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Abstract—Burger’s equation is a nonlinear parabolic partial
differential equation used in several fields such as fluid dynam-
ics and traffic flow. In this research, we find the numerical
solution of the one-dimensional Burger’s equation by using
the multi-step Milne method and the central finite difference
approach. A linearization scheme with a weighted technique
is employed to handle the nonlinear term. Due to the multi-
step approach, the second-order Runge-Kutta and Modified-
Newton Raphson schemes are applied to determine the second
initial condition. The numerical results are compared with the
exact solution, where the L2 and L∞ norms of the errors are
used to verify the accuracy of the techniques. The numerical
solutions are in good agreement with the exact solution. Among
various different variables in the governing equation and the
initial condition, the numerical visualizations are provided for
the different values of the parameters.

Index Terms—Burger’s equation, Milne method, Finite differ-
ence method, Runge-Kutta method, Modified-Newton Raphson
method.

I. INTRODUCTION

BURGER’S equation is a fundamental partial differential
equation. It was firstly given by Harry Bateman in

1915 [1]. The Burger’s equation becomes one of the leading
equations in the field of fluid mechanics which was suitable
for the analysis of various important areas such as modeling
of gas dynamics, heat conduction, and traffic flow [2].

Burger’s equation is solved by numerous numerical meth-
ods such as the finite difference and the finite element meth-
ods [3]-[16]. For example, A. Chaiyasit et al. [3] provided the
numerical solution of the one-dimensional Burger’s equation
by using the second-order Runge-Kutta method, the central
finite difference scheme, and the Newton-Raphson approach.
Z.Y. Ali [4] used a new iterative method to find the solution
of the Burger’s equation. N.A. Mohamed [5], provided a new
numerical scheme based on the finite difference method for
solving the nonlinear one-dimensional Burgers’ equation and
N.A. Mohamed [6] introduced new fully implicit schemes for
solving the one-dimensional and two-dimensional unsteady
Burger’s equation. P.G. Zang and J.P. Wang [7] proposed
a compact predictor-corrector finite difference scheme to
solve the Burger’s equation. S.M. Zulkifli et al. [8] used
inviscid Burger’s equation to model traffic flow and find
the solution of one-way traffic flow by using the method of
linear system. K. Ali et al. [9] found the new exact solution
of the Burger’s equation by using the Hopf-Cole transform
and the Fourier transform. Y. Ucar et al. [10] obtained
the numerical solution of the modified Burger’s equation
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by using the finite difference methods. G. Çelikten et al.
[11] found the numerical solution of the modified Burger’s
equation by using the explicit exponential finite difference
schemes based on four different linearization techniques.
S. Sungnul et al. [12] found the numerical solutions of
the modified Burger’s equation by using the Forward Time
Centered Space (FTCS) implicit scheme. M.A. Sheikh et
al. [13] compared the numerical solutions of the Burger’s
equation by using Lax-Friedrich and Lax-Wendroff schemes.
D. Deng and J. Xie [14] used Crank-Nicolson method com-
bined with Richardson extrapolation scheme and a fourth-
order compact finite difference method for solving the one-
dimensional Burgers equation. D. Deng and T. Pan [15]
applied the fourth-order methods of lines (MOL) based on
the Hopf-Cole transformation to solve the one-dimensional
Burger’s equation. P.W. Li [16] used a generalized finite
difference approach and the Newton’s method to solve the
two-dimensional unsteady Burger’s equation.

In this research, the Milne method combining with the
finite difference scheme is used to solve the one-dimensional
Burger’s equations. Because of the multi-step approach,
Runge-Kutta and Modified-Newton Raphson methods are
applied to the Burger’s equation to determine another initial
condition. The structure of this paper is as follows. In Section
2, we provide Burger’s equation, boundary conditions, and
an initial condition. In Section 3, the solution procedure is
described. The exact solution is given in Section 4. The
numerical results of the Burger’s equation are presented in
Section 5. Conclusions are given in Section 6.

