Tφ

∂τk+1
2

∥20,T +
∑

|α|=k+1,α>0

|α|!
α!

l2α∥
∂k+1RT k

Tφ

∂τα1
1 ∂τα2

2

∥20,T

≤ (
hT l

k
1

ρ̂

k + 1

k + 2
ĉk0)

2∥
∂k(divφ)
∂τk1

∥20,T + (
hT l

k
2

ρ̂

k + 1

k + 2
ĉ0k)

2∥
∂k(divφ)
∂τk2

∥20,T

+
∑

|α|=k+1,α>0

|α|!
α!

(
hT
ρ̂
)2[(

α1

k + 2
ĉα1−1,α2 l

α1−1
1 lα2

2 )2∥
∂k(divφ)

∂τα1−1∂τα2
∥20,T

+ (
α2

k + 2
ĉα1,α2−1l

α1
1 lα2−1

2 )2∥
∂k(divφ)

∂τα1∂τα2−1
∥20,T ]

= (
hT l

k
1

ρ̂

k + 1

k + 2
ĉk0)

2∥
∂k(divφ)
∂τk1

∥20,T + (
hT l

k
2

ρ̂

k + 1

k + 2
ĉ0k)

2∥
∂k(divφ)
∂τk2

∥20,T

+
∑

|α|=k,α1≥0,α2>0

(k + 1)!

(α1 + 1)!α2!
(
hT l

α

ρ̂

α1 + 1

k + 2
ĉα)

2∥
∂k(divφ)
∂τα1∂τα2

∥20,T

+
∑

|α|=k,α1>0,α2≥0

(k + 1)!

α1!(α2 + 1)!
(
hT l

α

ρ̂

α2 + 1

k + 2
ĉα)

2∥
∂k(divφ)
∂τα1∂τα2

∥20,T

≤ k + 1

k + 2
(
ĉk0hT l

k
1

ρ̂
)2∥

∂k(divφ)
∂τk1

∥20,T +
k + 1

k + 2
(
ĉ0khT l

k
2

ρ̂
)2∥

∂k(divφ)
∂τk2

∥20,T

+
∑

|α|=k,α>0

|α|!
α!

k + 1

(k + 2)2
(
ĉαhT l

α

ρ̂
)2(α1 + 1 + α2 + 1)∥

∂k(divφ)
∂τα1

1 ∂τα2
2

∥20,T

=
k + 1

k + 2
(
hT
ρ̂
)2

∑
|α|=k

|α|!
α!

ĉ2αl
2α∥

∂k(divφ)
∂τα1

1 ∂τα2
2

∥20,T .

(III.17)
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where bk is given in Theorem 3.4 and dk is given in (II.14).

Due to Theorem 3.4, Corollary 3.6 and the specific tri-
angulation, we can explicitly get corresponding estimates of
the global interpolation error ∥φ−RT k

hφ∥0,Ω. However, we
give general results for the global interpolation error.

Theorem 3.7: Let θ = max
T∈Th

θT and φ ∈ Hk+1(Ω). Then

we have

∥φ−RT k
hφ∥0,Ω ≤ 4 · 2k/2dk

sin θ
hk+1(2|φ|2k+1,Ω

+
3 + 2

√
2

4

k + 1

k + 2
b2k|divφ|2k,Ω)

1
2 ,

(III.20)

where bk is given in Theorem 3.4 and dk given in (II.14).

Proof: Without loss of generality, for any fixed T ∈ Th,
we suppose τ1 = (1, 0)T and τ2 = (cos θT , sin θT )

T . Then
(III.11) implies ∥BT

0 ∥2 ≤
√
2 and

∥
∂k+1φ

∂τα1
1 ∂τα2

2

∥20,T ≤ 2k+1∥
∂k+1φ

∂xα1
1 ∂xα2

2

∥20,T ,

∥
∂k(divφ)
∂τα1

1 ∂τα2
2

∥20,T ≤ 2k∥
∂k(divφ)
∂xα1

1 ∂xα2
2

∥20,T .
(III.21)

Combining (III.9) and (III.21), we get (III.20) by simple
calculations.

