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Abstract—This paper presents a theoretical model of the
impact on a prey’s breeding due to short term heavy predation.
The prey suppresses breeding due to short term heavy predation
only to restart breeding when predation pressure lowers. The
predator consumes both suppressor and breeder of the prey
and this prey population is more prone to predation at higher
densities. Equilibrium and stability analyses are carried out.
Taking a fraction of newborn breeder prey q, a bifurcation
parameter, it is shown that Hopf bifurcation could occur.

Index Terms—Prey, Predator, Stability, Bifurcation, Optimal
harvesting.

I. INTRODUCTION

ECOLOGISTS for several decades have observed with
great interest the population growth of small mammals

[1]. In prey-predator interactions it is observed that prey
population is reduced through direct killing by predators. It
has also been verified by field studies that the mere presence
of predators alters the behaviour and physiology of prey to
such an extent that it is more effective than direct killing.
When prey perceive the presence of predators they fear a
reduction in birth rate and the associated negative impact
on their population. Due to this, they relocate to low-risk
habitats. Thus, the interaction of prey and predator should
consider the cost of fear in addition to direct predation
[2]-[5]. Studies into environmental stressors have pointed
to stress as the probable cause of delayed small mammal
reproduction. Stress of social life, competition for food etc.
are all conditions which were thought to lead to delayed
mammal reproduction [6], [7]. The other reason for the
delayed reproduction is density-dependent predation. Krebs
and Myers [8], Taitt and Krebs [9] and Ostfeld et al. [10]
have confirmed through many field studies and experiments
that there is little evidence to show that stress is a cause of
mammal delayed reproduction. On the other hand, in the case
of small mammals such as bank voles (clethrionomys glareo-
lus) and snowshoe hare, the works of Lima [11], Ylönen [12],
Ylönen [13], Hanski et al. [14], Hik [15], Korpimäki [16]
and Norrdahl and Korpimäki [17], among others, established
that the presence of predators induced breeding suppres-
sion (PIBS) influenced the population cycles. Furthermore,
Ruxton and Lima [18] studied a mathematical model and
showed that the presence of PIBS occurs as a part of the
predator-prey dynamics. Based on the above works and other
recent studies on breeding suppression, researchers believe
that certain small mammals suppress breeding in response to
strong predation pressure. This is because for non-breeding
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individuals, the suppressors have a better chance of avoiding
predation than those in a reproductive stage. They assumed
that the suppressor populations experienced no predation.
Kokko and Ruxton [19] studied a general model in which
breeding suppression is observed in both predator and prey
populations. Later, Ruxton et al. [20] improved this model
by taking into consideration the fact that a predator catches
small sized prey species proportional to their abundances.
The predator feeds preferentially on the most numerous
species which is thus over-represented in the predator diet.
In this model, breeder and suppressor populations are both
exposed (to varying degrees) to the predator. This implies
a kind of switching from breeder to suppressor as changes
occur in numerical superiority.

Switching may simply come about due to changing in-
dividual behaviour with changes in the abundance of that
class of prey. Moreover, breeding small mammals suffer
higher predation risk than nonbreeders. This may be because
the breeding process impairs a mammal’s defenses. Several
examples can be cited where cruising predators prefer to hunt
small prey species with limited defense capabilities such as
small antelope or whichever species is most abundant at any
given time [21]- [24]. The mathematical models that have
generally been proposed to describe switching involve the
interaction of one predator with two prey species ( see, e.g.
[20], [25]-[33]). If prey species are large or have the ability
to defend themselves in groups, then the predator will be
attracted towards a habitat where prey are fewer in number,
that is, switching will be in the opposite direction [34], [35]
and [36].

Models including time delays are much more realistic, as
in reality, time-delays occur in almost every biological situ-
ation [37] - [39]. The process in which breeder populations
convert to suppressor populations or vice versa is not instan-
taneous and there is always a time lag. Therefore, to make
the model biologically realistic, one has to consider delays in
breeders becoming suppressors or vice versa. For simplicity,
in this model, we are assuming a time delay in suppressor
populations becoming breeder populations. We thus assume
that the transition of the suppressor population into a breeder
population is subject to a time lag z. In this time z, one may
predict that there will be less predation pressure in future. In
our present work, we consider a three species prey-predator
system, namely, breeder prey, suppressor prey and predator.
The breeder class always breeds while the suppressor prey
class suppresses breeding in the short-term in response to
increased predation pressure. The predation risk for prey is
reduced by suppressing breeding. We assume that predators
eat breeder prey preferentially because during pregnancy
breeder individuals are less active and can be caught more
easily. In much the same way, for example wolves attack
moose more successfully when they are heavily infected by
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“Echinococcus granulosus” Petrson and Page [40]. Ruxton et
al. [20] formulated a functional differential equation model
where past events affect current behaviour. A population
cycle is a phenomenon where the population rises and falls
over a predictable period of time. Prey population rapidly
increases and this is followed by an increase in the predator
population. As predators eat the prey, the prey population
declines. In turn, the predator population also decreases
because there is less to eat. Hence, both predator and prey
play a crucial role in the smooth running of an ecosystem.
When the predator population is high, prey suppress breeding
and when predator population decline, suppressor prey take a
decision in advance to breed because they feel safe in mating
due to less predation. Our model is represented in terms of
a differential difference equation. The concept of advance is
related to potential future events which can be known at the
present time and could be useful for decision making Kalecki
[41]. Suppressor individuals make transition to breeding class
by sensing the breeder and predator population after time z.

