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Abstract—Wang and Liu proposed the definition of log radial
sum and researched the dual log-Brunn-Minkowski theory.
Motivated by the log radial sum of star bodies, we define the
general log radial bodies and explore some related properties.
For this notion and its the star dual form, we prove two
extremum inequalities for dual quermassintegrals. A star dual
log-Minkowski inequality is established by us.

Index Terms—Log radial sum, general log radial bodies, ex-
tremal value, dual quermassintegrals, star dual log-Minkowski
inequality.

I. INTRODUCTION

THE dual Brunn-Minkowski theory is crucial and sig-
nificant in geometry of star bodies (see[3], [20], [21],

[22], [28], [51]). The fundamental dual Brunn-Minkowski
inequality narrates that for two star bodies(about the origin)
M and N in n-dimensional Euclidean space Rn, the volume
of the bodies and radial sum M+̃N are related by

V (M+̃N)
1
n ≤ V (M)

1
n + V (N)

1
n ,

with equality if and only if M and N are dilates. Here V (Q)
is the n-dimensional volume of a body Q.

Throughout the article, the set of all star bodies in the
Euclidean space Rn is denoted by Sn. For the set of all star
bodies (with respect to the origin), we use a notation Sno to
denote it. If star bodies are origin-symmetric in Rn, then the
set of such star bodies is denoted by Snos. The unit sphere in
Rn will be written as Sn−1.

The radial function for a compact star-shaped (with respect
to the origin) M in Rn is defined by ([28])

ρ(M, z) = max{c ≥ 0 : c · z ∈M}, z ∈ Rn \ {0}.

If ρ(M, ·) is positive and continuous, then M will be called
a star body (with respect to the origin). If ρ(M,w)/ρ(N,w)
is independent of w ∈ Sn−1, then two bodies M and N are
said to be dilated of each other.

By the definition of radial function, for φ ∈ GL(n) ([28]),
it follows that

ρ(φM,w) = ρ(M,φ−1w), w ∈ Sn−1. (1.1)

Here GL(n) is the group of general nonsingular (linear)
transformations and φ−1 is the reverse of φ.
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Recently, Wang and Liu (see[35]) introduced the dual log-
Brunn-Minkowski theory which is interesting and meaning-
ful. They gave the notion of log radial sum firstly. Assume
M,N ∈ Sn and λ ∈ [0, 1], then the log radial sum,
(1− λ) ·M+̃0λ ·N , is defined by

ρ((1− λ) ·M+̃0λ ·N,w) = ρ(M,w)1−λρ(N,w)λ, (1.2)

w ∈ Sn−1. In particular, (1 − λ) ·M+̃0λ · N = M when
λ = 0; (1− λ) ·M+̃0λ ·N = N when λ = 1.

In (1.2), if N = −M and λ = 1
2 , then we obtain

ρ

(
1

2
·M+̃0

1

2
· (−M), w

)
= ρ(M,w)

1
2 ρ(−M,w)

1
2 . (1.3)

At this point, we call 4̃0M = 1
2 ·M+̃0

1
2 · (−M) as a log

radial body of M ∈ Sn. Apparently, 4̃0M ∈ Snos.
Moreover, according to above notion, Wang and Liu

([35]) established the dual log-Brunn-Minkowski inequality
as follows.
Theorem 1.A. Suppose M1,M2 ∈ Sn and λ ∈ [0, 1], then
for 0 ≤ i < n,

W̃i

(
(1− λ) ·M1+̃0λ ·M2

)
≤ W̃i(M1)1−λW̃i(M2)λ.

When 0 < λ < 1, the equality holds if and only if M1

and M2 are dilated of each other. Here W̃i(Q) is the dual
quermassintegrals of the star body Q.

In fact, the i of Theorem 1.A can be taken as arbitrary
real number that i 6= n.

Besides, the beautiful and powerful dual log-Minkowski
inequality was deduced by Wang and Liu (see[35]).
Theorem 1.B. Suppose M1,M2 ∈ Sn, then for 0 ≤ i < n,∫

Sn−1

log

(
ρ(M2, w)

ρ(M1, w)

)
dṼi,M1(w) ≤ 1

n− i
log

W̃i(M2)

W̃i(M1)
,

with equality if and only if M1 and M2 are dilates. Here
Ṽi,Q(·) denotes the dual mixed cone-volume probability
measure of Q ∈ Sn (see Section II for a precise definition).
And the i can also be taken as the real number i < n,
actually.