IV. THE DISCRETE INF-SUP CONSTANTS FOR THE
RAVIART-THOMAS ELEMENT

In this section, we present the lower bounds of the inf-sup
constants for a general Raviart-Thomas element. According
to the Fortin’s principle given by Fortin in [22], we need to
estimate the constant c in the following inequality,

∥RT k
hφ∥H(div) ≤ c∥φ∥H(div). (IV.1)

Let γ̂3 = â1â2 and n̂3, l̂3 be the unit exterior normal
vector and length of the edge γ̂3 on T̂ , respectively. Let
A be the index set given in (II.8), {p

j
; j ∈ A} a basis of

Pk−1(T̂ )
2 and {qij ; j = 1, 2, . . . , k+1} a basis of Pk(γ̂i) for

i = 1, 2, 3. Then there exists a basis {φ
ij
; i = 1, 2, 3, j =

1, 2, . . . , k + 1} ∪ {ψ
j
; j ∈ A} in HT̂ such that

RT k
T̂
φ̂ =

3∑
i=1

k+1∑
j=1

(

∫
γ̂i

qijφ̂ · n̂idŝ)φij

+
∑
j∈A

(

∫
T̂

φ̂ · p
j
dx̂)ψ

j
, ∀φ̂ ∈ H(d̂iv),

(IV.2)

where H(d̂iv) = {φ̂; φ̂ ∈ L2(T̂ )2, d̂ivφ̂ ∈ L2(T̂ )}. Then

∥RT k
T̂
φ̂∥2

0,T̂

≤ (k + 1)(k + 3)[

3∑
i=1

k+1∑
j=1

(

∫
γ̂i

qijφ̂ · n̂idŝ)2∥φij
∥2
0,T̂

+
∑
j∈A

(

∫
T̂

φ̂ · p
j
dx̂)2∥ψ

j
∥2
0,T̂

]

≤ (k + 1)(k + 3)[
3∑

i=1

k+1∑
j=1

∥φ̂ · n̂i∥2− 1
2 ,∂T̂

∥qij∥21
2 ,∂T̂

∥φ
ij
∥2
0,T̂

+
∑
j∈A

∥φ̂∥2
0,T̂

∥p
j
∥2
0,T̂

∥ψ
j
∥2
0,T̂

]

≤ (k + 1)(k + 3)[∥φ̂∥2H(div)

3∑
i=1

k+1∑
j=1

∥qij∥21,T̂ ∥φij
∥2
0,T̂

+ ∥φ̂∥2
0,T̂

∑
j∈A

∥p
j
∥2
0,T̂

∥ψ
j
∥2
0,T̂

].

In the last inequalities above, we use the following in-
equality given in [23],

∥φ̂ · n̂∥− 1
2 ,∂T̂

≤ ∥φ̂∥H(div). (IV.3)

Let

M∗
1 =

3∑
i=1

k+1∑
j=1

∥qij∥21,T̂ ∥φij
∥2
0,T̂
,

M∗
2 =

∑
j∈A

∥p
j
∥2
0,T̂

∥ψ
j
∥2
0,T̂
.

(IV.4)

Then we have

∥RT k
T̂
φ̂∥2

0,T̂

≤ (k + 1)(k + 3) · (M∗
1 ∥φ̂∥2H(div) +M∗

2 ∥φ̂∥20,T̂ ).
(IV.5)

Next we estimate ∥RT k
Tφ∥20,T . Without loss of generality,

we suppose τ1 = (1, 0)T , τ2 = (cos θT , sin θT )
T and aT =

min{l1, l2}. Then B = (l1τ1, l2τ2) implies that

∥B∥2 ≤
√
2hT , ∥B−1∥2 ≤

√
2

aT
. (IV.6)

According to (III.11–III.12), we have IV.7. On the other
hand,

∥div(RT k
Tφ)∥20,T = ∥P k

T (divφ)∥20,T ≤ ∥divφ∥20,T . (IV.8)

Since ∥RT k
hφ∥2H(div) =

∑
T∈Th

(∥RT k
Tφ∥20,T +

∥div(RT k
Tφ)∥20,T ), then we establish the following lemma.

Lemma 4.1: Suppose that there is a constant c̄ > 0 such
that hT

aT
≤ c̄ for any T ∈ Th, then for any φ ∈ H(div), we

have
∥RT k

hφ∥H(div) ≤ d∗k∥φ∥H(div), (IV.9)

where

d∗k = max{2c̄
√
(k + 1)(k + 3)(M∗

1 +M∗
2 ),√

1 + 2(k + 1)(k + 3)M∗
1h

2},
(IV.10)

and M∗
1 ,M

∗
2 are given in (IV.4).