II. THE MODEL

Our model is represented in terms of a system of differ-
ential difference equations that describe the behaviour of the
breeder, suppressor and predator populations relationship and
is given by

dB

dZ
= γBq−ℓbB

2P

B + S
− ψmbPB

P + P0 + aB

+
ψmsB(Z + z)S

B(Z + z) +B0 + bP (Z + z)
,

dS

dZ
= γB(1− q)−ℓsS

2P

B + S
(1)

+
ψmbPB

P + P0 + aB
− ψmsB(Z + z)S

B(Z + z) +B0 + bP (Z + z)
,

dP

dZ
=
α1ℓbB

2P

B + S
+
α2ℓsS

2P

B + S
− µP,

where population densities of breeder and suppressor prey
are denoted by B and S respectively. The predator popula-
tion density is denoted by P. Both breeder and suppressor
prey population are exposed to predator but predator feeds
preferentially on the most numerous species.
γ is the intrinsic birth rate constant of the breeding sub-
population.

and,
ψmbPB

P + P0 + aB
is the rate at which breeding population

move to suppressor population. The per capita rate of move-
ment into the suppressor population increases with predator
density but is reduced with an increasing breeding popula-
tion. The positive parameters a and P0 control the shape of

response. Furthermore,
ψmsB(Z + z)S

B(Z + z) +B0 + bP (Z + z)
is the

rate at which the suppressor population returns to breeding
population and it depends on the future population of breeder
and predator. The positive parameters B0 and b control the
shape of response.
The quantities ℓb and ℓs are the predator response rate
towards the breeder and suppressor populations, and the
quantities α1 and α2 are the efficiencies with which cap-
tured breeders and suppressors, respectively, are converted

to predators.
Also, µ is the predator death rate constant, and q is a fraction
of newborn breeder prey.
We assume all the parameters are positives.
For the sake of simplicity, we reduce one parameter from
the model equations (1) by rescaling the parameters on the
predator death rate constant µ. We define

ϵ =
γ

µ
, ℓb =

Ib
µ
, Is =

ℓs
µ
, ϕmb =

ψmb

µ
, ϕms =

ψms

µ

t = µZ. (2)

This leads to the equations

dB

dt
= ϵBq − IbB

2P

B + S
− ϕmbPB

P + P0 + aB

+
ϕmsB(t+ z)S

B(t+ z) +B0 + bP (t+ z)
,

dS

dt
= ϵB(1− q)− IsS

2P

B + S
+

ϕmbPB

P + P0 + aB
(3)

− ϕmsB(t+ z)S

B(t+ z) +B0 + bP (t+ z)
,

dP

dt
=
α1IbB

2P

B + S
+
α2IsS

2P

B + S
− P.

III. THE EQUILIBRIUM

The co-existing equilibrium point is

B̄ =
X̄(X̄ + 1)

α1IbX̄2 + α2Is
, S̄ =

(1 + X̄)

α1IbX̄2 + α2Is
, and

P̄ =
ϵX̄(1 + X̄)

Is + IbX̄2
,

(4)

where X̄ =
B̄

S̄
is the positive root of the ten degree

polynomial.

a10X̄
10 + a9X̄

9 + a8X̄
8 + a7X̄

7 + a6X̄
6 + a5X̄

5

+ a4X̄
4 + a3X̄

3 + a2X̄
2 + a1X̄ + a0 = 0, (5)

where (5) is obtained from the first equation of (3) by
substituting the values of B̄, S̄, and P̄ at equilibrium point.
See appendix A.

IV. STABILITY AND HOPF BIFURCATION ANALYSIS

Let Ē = (B̄, S̄, P̄ ) denotes the unique interior equilib-
rium point where B̄, S̄, P̄ > 0. Consider a small perturba-
tion around the equilibrium point B = B̄ + u, S = S̄ + v
and P = P̄ + w. We substitute these into the system of
equations (3) and neglect products of small quantities. Then
the characteristic equation about Ē is given by

The characteristic equation about Ē gives

λ3 +K1λ
2 +K2λ+K3 + ezλ(U1λ

2 + U2λ+ U3)

+ e2zλ(a32c23a13 − a32a22c13) = 0. (6)
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where

K1 = −b21 − a11,

K2 = −a31c11 − a32c21 − b11a21 + b21a11,

K3 = −a31b11c21 − a32a21c11 + a31c11b21 + a32c21a11,

∪1 = −a13,
∪2 = −a31c13 − a32c23 − b11a22 + b21a13,

∪3 = −a31b11c23 − a32a21c13 − a32a22c11 + a31c13b21

+ a32c21a13 + a32c23a11,

M = P̄ + P0 + aB̄,

N = B̄ +B0 + bP̄ ,

L = B̄ + S̄,

a11 = −IbB̄P̄
L

+
IbB̄

2P̄

L2
− ϕmsS̄

N
+
ϕmbP̄ B̄a

M2
,

a13 = −ϕmsB̄S̄

N2
+
ϕmsS̄

N
,

b11 =
IbB̄

2P̄

L2
+
ϕmsB̄

N
,

c11 = −IbB̄
2

L
− ϕmbB̄

M
+
ϕmbP̄ B̄

M2
,

c13 = −ϕmsB̄S̄b

N2
,

a21 = ϵ(1− q) +
IsS

2P̄

L2
+
ϕmbP̄

M
− ϕmbP̄ B̄a

M2
,

a22 = −ϕmsS̄

N
+
ϕmsB̄S̄

N2
,

b21 = −2IsS̄P̄

L
+
IsS̄

2P̄

L2
− ϕmsB̄

N
,

c21 =
−IsS̄2

L
− ϕmbP̄ B̄

M2
+
ϕmbB̄

M
,

c23 =
ϕmsB̄S̄b

N2
,

a31 =
α1IbB̄P̄ (S̄ + L)

L2
− α2IsS̄

2P̄

L2
,

a32 =
α2IsS̄P̄ (B̄ + L)

L2
− α1IbB̄

2P̄

L2
.