II. BURGER’S EQUATION

In this work, we consider the one-dimensional time-
dependent Burger’s equation

∂v

∂t
+ v

∂v

∂x
= µ

∂2v

∂x2
, α < x < β (1)

subjected to the boundary conditions

v(α, t) = f1(t), 0 ≤ t ≤ T (2)
v(β, t) = f2(t), 0 ≤ t ≤ T (3)

and the initial condition

v(x, 0) = g(x), α ≤ x ≤ β, (4)

where the coefficient µ is the kinematic viscosity and T is
the final time. The functions f1, f2, and g are prescribed con-
ditions depending on each specific problem. The parameters
α and β are the endpoints of the domain.

III. NUMERICAL METHOD

The numerical methods used to find the solution of the
Burger’s equation are provided in this section. We first
employ the second-order finite difference method to the
spatial derivatives as shown in subsection A.
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A. The Second-Order Finite Difference Method

Consider the Burger’s equation

∂v

∂t
+ v

∂v

∂x
= µ

∂2v

∂x2
, α < x < β. (5)

We apply the central finite difference method to the derivative
terms ∂v

∂x and ∂2v
∂x2 in Eq. (5). The closed interval [α, β] is

divided into L subintervals. That is α = x0 ≤ x1 ≤ ... ≤
xL = β. Then,

∂v

∂x
≈ Vm+1(t)− Vm−1(t)

2h
(6)

∂2v

∂x2
≈ Vm+1(t)− 2Vm(t) + Vm−1(t)

h2
, (7)

where Vm(t) is the approximation of v at the point xm,
m = 1, 2, ..., L− 1 and h = xm − xm−1. Substituting
Eqs. (6) and (7) into Eq. (5), we obtain[

∂v

∂t

]
m

+Vm(t)

[
Vm+1(t)− Vm−1(t)

2h

]
= µ

[
Vm+1(t)− 2Vm(t) + Vm−1(t)

h2

]
,

(8)

or [
∂v

∂t

]
m

=
µ

h2
[Vm+1(t)− 2Vm(t) + Vm−1(t)]

− Vm(t)

2h
[Vm+1(t)− Vm−1(t)] ,

(9)

where
[
∂v
∂t

]
m

is ∂v
∂t at the point (xm, t) and L is the number

of grids.

B. Milne Method

The Milne method is a multi-step method for solving the
initial-value problem of the equation dy

dt = f(t, y) defined
by

yn+2 − yn = k

(
1

3
fn+2 +

4

3
fn+1 +

1

3
fn

)
, (10)

where the positive integer n is the nth time step, and k =
tn − tn−1. It is an implicit method and is characterized by
two polynomials

p1(x) = x2 − 1

p2(x) =
1

3
x2 +

4

3
x+

1

3
.

The roots of p1 are +1 and -1, which are simple roots.
Furthermore, p′1(x) = 2x and p′1(1) = 2 = p2(1). Thus,
the conditions of consistency and stability are achieved [17].
Applying the multi-step Milne method to the time-dependent
expression in the Burger’s equation, Eq. (9), we have

V n+2
m − V n

m =
k

3

{
µ

h2

[
V n+2
m+1 − 2V n+2

m + V n+2
m−1

]
− V n+2

m

2h[
V n+2
m+1 − V n+2

m−1

]
+ 4

( µ

h2

[
V n+1
m+1 − 2V n+1

m

+V n+1
m−1

]
− V n+1

m

2h

[
V n+1
m+1 − V n+1

m−1

])
+

µ

h2[
V n
m+1 − 2V n

m + V n
m−1

]
− V n

m

2h

[
V n
m+1

−V n
m−1

]}
.