Remark 4.2: Similar to dk in Lemma 2.4, for a given
k, the value of d∗k is depended on the choice of the basis
functions.
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∥RT k
Tφ∥20,T ≤ ∥B∥2

|detB|
∥RT k

T̂
φ̂∥2

0,T̂

≤ (k + 1)(k + 3)
∥B∥2

|detB|
(M∗

1 ∥φ̂∥2H(d̂iv)
+M∗

2 ∥φ̂∥20,T̂ )

= (k + 1)(k + 3)
∥B∥2

|detB|
[(M∗

1 +M∗
2 )∥φ̂∥20,T̂ +M∗

1 ∥d̂ivφ̂∥2
0,T̂

]

≤ (k + 1)(k + 3)
∥B∥2

|detB|
[(M∗

1 +M∗
2 )∥B−1∥2|detB|∥φ∥20,T +M∗

1 |detB|∥divφ∥20,T ]

= (k + 1)(k + 3)[(M∗
1 +M∗

2 )∥B∥2∥B−1∥2∥φ∥20,T +M∗
1 ||B||2∥divφ∥20,T ]

≤ (k + 1)(k + 3)[4(M∗
1 +M∗

2 )
h2T
a2T

∥φ∥20,T + 2M∗
1h

2
T ∥divφ∥20,T ]

(IV.7)

We now consider the mixed finite element formulation
(II.18), and try to seek (ψ

h
, uh) ∈ Hh ×Mh such that{

a(ψ
h
, φ

h
) + b(φ

h
, uh) = 0, ∀φ

h
∈ Hh,

b(ψ
h
, vh) = F (vh), ∀vh ∈Mh.

(IV.11)

In order to test the existence and uniqueness of the discrete
problem (IV.11), with the help of Fortin’ principle, we
display a characterization of the discrete inf-sup constant.

Lemma 4.3: For the Raviart-Thomas finite element space,
we have the following discrete inf-sup condition

inf
vh∈Mh

sup
φ

h
∈Hh

b(φ
h
, vh)

∥vh∥0,Ω∥φh
∥H(div)

≥ β

d∗k
, (IV.12)

where β is given in (II.20) and d∗k given in (IV.10).

V. EXPLICIT ERROR ESTIMATES FOR THE
RAVIART-THOMAS ELEMENT APPROXIMATION

In this section, we estimate the approximation errors
∥ψ − ψ

h
∥0,Ω, ∥divψ − divψ

h
∥0,Ω and ∥u − uh∥0,Ω. As a

preparation, we need to explicitly estimate the interpolation
error for the L2-projection operator P k

T on T .
Lemma 5.1: ∀T ∈ Th, then

∥v − P k
T v∥0,T ≤ (

h

π
)k+1|v|k+1,T , ∀v ∈ Hk+1(T ). (V.1)

Proof: Let pv ∈ Pk(T ) such that
∫
T̂
Dα(v + pv)dx =

0, |α| ≤ k. According to Lemma 2.2, we have ∥v −
P k
T v∥0,T = ∥(v + pv) − P k

T (v + pv)∥0,T ≤ ∥v + pv∥0,T ≤
(hπ )

k+1|v|k+1,T .
Theorem 5.2: Let (ψ, u) and (ψ

h
, uh) be the solutions of

(II.18) and (IV.11), respectively. Then we have

∥ψ − ψ
h
∥0,Ω ≤ ckh

k+1(|ψ|k+1,Ω + |divψ|k,Ω),
∥u− uh∥0,Ω ≤ Ckh

k+1(|ψ|k+1,Ω + |divψ|k,Ω + |u|k+1,Ω).
(V.2)

In addition, if u ∈ Hk+3(Ω), then

∥divψ − divψ
h
∥0,Ω ≤ (

h

π
)k+1|divψ|k+1,Ω, (V.3)

where ck = 4·2k/2dk

sin θ max{
√
2,

√
2+1
2 bk

√
k+1
k+2}, Ck =

max{ ckd
∗
k

β , 1
πk+1 } and dk, β, d

∗
k are given in (II.4), (II.20)

and (IV.10), respectively.

Proof: Taking φ = φ
h

in (II.18), and subtracting (IV.11)
from (II.18), we get{

a(ψ − ψ
h
, φ

h
) + b(φ

h
, u− uh) = 0, ∀φ

h
∈ Hh,

b(ψ − ψ
h
, vh) = 0, ∀vh ∈Mh.

(V.4)
The second equation of (V.4) implies that

divψ
h
= P k

h (divψ) = div(RT k
hψ), (V.5)

which together with Lemma 5.1, gives

∥divψ − divψ
h
∥0,Ω = ∥divψ − P k

h divψ∥0,Ω
≤ (

∑
T∈Th

∥divψ − P k
T divψ∥20,T )

1
2

≤ (
h

π
)k+1|divψ|k+1,Ω.