Since a13c23 = a22c13, so coefficient of e2zλ will be zero
and the characteristic equation (6) reduces to

λ3 +K1λ
2 +K2λ+K3 = ezλ(B1λ

2 +B2λ+B3), (7)

where B1 = −∪1, B2 = −∪2 and B3 = −∪3,
when z = 0, the characteristic equation(6) reduces to

λ3 + P1λ
2 + P2λ+ P3 = 0.

where

P1 = K1 −B1,

P2 = K2 −B2,

P3 = K3 −B3. (8)

Hence, according to the Routh-Hurwitz criterion for stability,
we have the following:

Proposition 1: For z = 0, the equilibrium Ē = (B̄, S̄, P̄ )
locally asymptotically stable if and only if
(i) P1 > 0, P3 > 0,

(ii) P1P2 > P3.

If z ̸= 0, we consider a characteristic equation (7). We let
λ = u + i υ, u, υ ∈ ℜ and rewrite (7) in terms of its real
and imaginary parts as

u3 − 3uυ2 +K1(u
2 − υ2) +K2u+K3

= ezu((B1(u
2 − υ2) +B2u+B3)cos(zυ)

− (2uυB1 +B2υ) sin(zυ)),

3u2υ − υ3 + 2K1uυ +K2υ

= ezu((B1(u
2 − υ2) +B2u+B3) sin(zυ) (9)

+ (2uυB1 +B2υ) cos(zυ)).

Let z = z∗ be such that u(z∗) = 0 and υ(z∗) = υ∗.
Then equations (9) reduce to

−K1υ
∗2 +K3 = (−B1υ

∗2 +B3) cos(z
∗υ∗)

−B2υ
∗ sin(z∗υ∗),

− υ∗3 +K2υ
∗ = (−B1υ

∗2 +B3) sin(z
∗υ∗) (10)

+B2υ
∗ cos(z∗υ∗),

equations (10) can be rewritten as

−K1υ
∗2 +K3 = X1 cos(z

∗υ∗)−X2 sin(z
∗υ∗),

−υ∗3 +K2υ
∗ = X1 sin(z

∗υ∗) +X2 cos(z
∗υ∗), (11)

where

X1 = −B1υ
∗2 +B3,

X2 = B2υ
∗,

It follows by taking sum of squares of equations (11) that

υ∗6 + υ∗4(K2
1 − 2K2 −B2

1) + υ∗2(K2
2 − 2K1K3

+ 2B1B3 −B2
2) + (K2

3 −B2
3) = 0.

(12)

Let υ∗2 = s equation (12) reduces to

ϕ(s) = s3 + s2(K2
1 − 2K2 −B2

1)

+ s(K2
2 − 2K1K3 + 2B1B3 −B2

2) + (K2
3 −B2

3) = 0.
(13)

dϕ

ds
= 3s2 + 2s(K2

1 − 2K2 −B2
1) + (K2

2 − 2K1K3+

2B1B3 −B2
2) > 0, (14)

if υ∗ is the largest positive root of (12).

Proposition 2: Necessary and sufficient conditions for the
cubic equation

s3 + ℓ1s
2 + ℓ2s+ ℓ3 = 0,

where

ℓ1 = K2
1 − 2K2 −B2

1 ,

ℓ2 = K2
2 − 2K1K3 + 2B1B3 −B2

2 ,

ℓ3 = K2
3 −B2

3 ,

to have at least one simple positive root is ℓ3 < 0 and ℓ1 > 0.
Now equation (11) can be written as

X1 cos(z
∗υ∗)−X2 sin(z

∗υ∗) = Q,

X1 sin(z
∗υ∗) +X2 cos(z

∗υ∗) = R,
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where −K1υ
∗2 + K3 = Q and −υ∗3 + K2υ

∗ = R so,
Q2 +R2 = X2

1 +X2
2 = d2(say), where d > 0.

The equations

X1 = d cosα, and X2 = d sinα,

determine a unique α ∈ [0, 2π]. With this α,

d cos(z∗υ∗ − α) = Q,

d sin(z∗υ∗ − α) = −R.

These equation show z∗υ∗ − α uniquely in (0, 2π), and

hence υ∗ uniquely in (
α

z∗
,
2π + α

z∗
).

To establish the Hopf bifurcation theorem, we state and
prove the following theorem.

Theorem 3: υ(z∗) = υ∗ is a simple root of (7) and
u(z∗) + iυ(z∗) is analytic in a neighbourhood of z = z∗.

Proof: To show that υ(z∗) = υ∗ is a simple root,
equation (7) can be written as g(λ) = 0 , where

g(λ) = λ3+K1λ
2+K2λ+K3−ezλ(B1λ

2+B2λ+B3) = 0.