Now, let M ∈ Sno and ι ∈ [−1, 1], then we define general
log radial bodies as

ρ(4̃
ι

0M,w) = ρ(M,w)g1(ι)ρ(−M,w)g2(ι). (1.4)

Here

g1(ι) =
(1 + ι)2

2(1 + ι2)
, g2(ι) =

(1− ι)2

2(1 + ι2)
. (1.5)

By (1.5), one can show that

g1(ι) + g2(ι) = 1, (1.6)

g1(−ι) = g2(ι), g2(−ι) = g1(ι). (1.7)
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According to (1.4), it easily yields

4̃
ι

0M = g1(ι) ·M+̃0g2(ι) · (−M). (1.8)

Using (1.3), (1.5) and (1.8), 4̃
0

0M = 4̃0M when
ι = 0; 4̃

+1

0 M = M and 4̃
−1

0 M = −M when ι = ±1,
respectively.

The main purpose of this article is to expose extremal
values for dual quermassintegrals of general log radial bodies
and star duality of general log radial bodies. Further, we will
prove a star dual log-Minkowski inequality.

An extremum inequality for dual quermassintegrals of
general log radial bodies is established.
Theorem 1.1. If M ∈ Sno , ι ∈ [−1, 1], then for arbitrary
real number i 6= n, we have

W̃i(4̃0M) ≤ W̃i(4̃
ι

0M) ≤ W̃i(M). (1.9)

If M 6∈ Snos, then W̃i(4̃0M) = W̃i(4̃
ι

0M) if and only if
ι = 0; W̃i(4̃

ι

0M) = W̃i(M) if and only if ι = ±1.
In 1999, Moszyńska (see[24]) introduced the star duality

of star bodies. Let M ∈ Sno and i be the inversion of Rn\{0}
with respect to Sn−1:

i(x) :=
x

‖x‖2
.

Then define the star duality M◦ of M by

M◦ = cl(Rn \ {i(M)}).

Meanwhile, Moszyńska (see[24]) proved that for M ∈ Sno
and any w ∈ Sn−1, the star dual M◦ satisfies

ρ(M◦, w) =
1

ρ(M,w)
. (1.10)

With the emergence of this notion, a number of character-
izations and inequalities were established about star bodies
(see[15], [16], [17], [25], [47], [54]). Especially, (−M)◦ =
−M◦.

Next, according to the star duality of star bodies, we obtain
the extremum of star dual form for general log radial bodies.
Theorem 1.2. If M ∈ Sno , ι ∈ [−1, 1], then for arbitrary
real number i 6= n, we have

W̃i(4̃
◦
0M) ≤ W̃i(4̃

ι,◦
0 M) ≤ W̃i(M

◦). (1.11)

If M 6∈ Snos, then W̃i(4̃
◦
0M) = W̃i(4̃

ι,◦
0 M) if and only if

ι = 0; W̃i(4̃
ι,◦
0 M) = W̃i(M

◦) if and only if ι = ±1.
Finally, the star dual form of Theorem 1.B is also estab-

lished.
Theorem 1.3. Suppose M1,M2 ∈ Sno , then for every real
number i < n, we have∫

Sn−1

log

(
ρ(M◦

2 , w)

ρ(M◦
1 , w)

)
dṼi,M2(w) ≤ 1

n− i
log

W̃i(M1)

W̃i(M2)
,

(1.12)

with equality if and only if M1 and M2 are dilated of each
other.

For more researches of asymmetric Brunn-Minkowski
theory, please see articles [1], [2], [4], [5], [6], [7], [8], [10],
[11], [12], [13], [14], [18], [19], [26], [27], [29], [30], [31],
[32], [33], [34], [36], [37], [38], [39], [40], [41], [42], [43],
[44], [45], [46], [48], [49], [50], [52], [53].