(V.6)

Combining (V.5) and the first equation of (V.4), we have

∥ψ − ψ
h
∥20,Ω

= a(ψ − ψ
h
, ψ −RT k

hψ) + a(ψ − ψ
h
, RT k

hψ − ψ
h
)

= a(ψ − ψ
h
, ψ −RT k

hψ) + (div(RT k
hψ − ψ

h
), u− uh)

= a(ψ − ψ
h
, ψ −RT k

hψ).

According to Theorem 3.7, there holds

∥ψ − ψ
h
∥0,Ω ≤ ∥ψ −RT k

hψ∥0,Ω

≤ 4 · 2k/2dk
sin θ

hk+1(2|ψ|2k+1,Ω

+
3 + 2

√
2

4

k + 1

k + 2
b2k|divψ|2k,Ω)

1
2 ,

(V.7)

which implies (V.2) with ck =
4·2k/2dk

sin θ max{
√
2,

√
2+1
2 bk

√
k+1
k+2}.

Combining Lemma 4.3 and the first equation of (V.4), it
implies

∥P k
hu− uh∥0,Ω ≤ d∗k

β
sup

φ
h
∈Hh

b(φ
h
, P k

hu− uh)

∥φ
h
∥H(div)

=
d∗k
β

sup
φ

h
∈Hh

b(φ
h
, u− uh)

∥φ
h
∥H(div)

=
d∗k
β

sup
φ

h
∈Hh

a(ψ − ψ
h
, φ

h
)

∥φ
h
∥H(div)

≤ d∗k
β
∥ψ − ψ

h
∥0,Ω.

(V.8)
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TABLE I
NUMERICAL RESULTS FOR THE LOWEST ORDER MIXED FINITE ELEMENT

METHOD

n2 8× 8 16× 16 32× 32

∥ψ − ψ
h
∥0,Ω 0.5507207331 0.2763366501 0.1382911861

C 0.2784718819 0.2794591972 0.2797076960

∥f∥0,Ω 5.5936471902 5.5936471902 5.5936471902

h 0.3535533906 0.1767766953 0.0883883476

Similar to (V.6), Lemma 5.1 implies that

∥u− P k
hu∥0,Ω ≤ (

h

π
)k+1|u|k+1,Ω. (V.9)

According to (V.7–V.9), there holds

∥u− uh∥0,Ω ≤ ∥u− P k
hu∥0,Ω + ∥P k

hu− uh∥0,Ω
≤ Ckh

k+1(|ψ|k+1,Ω + |divψ|k,Ω + |u|k+1,Ω),

where Ck = max{ ckd
∗
k

β , 1
πk+1 }.

VI. NUMERICAL EXPERIMENT

In the section, the error bounds for the lowest order mixed
finite element method by numerical computation will be
tested. Consider the following Poisson problem{

−∆u = f, in Ω,
u = 0, on ∂Ω,

where Ω = [−1, 1]×[−1, 1] and f(x, y) = 4−2x2−2y2. The
exact solution of this problem is u(x, y) = (1−x2)(1−y2).

As is done in [14], we divide Ω into n2 equal squares,
which are further divided into triangles by the diagonals
parallel to x + y = 1, except in the top right and bottom
left squares which are divided by the diagonals parallel to
x−y = 0. Numerical calculation is carried out by employing
the lowest order mixed finite element method in [14] and
(ψ

h
, uh) is the numerical solution. According to Theorem

5.2 and (II.16), by simple calculations we have, for k = 0,

∥ψ − ψ
h
∥0,Ω ≤ 16

√
2π + 4

π
h∥f∥0,Ω.

Numerical results from [14] are listed in Table 1. Herein,
the error constant C is defined by

C =
∥ψ − ψ

h
∥0,Ω

h∥f∥0,Ω
.

It is easy to see from the numerical results that the exper-
imentally determined constant is lower than the theoretical
estimate.

VII. CONCLUSIONS

Base on a careful exploration, explicit error estimates
for the Raviart-Thomas mixed finite element are developed.
We obtain the explicit constants and the discrete inf-sup
constants. The explicit estimates are very helpful to provide a
computable error boundary and a posterior error estimation.
Another feature of our error estimates for Raviart-Thomas
interpolation is that we do not need to assume any mesh
condition on the triangulation.
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