(11)

From Eq. (11), the nonlinear term V n+2
m

[
V n+2
m+1 − V n+2

m−1

]
is

calculated by using the linearization method provided in [5]
such that V n+2

m (V n+2
m+1 − V n+2

m−1) ≈ Un+2
m (V n+2

m+1 − V n+2
m−1),

where Un+2
m is computed by using linear extrapolation

depending on V n+1
m and V n

m, Therefore

V n+2
m

∼= Un+2
m =

(
1 +

(
bn+2

bn+1

))
V n+1
m −

(
bn+2

bn+1

)
V n
m

(12)
where bn+2 = tn+2 − tn+1 and bn+1 = tn+1 − tn.
Substituting Eq. (12) into Eq. (11), we have

V n+2
m − V n

m =
k

3

{
µ

h2

[
V n+2
m+1 − 2V n+2

m + V n+2
m−1

]
− 1

2h[(
1 +

(
bn+2

bn+1

))
V n+1
m −

(
bn+2

bn+1

)
V n
m

]
[
V n+2
m+1 − V n+2

m−1

]
+ 4

( µ

h2

[
V n+1
m+1 − 2V n+1

m

+V n+1
m−1

]
− V n+1

m

2h

[
V n+1
m+1 − V n+1

m−1

])
+

µ

h2[
V n
m+1 − 2V n

m + V n
m−1

]
− V n

m

2h[
V n
m+1 − V n

m−1

]}
.

(13)

In this work, we fix the time step for every time period to be
∆t. Therefore, bn+2 = bn+1 = ∆t. So Eq. (13) is rewritten
as

V n+2
m − V n

m =
k

3

{
µ

h2

[
V n+2
m+1 − 2V n+2

m + V n+2
m−1

]
− 1

2h[
2V n+1

m − V n
m

] [
V n+2
m+1 − V n+2

m−1

]
+ 4( µ

h2

[
V n+1
m+1 − 2V n+1

m + V n+1
m−1

]
−V n+1

m

2h

[
V n+1
m+1 − V n+1

m−1

])
+

µ

h2

[
V n
m+1

−2V n
m + V n

m−1

]
− V n

m

2h

[
V n
m+1 − V n

m−1

]}
.

(14)

The Eq. (14) can be rewritten in the form

γmV n+2
m−1 + δmV n+2

m + λmV n+2
m+1 = gm, (15)

where

γm =− 2kµ− 2hkV n+1
m + hkV n

m

δm = 6h2 + 4kµ

λm =− 2kµ+ 2hkV n+1
m − hkV n

m

gm = 6h2V n
m + 8kµ

[
V n+1
m+1 − 2V n+1

m + V n+1
m−1

]
− 4hkV n+1

m

[
V n+1
m+1 − V n+1

m−1

]
+ 2kµ

[
V n
m+1 − 2V n

m

+V n
m−1

]
− hkV n

m

[
V n
m+1 − V n

m−1

]
.

Since V n+1
m and V n

m are used to calculate V n+2
m and the

initial condition can be employed to V n
m. To find V n+1

m ,
we apply the Runge-Kutta and Modified-Newton Raphson
methods [3] to the Burger’s equation as described in the next
section.

C. Modified-Newton Raphson Method

The discretized Burger’s equation with the central finite
difference and the second-order Runge-Kutta method per-
formed in [3] is
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V n+1
m − V n

m − k

2

{ µ

h2

[
V n
m+1 − 2V n

m + V n
m−1

]
−V n

m

2h

[
V n
m+1 − V n

m−1

]}
− k

2

( µ

h2

[
V n+1
m+1 − 2V n+1

m +

V n+1
m−1

]
−
[
V n+1
m

2h
+

k

2h

{ µ

h2

[
V n+1
m+1 − 2V n+1

m + V n+1
m−1

]
− V n+1

m

2h

[
V n+1
m+1 − V n+1

m−1

]}] [
V n+1
m+1 − V n+1

m−1

])
= 0.