Any double root λ satisfies

g(λ) = 0 and g′(λ) = 0,

where

g′(λ) = 3λ2 + 2K1λ+K2 − zezλ(B1λ
2 +B2λ+B3)

− ezλ(2B1λ+B2) = 0.

Substituting λ = i υ∗ and z = z∗ in g(λ) = 0, g′(λ) = 0
and equating the real and imaginary parts, we get that if iz∗

is a double root,

−K1υ
∗2 +K3 = X1 cos(z

∗υ∗)−X2 sin(z
∗υ∗),

−υ∗3 +K2υ
∗ = X1 sin(z

∗υ∗) +X2 cos(z
∗υ∗),

and

−3υ∗2 +K2 = cos(z∗υ∗)(z∗X1 +B2)−
sin(z∗υ∗)(2B1υ

∗ + z∗X2),

= z∗X1 cos(z
∗υ∗)− z∗X2 sin(z

∗υ∗)+

Y1 cos(z
∗υ∗)− Y2 sin(z

∗υ∗).

2K1υ
∗ = z∗X2 cos(z

∗υ∗) + z∗X1 sin(z
∗υ∗)+

Y2 cos(z
∗υ∗) + Y1 sin(z

∗υ∗).

where
Y 1 = B2, and Y2 = 2B1υ

Equation (12) can be written as

H(υ∗) =(−K1υ
∗2 +K3)

2 + (−υ∗3 +K2υ
∗)2−

(−B1υ
∗2 +B3)

2 −B2
2υ

∗2,

or

H(υ∗) =[X1 cos(z
∗υ∗)−X2 sin(z

∗υ∗)]2+

[X1 sin(z
∗υ∗) +X2 cos(z

∗υ∗)]2 −X2
1 −X2

2 = 0.

where

TABLE I
REPRESENTATIVE SET OF PARAMETER VALUES USED FOR MODEL

EQUATION (3).

ϵ Is P0 B0 α1 α2 Ib ϕms ϕmb a b

0.7791 0.2 0.21 1 0.2925 0.2412 1 0.1 0.1 1 0.3

H ′(υ∗) = 2(−K1υ
∗2 +K3)(−2K1υ

∗) + 2(−υ∗3+
K2υ

∗)(−3υ∗2 +K2)− 2(−B1υ
∗2 +B3)(−2B1υ

∗)−
2B2

2υ
∗,

= [X1 cos(z
∗υ∗)−X2 sin(z

∗υ∗)][−z∗X2

cos(z∗υ∗)− z∗X1 sin(z
∗υ∗)− Y2 cos(z

∗υ∗)−
Y1 sin(z

∗υ∗)] + [X1 sin(z
∗υ∗) +X2 cos(z

∗υ∗)]

[z∗X1 cos(z
∗υ∗)− z∗X2 sin(z

∗υ∗) + Y1 cos(z
∗υ∗)−

Y2 sin(z
∗υ∗)] = 0.

As H(υ∗) = H ′(υ∗) = 0, υ∗ is a double root of H(υ∗) = 0,
this is a contradiction. Hence iυ∗ is a simple root of the
equation g(λ) = 0.

Using the analytic version of the Implicit Function Theorem
(Chow and Hale [42]), u(z) + iυ(z) is defined and analytic
in a neighbourhood of z = z∗.
To establish Hopf bifurcation of z = z∗, as given in Marsden
and McCracken [43], we need to show

du

dz
|z=z∗ ̸= 0.

We differentiate equations (9) with respect to z and substitute

u = 0 and z = z∗, then solve for
du

dz
and

dυ

dz
and use

equations (10), we get

du

dz
=
−υ∗2(3υ∗4 + υ∗2(2K2

1 − 4K2 − 2B2
1)

J2
1 + J2

2

+

(2B1B3 +K2
2 −B2

2 − 2K1K3)

J2
1 + J2

2

.

where

J1 = 2K1υ
∗ − z∗X1 sin(z

∗υ∗)− z∗X2 cos(z
∗υ∗)−

B2 sin(z
∗υ∗)− 2B1υ

∗ cos(z∗υ∗),

J2 = −3υ∗2 +K2 + 2B1υ
∗ sin(z∗υ∗)− z∗X1 cos(z

∗υ∗)−
B2 cos(z

∗υ∗) + z∗X2 sin(z
∗υ∗),

Using (14) it is obvious that
du

dz
> 0.

V. NUMERICAL RESULTS

Hence System (3) (when z = 0) undergoes Hopf bifurca-
tion when q passes through q̄. The Hopf bifurcation analysis
of Ē = (B̄, S̄, P̄ ) has been performed to investigate the
dynamics when all three species co-exist.
ϵ, Is, P0, B0, α1, α2, Ib, ϕms, ϕmb, a and b have a units
of ’per day’, while B, S and P have units of ’number per
area’.

The system (3) has been integrated numerically using a
Runge-Kutta-Fehlberg fourth-fifth order method. Table (I)
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Fig. 1. Plot of P1P2 − P3 as a function of the parameter q.

Fig. 2. Hopf bifurcation of P with respect to q when q = 0.031.

Fig. 3. Hopf bifurcation of B with respect to q when q = 0.031.

Fig. 4. Hopf bifurcation of S with respect to q when q = 0.031.

contains a representative set of values used for the hy-
pothetical parameters in the simulation. For initial data, a
slight perturbation of the equilibrium values were used. The
numerical results show that there is a Hopf bifurcation for

Fig. 5. Hopf bifurcation of P with respect to q when q = 0.032.