In this article, Section IV is dedicated to prove the
Theorems 1.1-1.2. In last Section, we will give the proof
of Theorem 1.3. In Section III, some properties of general
log radial bodies will be obtained as well.

II. PRELIMINARIES

A. The Radial Combination

Let M,N ∈ Sno and a, b ≥ 0 (a+ b 6= 0), then the radial
combination, a ·M+̃b ·N ∈ Sno , of M and N satisfies ([20])

ρ(a ·M+̃b ·N, ·) = aρ(M, ·) + bρ(N, ·).

Here ‘+̃’ denotes the radial addition and ‘·’ denotes the radial
scalar multiplication.

B. Dual Quermassintegrals and Dual Mixed Quermassinte-
grals

The dual quermassintegrals W̃i(M) of M ∈ Sno is defined
by (see[23])

W̃i(M) =
1

n

∫
Sn−1

ρ(M,w)n−idS(w), ∀ w ∈ Sn−1.

Here i is an arbitrary real number and S is the Lebesgue
measure on Sn−1. Particularly, W̃0(M) = V (M).

For M,N ∈ Sno and every real number i, the dual mixed
quermassintegrals W̃i(M,N) is defined as (see[23])

W̃i(M,N) =
1

n

∫
Sn−1

ρ(M,w)n−i−1ρ(N,w)dS(w),

∀ w ∈ Sn−1.
By the Hölder’s integral inequality, a Minkowski inequal-

ity for dual mixed quermassintegrals was obtained easily.
Theorem 2.A. Suppose M,N ∈ Sno and the real number
i < n− 1, then

W̃i(M,N)n−i ≤ W̃i(M)n−i−1W̃i(N), (2.1)

with equality if and only if M and N are dilates. When
i = n− 1, the (2.1) is identical.

Besides, the following Blaschke-Santaló inequality
(see[17]) for dual quermassintegrals of star bodies is
significant.
Theorem 2.B. Suppose M ∈ Sno and i ∈ R, then

W̃i(M)W̃i(M
◦) ≥ κ2

n, (2.2)

with equality if and only if M is a centered ball. Here κn
is the n- dimensional volume of the standard unit ball B in
Rn.

C. The Jessen’s Inequality and Dual Mixed Cone-Volume
Probability Measure

Let µ is a probability measure on a space Ω and h : Ω→
D ⊂ R is a µ-intergrable function, where D is a possibly
infinite interval. Jessen’s inequality can be stated that if ϕ :
D → R is a concave function, then∫

Ω

ϕ(h(z))dµ(z) ≤ ϕ
(∫

Ω

h(z)dµ(z)

)
. (2.3)

When ϕ is strictly concave, the equality holds if and only if
h(z) is a constant for µ-almost every z ∈ Ω (see[9]).
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If M ∈ Sn, then the dual mixed cone-volume probability
measure shall be written (see[35])

Ṽi,M (·) =
ρ(M, ·)n−idS(·)

nW̃i(M)
. (2.4)

Specially, the measure Ṽ0,M (·) = ṼM (·) denotes the dual
cone-volume probability measure while i = 0.

III. PROPERTIES OF GENERAL LOG RADIAL BODIES

The following properties for general log radial bodies will
be established.
Theorem 3.1. If M ∈ Sno , ι ∈ [−1, 1], then for φ ∈ GL(n),
we have

4̃
ι

0(φM) = φ4̃
ι

0M.

Proof. Combining with (1.1) and (1.4), it yields that for
all w ∈ Sn−1, we obtain

ρ(4̃
ι

0(φM), w) = ρ(φM,w)g1(ι)ρ(−φM,w)g2(ι)

= ρ(M,φ−1w)g1(ι)ρ(−M,φ−1w)g2(ι)

= ρ(4̃
ι

0M,φ−1w)

= ρ(φ4̃
ι

0M,w).

Therefore, 4̃
ι

0(φM) = φ4̃
ι

0M .
Theorem 3.2. Let M ∈ Sno and ι ∈ [−1, 1]. If ι 6= 0, then

4̃
ι

0M = 4̃
−ι
0 M ⇐⇒M ∈ Snos.