(16)

Since Eq. (16) is a nonlinear equation, we apply Modified-
Newton Raphson method to find the solution of Eq. (16).
Let

Fm(V n+1
1 , V n+1

2 , V n+1
3 , ..., V n+1

L−1 )

=V n+1
m − V n

m − k

2

{ µ

h2

[
V n
m+1 − 2V n

m + V n
m−1

]
−V n

m

2h

[
V n
m+1 − V n

m−1

]}
− k

2

( µ

h2

[
V n+1
m+1 − 2V n+1

m +

V n+1
m−1

]
−
[
V n+1
m

2h
+

k

2h

{ µ

h2

[
V n+1
m+1 − 2V n+1

m + V n+1
m−1

]
−V n+1

m

2h

[
V n+1
m+1 − V n+1

m−1

]}] [
V n+1
m+1 − V n+1

m−1

])
.

(17)

Thus
Fm(V n+1

1 , V n+1
2 , V n+1

3 , ..., V n+1
L−1 ) = 0, (18)

where m = 1, 2, ..., L − 1. Therefore, Eq. (18) can be
rewritten in a matrix form as

J(V (0))δ(P ) = −F (V (P )), (19)

where

J(V (0)) =



∂F1(V
(0))

∂V n+1
1

∂F1(V
(0))

∂V n+1
2

· · · ∂F1(V
(0))

∂V n+1
L−1

∂F2(V
(0))

∂V n+1
1

∂F2(V
(0))

∂V n+1
2

· · · ∂F2(V
(0))

∂V n+1
L−1

...
...

. . .
...

∂FL−1(V
(0))

∂V n+1
1

∂FL−1(V
(0))

∂V n+1
2

· · · ∂FL−1(V
(0))

∂V n+1
L−1



δ(P ) =


∆V n+1

1

∆V n+1
2

...

∆V n+1
L−1



(P )

and F (V (P )) =


F1

F2

...

FL−1



(P )

,

where P is the number of iterations, V (P ) =
(V n+1

1 , V n+1
2 , ..., V n+1

L−1 )
(P ), (∆V n+1

m )(P ) = (V n+1
m )(P+1)

−(V n+1
m )(P ) and V (0) is the initial guess. Therefore

V (P+1) = V (P ) + δ(P ). The iteration is stopped when
∥δ(P )∥∞ ≤ tol, where tol is a small positive number.

IV. EXACT SOLUTION

To verify our numerical solutions, in this section, we
provide the exact solution of the Burger’s equation and

its conditions. The exact solution of the one-dimensional
Burger’s equation is given by Wood [18],

v(x, t) =
2µπe−µπ2t sin (πx)

a+ e−µπ2t cos (πx)
, 0 < x < 1 (20)

with the boundary conditions

v(0, t) = 0
v(1, t) = 0

}
t > 0 (21)

and initial condition

v(x, 0) =
2µπ sin(πx)

a+ cos(πx)
, a > 1. (22)

The Eqs. (20) - (22) will be used in Section 5 to demonstrate
the accuracy of the numerical solutions.

V. THE NUMERICAL RESULTS

In this section, we provide the numerical results obtained
from Eq. (15). To verify the solutions, we first compare the
results with the exact solution. Fig. 1 illustrates the exact
and numerical solutions at different number of grid points
for T = 1 with a = 1.1,∆t = 0.01, and µ = 0.001. In
the process of finding the numerical solutions V n+2

m in Eq.
(15), the number of iterations to obtain V n+1

m from V n
m by

using the Modified-Newton Raphson and the Runge-Kutta
methods with tol = 10−5 when L = 10, 20, 40 and 80 are
9, 19, 39 and 79, respectively. The figure shows that when the
number of grids increases, the numerical results converge to
the exact solution. The numerical solutions at T = 1 are
shown in Table I and the L2 and L∞ norms errors of the
numerical solutions are illustrated in Table II, where the L2