Fig. 6. Hopf bifurcation of B with respect to q when q = 0.032.

Fig. 7. Hopf bifurcation of S with respect to q when q = 0.032.

this system where unstable behaviour changes to stable as
the parameter q is varied. This bifurcation point is between
q = 0.031 and 0.032 , and it is approximately when
q = 0.0315 as illustrated in Figure (1) which contains a
plot of P1P2 − P3 as a function of the parameter q. Figures
(2, 3 and 4) show an unstable solution for the system when
q = 0.031 while figures (5, 6 and 7) show a stable solution
when the value q = 0.032 is used.

VI. CONCLUSION

Recent studies have explored the change in a prey’s
behaviour including reproduction, due to fear of predators.
A field study Zanette et al. [44] verified that the growth
of the prey species in an ecological system is influenced
by the fear induced from predators. Experiments verified
that intimidation by predators can reduce reproduction in
song sparrows by 40%. Direct killing in these experiments
was stopped by some means. In this paper we studied the
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effects of fear in the prey-predator system and discussed the
dynamics of the predator-prey system in the light of the
Fennoscandian vole cycle. We considered a mathematical
model based on Ruxton and Lima [18] as the basic model.
Also, our model considers prey small in size, and predators
large in size. Prey populations suppress breeding in response
to heavy predation as a non-breeding individual has a better
chance of avoiding predation than those in a reproductive
stage. Both breeding and suppressor populations are exposed
to predator populations depending on their numerical superi-
ority as predators feed preferentially on the most numerous
class prey species. Furthermore, the prey species would be
more willing to exhibit anti-predator defenses when the rate
of predation becomes high.The cost of fear due to predators
by which breeders turn into suppressor or vice versa has
influenced the predator-prey relationship.

To keep the model simple, we considered a time delay
only when the suppressor population restarted breeding. This
is in anticipation that after time z, predator pressure will
be reduced to a level that it will be safe again for mating.
If ℓ3 < 0 and ℓ1 > 0 then there exists only one non-zero
equilibrium and it will be locally stable if the Routh-Hurwitz
criteria are satisfied. By taking q as a bifurcation parameter
we found that Hopf bifurcation could occur. Figure 1 shows
that P1P2 − P3 = 0 at q ≃ 0.0315. If q < 0.0315, then
population starts oscillating and as q > 0, the population
will be stable. Where q ≃ 0.0315 is called the point of
Hopf bifurcation. Finding the exact point of bifurcation is
difficult. Analytical conditions for local stability analysis
and bifurcations for co-existing equilibrium have highlighted
the role played by parameter values in obtaining the results
of predator-prey system. In the context of ecology, Hopf
bifurcation helped us in determining the existence of a
region of instability in the neighbourhood of co-existing
equilibrium where prey and predator populations will both
survive undergoing regular fluctuations.

In future to make the model more realistic ecologically we
can introduce a fear factor in the growth of prey population
i.e γ can be replaced by

γ

1 + θP
. Using this term growth

of prey decreases as the population of predators becomes
large, and increases as the population of prey becomes less.
We can also study the same model by introducing another
time delay when the breeder population turns to a suppressor
population. It will give a dual time delays effect.

Due to non-availability of suitable software we left the
sketching of the figures obtained from the model equations
for future time.

APPENDIX A

a10 = a ϵ I3b q − a ϵ I3b − α2
1 b ϵ

3 I3b − P0 α1 ϵ I
4
b −

α1 ϵ I
3
b ϕmb − α1 ϵ

2 I3b + α1 ϵ
2 I3b q − B0 α

2
1 ϵ

2 I4b −
B0 α2

1 ϵ I4b ϕmb − a α1 b ϵ2 I3b − P0 α2
1 b ϵ2 I4b +

B0 α
2
1 ϵ

2 I4b q−α2
1 b ϵ

2 I3b ϕmb+α
2
1 b ϵ

3 I3b q−B0 a α1 ϵ I
4
b+

P0 α1 ϵ I4b q − B0 P0 α2
1 ϵ I5b + B0 a α1 ϵ I4b q +

B0 P0 α
2
1 ϵ I

5
b q + a α1 b ϵ

2 I3b q + P0 α
2
1 b ϵ

2 I4b q.

a9 = a I3b ϕms − 2 a ϵ I3b − 2 α1 ϵ
2 I3b − 2 α2

1 b ϵ
3 I3b −

P0 α1 ϵ I
4
b +P0 α1 I

4
b ϕms−2 α1 ϵ I

3
b ϕmb+α1 ϵ I

3
b ϕms+

2 a ϵ I3b q+2 α1 ϵ
2 I3b q−B0 α

2
1 ϵ

2 I4b −B0 α
2
1 ϵ I

4
b ϕmb−

2 a α1 b ϵ2 I3b − P0 α2
1 b ϵ2 I4b + B0 α2

1 ϵ2 I4b q −

2 α2
1 b ϵ2 I3b ϕmb + 2 α2

1 b ϵ3 I3b q − B0 a α1 ϵ I4b +
P0 α1 ϵ I4b q + B0 a α1 ϵ I4b q + 2 a α1 b ϵ2 I3b q +
P0 α