Proof. Since

ρ(4̃
ι

0M,w) = ρ(M,w)g1(ι)ρ(−M,w)g2(ι). (3.1)

According to (1.4) and (1.7), we obtain that for any w ∈
Sn−1,

ρ(4̃
−ι
0 M,w) = ρ(M,w)g1(−ι)ρ(−M,w)g2(−ι)

= ρ(M,w)g2(ι)ρ(−M,w)g1(ι). (3.2)

If M ∈ Snos, i.e. M = −M , then from (3.1) and (3.2), we
have

ρ(4̃
ι

0M,w) = ρ(4̃
−ι
0 M,w).

So 4̃
ι

0M = 4̃
−ι
0 M .

On the contrary, if 4̃
ι

0M = 4̃
−ι
0 M , then

ρ(4̃
ι

0M,w) = ρ(4̃
−ι
0 M,w).

Using (3.1) and (3.2), we see

ρ(M,w)g1(ι)ρ(−M,w)g2(ι) = ρ(M,w)g2(ι)ρ(−M,w)g1(ι).

Then (
ρ(M,w)

ρ(−M,w)

)g1(ι)(
ρ(−M,w)

ρ(M,w)

)g2(ι)

= 1.

Namely, (
ρ(M,w)

ρ(−M,w)

)g1(ι)−g2(ι)

= 1.

From ι 6= 0, it yields g1(ι) − g2(ι) 6= 0. Hence ρ(M,w) =
ρ(−M,w), i.e. M ∈ Snos.

By Theorem 3.2, the following corollary is hold.

Corollary 3.1. Let M ∈ Sno and ι ∈ [−1, 1]. If M is not
origin-symmetric, then

4̃
ι

0M = 4̃
−ι
0 M ⇐⇒ ι = 0.

Theorem 3.3. If M ∈ Sno and ι ∈ [−1, 1], then

4̃
−ι
0 M = 4̃

ι

0(−M) = −4̃
ι

0M. (3.3)

Proof. Using (3.2) and (1.4), for every w ∈ Sn−1, we
have

ρ(4̃
−ι
0 M,w) = ρ(M,w)g2(ι)ρ(−M,w)g1(ι)

= ρ(−M,w)g1(ι)ρ(−(−M), w)g2(ι)

= ρ(4̃
ι

0(−M), w).

So 4̃
−ι
0 M = 4̃

ι

0(−M).
Furthermore, from the definition (1.4), it yields that for

every w ∈ Sn−1,

ρ(−4̃
ι

0M,w) = ρ(4̃
ι

0M,−w)

= ρ(M,−w)g1(ι)ρ(−M,−w)g2(ι)

= ρ(−M,w)g1(ι)ρ(−(−M), w)g2(ι)

= ρ(4̃
ι

0(−M), w).

Hence −4̃
ι

0M = 4̃
ι

0(−M). This gives (3.3).
Theorem 3.4. If M ∈ Snos and ι ∈ [−1, 1], then

4̃
ι

0M = M. (3.4)

Proof. Since M ∈ Snos, namely M = −M . By the
definition (1.4) and (1.6), we see that for every w ∈ Sn−1,

ρ(4̃
ι

0M,w) = ρ(M,w)g1(ι)ρ(−M,w)g2(ι) = ρ(M,w).

This yields (3.4).
Theorem 3.4 immediately implies the following corollary.

Corollary 3.2. If M1,M2 ∈ Snos and ι ∈ [−1, 1], then

4̃
ι

0M1 = 4̃
ι

0M2 ⇐⇒M1 = M2 .

IV. THE EXTREMUM INEQUALITIES OF GENERAL LOG
RADIAL BODIES

In this section, we will prove Theorems 1.1-1.2.
Proof of Theorem 1.1. According to the Theorem 1.A and

(1.6), we infer that for all ι ∈ [−1, 1],

W̃i(4̃
ι

0M) = W̃i

(
g1(ι) ·M+̃0g2(ι) · (−M)

)
≤ W̃i(M)g1(ι)W̃i(−M)g2(ι)

= W̃i(M). (4.1)

This yields the right hand side inequality of (1.9).
Apparently, (4.1) is an equation when ι = ±1. So if ι 6=
±1, then by the equality condition of Theorem 1.A, we know
that the equality holds in (4.1) if and only if M and −M are
dilated of each other. It shows M = −M , thereby M ∈ Snos.
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Therefore, in the right hand side inequality of (1.9), the
equality holds if and only if M ∈ Snos or ι = ±1. This
implies that if M 6∈ Snos, then the equality holds in the right
hand side inequality of (1.9) if and only if ι = ±1.