and L∞ norms are

L2 = ||v − V ||2 =

√√√√ L∑
j=0

|vj − Vj |2,

L∞ = ||v − V ||∞ = max
j

|vj − Vj |,

where v and V represent the values of the exact and numer-
ical solutions, respectively. Notice that the errors decrease
when the number of grids increases. Plots of the numerical
solution depending on x and t are provided in Figs. 2 and
3, where the later is the contour plot with a = 1.1, µ =
0.001, h = 0.0125 and ∆t = 0.01. In Figs. 2 and 3, the
solution has the maximum value 0.013 at the point x = 0.85
and the solutions are zero at the boundaries, which is consis-
tent to the boundary conditions Eq. (21). In Fig. 3, the second
left vertical line represents the numerical solution value of
0.002, while the next vertical lines represent incremental
numerical solution values of 0.004, 0.006, 0.008, 0.01, and
0.012, respectively. Similarly, the second vertical line from
the right is the numerical solution value of 0.002, while the
next vertical lines on the left of the second vertical line from
the right of Fig. 3 represent incremental numerical solution
values of 0.004, 0.006, 0.008, 0.01, and 0.012, respectively.
Fig. 4 shows the comparisons of the numerical solutions
and the exact solutions for different values of µ which are
0.001, 0.0005 and 0.0001 at T = 1 with a = 1.1,∆t = 0.01
and h = 0.0125. The decreasing coefficients µ decrease the
values of the numerical results. Fig. 5 shows the numerical
solutions when the constant a increases with the exact solu-
tions at T = 1, µ = 0.001,∆t = 0.01 and h = 0.0125. The
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increasing variables a decrease the values of the numerical
results. Note that the graphs of the numerical solutions almost
overlap with the exact solutions in both Figs. 4 and 5. The L2

- norm errors for the different values of µ and a are provided
in Table III. It is shown that the L2 - norm errors decrease
when a increase and/or µ decreases for both ∆t = 0.01 and
∆t = 0.001. Moreover, the errors decrease with decreasing
∆t. Table IV shows the L2 - norm errors of our numerical
solutions compared with the Euler forward discretization [19]
and Mac Cormack discretization [20] at different value of µ
for ∆t = 0.01 and 0.001, where the L2 - norm used in [19]
and [20] is

L2 = ||v − V ||2 =

√∑L
j=0 |vj − Vj |2

N
,

which is employed in Table IV, where N is the number of
time steps. The numbers in the table show that the errors of
our numerical solutions are less than that in [19] and [20].

TABLE I
COMPARISON OF THE NUMERICAL SOLUTIONS WITH THE EXACT

SOLUTION AT DIFFERENT VALUES OF L WHEN
a = 1.1, T = 1, µ = 0.001 AND ∆t = 0.01.

x Numerical solution Exact
L = 10 L = 20 L = 40 L = 80 solution

0.1 9.4161E-04 9.4163E-04 9.4163E-04 9.4163E-04 0.000942
0.2 1.9235E-03 1.9236E-03 1.9236E-03 1.9236E-03 0.001924
0.3 2.9923E-03 2.9924E-03 2.9924E-03 2.9924E-03 0.002992
0.4 4.2080E-03 4.2083E-03 4.2084E-03 4.2084E-03 0.004208
0.5 5.6548E-03 5.6556E-03 5.6558E-03 5.6559E-03 0.005656
0.6 7.4494E-03 7.4513E-03 7.4518E-03 7.4519E-03 0.007452
0.7 9.7140E-03 9.7160E-03 9.7167E-03 9.7169E-03 0.009717
0.8 1.2271E-02 1.2241E-02 1.2235E-02 1.2234E-02 0.012233
0.9 1.2525E-02 1.2248E-02 1.2172E-02 1.2153E-02 0.012146

0 0.2 0.4 0.6 0.8 1
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

x

v(
x,

t)

 

 

L = 10
L = 20
L = 40
L = 80
Exact solution

Fig. 1. Exact and numerical solutions at different values of L when a =
1.1, T = 1, and µ = 0.001 .

TABLE II
VALUES OF THE L2-NORM AND L∞-NORM ERRORS OF THE SOLUTIONS

IN TABLE I FOR DIFFERENT VALUES OF L AT T = 1.