2
1 b ϵ

2 I4b q.

a8 = 2 a I3b ϕms − a ϵ I3b − α1 ϵ2 I3b − α2
1 b ϵ3 I3b +

P0 α1 I
4
b ϕms−2 a ϵ I2b Is−α1 ϵ I

3
b ϕmb+2 α1 ϵ I

3
b ϕms+

a ϵ I3b q − α1 ϵ2 I2b Is − α2 ϵ2 I2b Is + α1 ϵ2 I3b q −
a α1 b ϵ2 I3b + 2 α1 ϵ2 I2b Is q + α2 ϵ2 I2b Is q −
B0 α2

1 ϵ2 I3b Is − α2
1 b ϵ2 I3b ϕmb + α2

1 b ϵ3 I3b q −
2 P0 α1 ϵ I

3
b Is − P0 α2 ϵ I

3
b Is − 2 α1 ϵ I

2
b Is ϕmb −

α2 ϵ I
2
b Is ϕmb + 3 a ϵ I2b Is q − 2 B0 a α1 ϵ I

3
b Is −

B0 a α2 ϵ I
3
b Is + 3 P0 α1 ϵ I

3
b Is q + P0 α2 ϵ I

3
b Is q −

2 B0 P0 α2
1 ϵ I4b Is − 2 B0 α1 α2 ϵ2 I3b Is −

2 B0 α
2
1 ϵ I

3
b Is ϕmb − a α1 b ϵ

2 I2b Is − a α2 b ϵ
2 I2b Is −

2 α1 α2 b ϵ
3 I2b Is + a α1 b ϵ

2 I3b q − P0 α
2
1 b ϵ

2 I3b Is +
2 B0 α

2
1 ϵ

2 I3b Is q−α2
1 b ϵ

2 I2b Is ϕmb+α
2
1 b ϵ

3 I2b Is q+
2 P0 α2

1 b ϵ2 I3b Is q − 2 B0 P0 α1 α2 ϵ I4b Is −
2 B0 α1 α2 ϵ I3b Is ϕmb + 3 B0 a α1 ϵ I3b Is q +
B0 a α2 ϵ I3b Is q + 3 B0 P0 α2

1 ϵ I4b Is q −
2 P0 α1 α2 b ϵ2 I3b Is + 2 B0 α1 α2 ϵ2 I3b Is q −
2 α1 α2 b ϵ2 I2b Is ϕmb + 2 a α1 b ϵ2 I2b Is q +
a α2 b ϵ2 I2b Is q + 2 α1 α2 b ϵ3 I2b Is q +
2 P0 α1 α2 b ϵ

2 I3b Is q + 2 B0 P0 α1 α2 ϵ I
4
b Is q.

a7 = a I3b ϕms − 4 a ϵ I2b Is + α1 ϵ I3b ϕms +
3 a I2b Is ϕms − 2 α1 ϵ2 I2b Is − 2 α2 ϵ2 I2b Is +
4 α1 ϵ

2 I2b Is q + 2 α2 ϵ
2 I2b Is q − B0 α

2
1 ϵ2 I3b Is −

2 P0 α1 ϵ I
3
b Is − P0 α2 ϵ I

3
b Is + 3 P0 α1 I

3
b Is ϕms +

P0 α2 I
3
b Is ϕms − 4 α1 ϵ I

2
b Is ϕmb − 2 α2 ϵ I

2
b Is ϕmb +

2 α1 ϵ I2b Is ϕms + α2 ϵ I2b Is ϕms + 6 a ϵ I2b Is q −
2 B0 a α1 ϵ I

3
b Is −B0 a α2 ϵ I

3
b Is +3 P0 α1 ϵ I

3
b Is q+

P0 α2 ϵ I
3
b Is q−2 B0 α1 α2 ϵ

2 I3b Is−2 B0 α
2
1 ϵ I

3
b Is ϕmb−

2 a α1 b ϵ
2 I2b Is−2 a α2 b ϵ

2 I2b Is−4 α1 α2 b ϵ
3 I2b Is−

P0 α
2
1 b ϵ

2 I3b Is+2 B0 α
2
1 ϵ

2 I3b Is q−2 α2
1 b ϵ

2 I2b Is ϕmb+
2 α2

1 b ϵ3 I2b Is q + 2 P0 α2
1 b ϵ2 I3b Is q −

2 B0 α1 α2 ϵ I3b Is ϕmb + 3 B0 a α1 ϵ I3b Is q +
B0 a α2 ϵ I3b Is q − 2 P0 α1 α2 b ϵ2 I3b Is +
2 B0 α1 α2 ϵ2 I3b Is q − 4 α1 α2 b ϵ2 I2b Is ϕmb +
4 a α1 b ϵ2 I2b Is q + 2 a α2 b ϵ2 I2b Is q +
4 α1 α2 b ϵ