Next, we complete the proof of left hand side inequality
in (1.9). Combining with (1.4), (3.2) and (1.6), we obtain

ρ(4̃
ι

0M,w)
1
2 ρ(4̃

−ι
0 M,w)

1
2

=

[
ρ(M,w)g1(ι)ρ(−M,w)g2(ι)

] 1
2

·
[
ρ(M,w)g2(ι)ρ(−M,w)g1(ι)

] 1
2

= ρ(M,w)
1
2 ρ(−M,w)

1
2 = ρ(4̃0M,w)

for arbitrary w ∈ Sn−1. Thus,

4̃0M =
1

2
· 4̃

ι

0M+̃0
1

2
· 4̃

−ι
0 M. (4.2)

From the Theorem 1.A and (3.3), it yields

W̃i(4̃0M) ≤ W̃i

(
4̃
ι

0M

) 1
2

W̃i

(
4̃

−ι
0 M

) 1
2

= W̃i

(
4̃
ι

0M

) 1
2

W̃i

(
− 4̃

ι

0M

) 1
2

= W̃i(4̃
ι

0M). (4.3)

This gives the left hand side inequality of (1.9).
Clearly, (4.3) is an identity when ι = 0. Hence if ι 6=

0, then by the condition of equality in Theorem 1.A, the
equality holds in (4.3) if and only if 4̃

ι

0M and 4̃
−ι
0 M are

dilates. This means 4̃
ι

0M = 4̃
−ι
0 M . So from Corollary 3.1,

one can verify that if M 6∈ Snos, then the equality holds in
the left hand side inequality of (1.9) if and only if ι = 0.

By Theorem 1.1 and (2.2), we can easily deduce the
following conclusion.
Corollary 4.1. If M ∈ Sno and ι ∈ [−1, 1], then for real
number i 6= n, we have

W̃i(M)W̃i(4̃
◦
0M) ≥ κ2

n; (4.4)

and
W̃i(M)W̃i(4̃

ι,◦
0 M) ≥ κ2

n. (4.5)

In (4.4), the equality holds if and only if 4̃0M is a centered
ball; in (4.5), the equality holds if and only if 4̃

ι

0M is a
centered ball.

For the proof of Theorem 1.2, the following lemma is
essential.
Lemma 4.1. Suppose M1,M2 ∈ Sno and λ ∈ [0, 1], then
for the real number i 6= n,

W̃i

[(
(1− λ) ·M1+̃0λ ·M2

)◦]
≤ W̃i(M

◦
1 )1−λW̃i(M

◦
2 )λ.

(4.6)

When 0 < λ < 1, the equality holds if and only if M1 and
M2 are dilates.

Proof. Note that 1
1−λ > 1 when λ ∈ (0, 1). By (1.10),

(1.2) and the Hölder’s integral inequality, we have that for
arbitrary w ∈ Sn−1,

W̃i

[(
(1− λ) ·M1+̃0λ ·M2

)◦]

=
1

n

∫
Sn−1

ρ

[(
(1− λ) ·M1+̃0λ ·M2

)◦

, w

]n−i
dS(w)

=
1

n

∫
Sn−1

1

ρ((1− λ) ·M1+̃0λ ·M2, w)n−i
dS(w)

=
1

n

∫
Sn−1

1

ρ(M1, w)(1−λ)(n−i)ρ(M2, w)λ(n−i) dS(w)

=
1

n

∫
Sn−1

ρ(M◦
1 , w)(1−λ)(n−i)ρ(M◦

2 , w)λ(n−i)dS(w)

≤
[

1

n

∫
Sn−1

ρ(M◦
1 , w)(1−λ)(n−i)· 1

1−λ dS(w)

]1−λ

·
[

1

n

∫
Sn−1

ρ(M◦
2 , w)λ(n−i)· 1λ dS(w)

]λ
= W̃i(M

◦
1 )1−λW̃i(M

◦
2 )λ.