L = 10 L = 20 L = 40 L = 80

L2-norm 3.8091E-04 1.8308E-04 6.6726E-05 2.3750E-05
L∞-norm 3.7899E-04 1.4753E-04 3.8173E-05 9.6834E-06

0

0.5

1

0

1

2
0

0.005

0.01

0.015

xt

v(
x,

t)

Fig. 2. The surface plot of the numerical solution with a = 1.1, µ =
0.001,∆t = 0.01 and h = 0.0125.

x

t

 

 

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

0

0.002

0.004

0.006

0.008

0.01

0.012

Fig. 3. The contour plot of Fig. 2 when a = 1.1, µ = 0.001,∆t = 0.01
and h = 0.0125.

0 0.2 0.4 0.6 0.8 1
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

x

v(
x,

t)

 

 

Numerical solution
Exact solution

µ = 0.001

µ = 0.0001

µ = 0.0005

Fig. 4. Numerical solutions for different values of µ with a = 1.1, T =
1,∆t = 0.01 and h = 0.0125.

VI. CONCLUSION

In this research, we propose a new method to find the
numerical solutions of the Burger’s equation which is the
combination of the multi-step Milne method and the central
finite difference method. Since we use V n

m and V n+1
m to

determine the solution V n+2
m , and V n

m can be obtained from
the initial condition, the second-order Runge-Kutta method
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0 0.2 0.4 0.6 0.8 1
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

x

v(
x,

t)

 

 

Numerical solution
Exact solution

a = 2

a = 4

a = 1.1

Fig. 5. Numerical solutions for different values of a with T = 1, µ =
0.001,∆t = 0.01 and h = 0.0125.

TABLE III
VALUES OF L2-NORM ERRORS FOR DIFFERENT VALUES OF a AND µ

WITH ∆t = 0.01 AND ∆t = 0.001.

∆t a = 1.1 a = 2 a = 4

µ = 0.001 2.37502E-05 2.24741E-07 3.02647E-08
0.01 µ = 0.0005 6.86689E-06 5.76347E-08 7.67045E-09

µ = 0.0001 3.12268E-07 2.35362E-09 3.10223E-10

µ = 0.001 2.37478E-05 2.24737E-07 3.02644E-08
0.001 µ = 0.0005 6.86671E-06 5.76344E-08 7.67043E-09

µ = 0.0001 3.12268E-07 2.35362E-09 3.10223E-10

TABLE IV
COMPARISON OF THE L2-NORM ERRORS OF OUR NUMERICAL

SOLUTIONS WITH [19] AND [20] FOR a = 1.1, h = 0.0125, T = 1, AND
µ = 0.001 AND 0.0001.

µ ∆t [19] [20] Numerical
solution

0.001 0.01 4.9467E-06 1.0399E-05 2.3750E-06

0.001 2.6372E-06 1.9502E-06 7.5097E-07

0.0001 0.01 2.6372E-07 1.9502E-07 3.1227E-08

0.001 3.4891E-08 2.6251E-08 9.8748E-09

and Modified-Newton Raphson scheme are used to calculate
V n+1
m . The numerical solutions obtained are compared with

the exact solutions to verify the results. The comparisons are
illustrated in Fig. 1 and Table I at T = 1. They show that the
numerical results converge to the exact solutions when the
number of grids increases. The L2 and L∞ norms errors are
shown in Table II to determine the accuracy of our numerical
solutions. The surface and contour plots of the numerical
solution depending on both independent variables x and t is
illustrated in Figs. 2 and 3, where the highest value of the
numerical solution occurs at x = 0.85, approximately, and it
smoothly decreases to zero to both boundaries of the domain
for each time t. The numerical results and exact solutions
reduce in height for a small value of µ but vice versa with
the constant a as shown in Figs. 4 and 5, respectively. The
L2-norm errors of the numerical results in Figs. 4 and 5
are illustrated in Table III. For the different values of the
constant a in the initial condition and the coefficient µ in
the governing equation, the numerical and exact solutions

are in excellent agreement. As compared to other numerical
methods shown in Table IV, our numerical solutions are more
accurate.
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