3 I2b Is q + 2 P0 α1 α2 b ϵ
2 I3b Is q.

a6 = 6 a I2b Is ϕms − 2 a ϵ I2b Is − a ϵ Ib I2s −
α1 ϵ

2 I2b Is −α2 ϵ
2 Ib I

2
s −α2 ϵ

2 I2b Is −P0 α1 ϵ I
2
b I

2
s −

2 P0 α2 ϵ I2b I2s + α1 ϵ2 Ib I
2
s q + 2 α1 ϵ2 I2b Is q +

2 α2 ϵ2 Ib I2s q + α2 ϵ2 I2b Is q − α2
2 b ϵ3 Ib I2s +

3 P0 α1 I
3
b Is ϕms +P0 α2 I

3
b Is ϕms −B0 α

2
2 ϵ

2 I2b I
2
s −

α1 ϵ Ib I
2
s ϕmb − 2 α1 ϵ I

2
b Is ϕmb − 2 α2 ϵ Ib I

2
s ϕmb −

α2 ϵ I
2
b Is ϕmb + 4 α1 ϵ I

2
b Is ϕms + 2 α2 ϵ I

2
b Is ϕms +

3 a ϵ Ib I2s q + 3 a ϵ I2b Is q − P0 α2
2 b ϵ2 I2b I2s +

B0 α
2
1 ϵ

2 I2b I
2
s q+B0 α

2
2 ϵ

2 I2b I
2
s q−B0 a α1 ϵ I

2
b I

2
s −

2 B0 a α2 ϵ I
2
b I

2
s +3 P0 α1 ϵ I

2
b I

2
s q+3 P0 α2 ϵ I

2
b I

2
s q−

a α1 b ϵ
2 I2b Is − a α2 b ϵ

2 Ib I
2
s − a α2 b ϵ

2 I2b Is −
2 α1 α2 b ϵ

3 I2b Is−B0 P0 α
2
1 ϵ I

3
b I

2
s −B0 P0 α

2
2 ϵ I

3
b I

2
s −

2 B0 α1 α2 ϵ2 I2b I2s − B0 α2
1 ϵ I2b I2s ϕmb −

B0 α
2
2 ϵ I

2
b I

2
s ϕmb−α2

1 b ϵ
2 I2b Is ϕmb−α2

2 b ϵ
2 Ib I

2
s ϕmb+

α2
1 b ϵ

3 I2b Is q+α2
2 b ϵ

3 Ib I
2
s q+3 B0 P0 α

2
1 ϵ I

3
b I

2
s q+

B0 P0 α2
2 ϵ I3b I2s q − 2 P0 α1 α2 b ϵ2 I2b I2s +

4 B0 α1 α2 ϵ2 I2b I2s q + P0 α2
1 b ϵ2 I2b I2s q +

P0 α2
2 b ϵ2 I2b I2s q − 4 B0 P0 α1 α2 ϵ I3b I2s −

4 B0 α1 α2 ϵ I2b I2s ϕmb + 3 B0 a α1 ϵ I2b I2s q +
3 B0 a α2 ϵ I2b I2s q − 2 α1 α2 b ϵ2 Ib I2s ϕmb −
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2 α1 α2 b ϵ2 I2b Is ϕmb + a α1 b ϵ2 Ib I2s q +
2 a α1 b ϵ

2 I2b Is q+2 a α2 b ϵ
2 Ib I

2
s q+a α2 b ϵ

2 I2b Is q+
2 α1 α2 b ϵ3 Ib I2s q + 2 α1 α2 b ϵ3 I2b Is q +
6 B0 P0 α1 α2 ϵ I

3
b I

2
s q + 4 P0 α1 α2 b ϵ

2 I2b I
2
s q.

a5 = 3 a Ib I
2
s ϕms − 2 a ϵ Ib I

2
s + 3 a I2b Is ϕms −

2 α2 ϵ2 Ib I2s − P0 α1 ϵ I2b I2s − 2 P0 α2 ϵ I2b I2s +
3 P0 α1 I

2
b I

2
s ϕms+3 P0 α2 I

2
b I

2
s ϕms+2 α1 ϵ

2 Ib I
2
s q+

4 α2 ϵ
2 Ib I

2
s q − 2 α2

2 b ϵ3 Ib I
2
s − B0 α

2
2 ϵ2 I2b I2s −

2 α1 ϵ Ib I
2
s ϕmb − 4 α2 ϵ Ib I

2
s ϕmb + α1 ϵ Ib I

2
s ϕms +

2 α1 ϵ I
2
b Is ϕms + 2 α2 ϵ Ib I

2
s ϕms + α2 ϵ I

2
b Is ϕms +

6 a ϵ Ib I
2
s q − P0 α

2
2 b ϵ

2 I2b I2s + B0 α
2
1 ϵ

2 I2b I2s q +
B0 α

2
2 ϵ

2 I2b I
2
s q−B0 a α1 ϵ I

2
b I

2
s − 2 B0 a α2 ϵ I

2
b I

2
s +

3 P0 α1 ϵ I
2
b I

2
s q+3 P0 α2 ϵ I

2
b I

2
s q−2 a α2 b ϵ

2 Ib I
2
s −

2 B0 α1 α2 ϵ2 I2b I2s − B0 α2
1 ϵ I2b I2s ϕmb −

B0 α
2
2 ϵ I

2
b I

2
s ϕmb−2 α2

2 b ϵ
2 Ib I

2
s ϕmb+2 α2

2 b ϵ
3 Ib I

2
s q−

2 P0 α1 α2 b ϵ2 I2b I2s + 4 B0 α1 α2 ϵ2 I2b I2s q +
P0 α2

1 b ϵ2 I2b I2s q + P0 α2
2 b ϵ2 I2b I2s q −

4 B0 α1 α2 ϵ I2b I2s ϕmb + 3 B0 a α1 ϵ I2b I2s q +
3 B0 a α2 ϵ I2b I2s q − 4 α1 α2 b ϵ2 Ib I2s ϕmb +
2 a α1 b ϵ2 Ib I2s q + 4 a α2 b ϵ2 Ib I2s q +
4 α1 α2 b ϵ