Evidently, (4.6) is an identity when λ = 0 (or λ = 1).
If λ ∈ (0, 1), then according to the equality condition of
Hölder’s integral inequality, the equality holds in (4.6) if and
only if there exists a constant C such that

ρ(M◦
1 , w)n−i

ρ(M◦
2 , w)n−i

= C.

Namely, M◦
1 and M◦

2 are dilates. This means that the equality
holds in (4.6) if and only if M1 and M2 are dilates.

Proof of Theorem 1.2. Similar to the proof of Theorem
1.1, on the one hand, from (4.6) and (1.6), we have

W̃i(4̃
ι,◦
0 M) = W̃i

[(
g1(ι) ·M+̃0g2(ι) · (−M)

)◦]
≤ W̃i(M

◦)g1(ι)W̃i(−M◦)g2(ι)

= W̃i(M
◦). (4.7)

This obtains the right hand side inequality of (1.11).
If ι 6= ±1, then from the equality condition of (4.6), the

equality holds in (4.7) if and only if M and −M are dilated
of each other. It means M = −M , thereby M ∈ Snos.

Therefore, in the right hand side inequality of (1.11), the
equality holds if and only if M ∈ Snos or ι = ±1. This
implies that if M 6∈ Snos, then in the right hand side inequality
of (1.11), the equality holds if and only if ι = ±1.

The other side of the coin, from (4.2), (4.6) and (3.3), we
obtain

W̃i(4̃
◦
0M) = W̃i

[(
1

2
· 4̃

ι

0M+̃0
1

2
· 4̃

−ι
0 M

)◦]

≤ W̃i

(
4̃
ι,◦
0 M

) 1
2

W̃i

(
4̃

−ι,◦
0 M

) 1
2

= W̃i

(
4̃
ι,◦
0 M

) 1
2

W̃i

(
− 4̃

ι,◦
0 M

) 1
2

= W̃i(4̃
ι,◦
0 M). (4.8)
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The left hand side inequality of (1.11) is proved.
If ι 6= 0, then by Lemma 4.1, the equality can be obtained

in (4.8) if and only if 4̃
ι

0M and 4̃
−ι
0 M are dilated of each

other. It will show 4̃
ι

0M = 4̃
−ι
0 M . So, the Corollary 3.1

tell us that if M 6∈ Snos, then in the left hand side inequality
of (1.11), the equality holds if and only if ι = 0.

V. THE STAR DUAL FORM OF THE DUAL
LOG-MINKOWSKI INEQUALITY

In this section, we shall prove the star dual form of the
dual log-Minkowski inequality.

Proof of Theorem 1.3. Notice that the logarithmic function
log(·) is concave and increasing on (0,+∞). So by (2.4),
the Jessen’s inequality (2.3) and (2.1), we obtain∫

Sn−1

log

(
ρ(M◦

2 , w)

ρ(M◦
1 , w)

)
dṼi,M2

(w)

=

∫
Sn−1

log

(
ρ(M◦

2 , w)

ρ(M◦
1 , w)

)
· ρ(M2, w)n−i

nW̃i(M2)
dS(w)

=
1

nW̃i(M2)

∫
Sn−1

log

(
ρ(M◦

2 , w)

ρ(M◦
1 , w)

)
· ρ(M2, w)n−idS(w)

≤ log

(
1

nW̃i(M2)

∫
Sn−1

ρ(M1, w)

ρ(M2, w)
· ρ(M2, w)n−idS(w)

)

= log

(
W̃i(M2,M1)

W̃i(M2)

)

≤ log

(
W̃i(M2)

n−i−1
n−i W̃i(M1)

1
n−i

W̃i(M2)

)

= log

(
W̃i(M1)

W̃i(M2)

) 1
n−i

.

This yields the inequality (1.12).
Because log(·) is strictly increasing, by the equality condi-

tion of Jessen’s inequality (2.3) and the Minkowski inequality
(2.1), we find that the equality holds in (1.12) if and only if
M1 and M2 are dilates.
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