3 Ib I
2
s q + 4 P0 α1 α2 b ϵ

2 I2b I
2
s q.

a4 = a ϵ I3s q−α2 ϵ I
3
s ϕmb − a ϵ Ib I

2
s +6 a Ib I

2
s ϕms −

α2 ϵ2 Ib I2s + α2 ϵ2 I3s q + 3 P0 α1 I2b I2s ϕms +
3 P0 α2 I

2
b I2s ϕms + α1 ϵ

2 Ib I
2
s q + 2 α2 ϵ

2 Ib I
2
s q −

B0 α2
2 ϵ2 Ib I3s − α2

2 b ϵ3 Ib I2s − α2
2 b ϵ2 I3s ϕmb +

α2
2 b ϵ3 I3s q − P0 α2 ϵ Ib I3s − α1 ϵ Ib I2s ϕmb −

2 α2 ϵ Ib I
2
s ϕmb +2 α1 ϵ Ib I

2
s ϕms +4 α2 ϵ Ib I

2
s ϕms +

3 a ϵ Ib I
2
s q − B0 a α2 ϵ Ib I

3
s + P0 α1 ϵ Ib I

3
s q +

3 P0 α2 ϵ Ib I
3
s q−2 B0 α

2
2 ϵ Ib I

3
s ϕmb−a α2 b ϵ

2 Ib I
2
s +

a α2 b ϵ
2 I3s q − 2 B0 P0 α

2
2 ϵ I

2
b I

3
s − P0 α

2
2 b ϵ

2 Ib I
3
s +

2 B0 α
2
2 ϵ

2 Ib I
3
s q−α2

2 b ϵ
2 Ib I

2
s ϕmb+α

2
2 b ϵ

3 Ib I
2
s q+

B0 P0 α2
1 ϵ I2b I3s q + 3 B0 P0 α2

2 ϵ I2b I3s q +
2 P0 α2

2 b ϵ2 Ib I3s q − 2 B0 α1 α2 ϵ Ib I3s ϕmb +
B0 a α1 ϵ Ib I3s q + 3 B0 a α2 ϵ Ib I3s q −
2 B0 P0 α1 α2 ϵ I2b I3s + 2 B0 α1 α2 ϵ2 Ib I3s q −
2 α1 α2 b ϵ2 Ib I2s ϕmb + a α1 b ϵ2 Ib I2s q +
2 a α2 b ϵ2 Ib I2s q + 2 α1 α2 b ϵ3 Ib I2s q +
6 B0 P0 α1 α2 ϵ I

2
b I

3
s q + 2 P0 α1 α2 b ϵ

2 Ib I
3
s q.

a3 = a I3s ϕms − 2 α2 ϵ I3s ϕmb + α2 ϵ I3s ϕms +
2 a ϵ I3s q+3 a Ib I

2
s ϕms+2 α2 ϵ

2 I3s q−B0 α
2
2 ϵ

2 Ib I
3
s −

2 α2
2 b ϵ2 I3s ϕmb + 2 α2

2 b ϵ3 I3s q − P0 α2 ϵ Ib I
3
s +

P0 α1 Ib I
3
s ϕms +3 P0 α2 Ib I

3
s ϕms +α1 ϵ Ib I

2
s ϕms +

2 α2 ϵ Ib I
2
s ϕms − B0 a α2 ϵ Ib I

3
s + P0 α1 ϵ Ib I

3
s q +

3 P0 α2 ϵ Ib I
3
s q−2 B0 α

2
2 ϵ Ib I

3
s ϕmb+2 a α2 b ϵ

2 I3s q−
P0 α

2
2 b ϵ

2 Ib I
3
s+2 B0 α

2
2 ϵ

2 Ib I
3
s q+2 P0 α

2
2 b ϵ

2 Ib I
3
s q−

2 B0 α1 α2 ϵ Ib I3s ϕmb + B0 a α1 ϵ Ib I3s q +
3 B0 a α2 ϵ Ib I3s q + 2 B0 α1 α2 ϵ2 Ib I3s q +
2 P0 α1 α2 b ϵ

2 Ib I
3
s q.

a2 = 2 a I3s ϕms − α2 ϵ I3s ϕmb + 2 α2 ϵ I3s ϕms +
a ϵ I3s q+α2 ϵ

2 I3s q−B0 α
2
2 ϵ I

4
s ϕmb +B0 α

2
2 ϵ

2 I4s q−
α2
2 b ϵ2 I3s ϕmb + α2

2 b ϵ3 I3s q + P0 α2 ϵ I4s q +
P0 α1 Ib I

3
s ϕms + 3 P0 α2 Ib I

3
s ϕms +B0 a α2 ϵ I

4
s q−

B0 P0 α
2
2 ϵ Ib I

4
s + a α2 b ϵ

2 I3s q + P0 α
2
2 b ϵ

2 I4s q +
3 B0 P0 α

2
2 ϵ Ib I

4
s q + 2 B0 P0 α1 α2 ϵ Ib I

4
s q.

a1 = a I3s ϕms + P0 α2 I4s ϕms + α2 ϵ I3s ϕms −
B0 α2

2 ϵ I4s ϕmb + B0 α2
2 ϵ2 I4s q + P0 α2 ϵ I4s q +

B0 a α2 ϵ I
4
s q + P0 α

2
2 b ϵ

2 I4s q.

a0 = B0 P0 ϵ q α
2
2 I

5
s + P0 ϕms α2 I

4
s .
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