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Abstract—This article proposes a new distribution for mod-
eling complex life data. The beauty and importance of the
new distribution lies in its ability to model both monotone and
non-monotone hazard rates that are quite common in lifetime
problems and reliability engineering. This new distribution has
closed cumulative distribution function (CDF), closed probabil-
ity distribution function (PDF) and closed hazard rate function
(HRF), which are great convenient in practical application.
We provide a comprehensive treatment of the mathematical
properties of the new distribution and study its statistical
properties such as moments, conditional moments and moment
generating function etc.

Index Terms—Non-monotone, moments, residual life func-
tions.

I. INTRODUCTION

IN reliability engineering and survival analysis, the sys-
tems with non-monotonic shaped HRF are common [1].

However, some well-known distributions like Rayleigh distri-
bution [2] do not exhibit a non-monotonic shaped HRF and
thus they can not be used to model the lifetimes of some
complex systems. Hence, many authors like Peng and Yan
[3], Roozegar and Jafari [4], Saboor et al. [5], Silva et al.[6],
Basheer [7], Mukhtar et al.[8] and Hamed et al.[9] proposed
new distributions with non-monotonic shaped hazard rate
functions to overcome this shortage.

In this paper, we propose a new distribution and dis-
cuss its mathematical and statistical properties including
moments, skewness, kurtosis, conditional moment etc. This
new distribution has monotonic and non-monotonic hazard
rate, which has great flexibility in modelling lifetime data. It
also has closed CDF, PDF and HRF, which is convenient
in practical application. The CDF, PDF and HRF of the
proposed distribution are given by

G(x;α, β, γ) = 1− (1− e−βx
−α

)γ , x > 0;α, β, γ > 0, (1)

g(x;α, β, γ) = αβγe−βx
−α

(1− e−βx
−α

)γ−1x−α−1, (2)

and

h(x;α, β, γ) =
αβγe−βx

−α
x−α−1

1− e−βx−α
, (3)

respectively.
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II. SHAPES OF THE PDF AND HRF FOR THE NEW
DISTRIBUTION

Lemma 1. lim
x→0

g(x;α, β, γ) = 0.

Proof. By lim
x→0

e−βx
−α

=lim
x→0

1

e
β
xα

=0 and lim
x→0

e−βx
−α

x−α−1=lim
x→0

1

xα+1

e
β
xα

=0, then lim
x→0

g(x;α, β, γ)= lim
x→0

αβγ

e−βx
−α

(1− e−βx−α)γ−1x−α−1=0.

Lemma 2. lim
x→+∞

g(x;α, β, γ) = 0.

Proof. By lim
x→+∞

e−βx
−α

= lim
x→+∞

1

e
β
xα

=1 and lim
x→+∞

x−α−1= lim
x→+∞

1
xα+1 =0, then lim

x→+∞
g(x;α, β, γ)= lim

x→+∞

αβγe−βx
−α

(1− e−βx−α)γ−1x−α−1 = 0.

The lemmas 1 and 2 imply that g(x;α, β, γ) converges
to 0 as x → 0 or x → +∞. Plots of the PDF are
displayed in Fig.1 for selected parameter values. The plots
in Fig.1 reveal how the parameters α, β and γ affect the new
distribution’s density function. We observe that g(x;α, β, γ)
is always unimodal. It is not possible to compute the mode of
g(x;α, β, γ) explicitly. The mode is defined as the maximal
value of the PDF, denoted by xmode, which can be obtained
numerically by solving the following nonlinear equation

αβx−α−1
mode − αβ(γ − 1)e−βx

−α
mode(1− e−βx

−α
mode)−1x−α−1

mode

−(α+ 1)x−1
mode = 0.
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Fig. 1: Plots of the new distribution’s density function for
selected parameter values (solid line: α = 0.9, β = 2,
γ = 10; dotted line: α = 1.2, β = 3, γ = 9; long dotted

line: α = 1.5, β = 4, γ = 8. )

Plots of the HRF are displayed in Fig.2 for selected pa-
rameter values. The plots in Fig.2 reveal how the parameters
α, β and γ affect the HRF. They indicate that the HRF of the
new distribution can take the monotone and non-monotone
forms.
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Fig. 2: Plots of the HRF for selected parameter values
(solid line: α = 0.4, β = 2, γ = 10; dotted line: α = 2,
β = 3, γ = 12; long dotted line: α = 0.1, β = 0.9,

γ = 1.8. )

III. GENERAL PROPERTIES OF THE NEW DISTRIBUTION

In this section, we study some statistical properties of
the new distribution. For the sake of convenience, here and
henceforth, let X be a random variable following (2).

A. Moments
Some of the most important features and characteristics of

a distribution can be studied through moments(e.g., skewness
and kurtosis).

Theorem 1. The kth raw moment of the new distribution,
denoted as µ

′

k, k = 1, 2, · · · , is given by

µ
′

k = E[Xk]

= α2γ
∞∑
n=0

(−1)n
(
γ − 1

n

)
Γ(−α2 + 2k)

β(n− 1)−α2+2k
, (4)

here Γ(a) =
∫ +∞

0
xa−1e−xdx.

Proof. By the definition of the kth raw moment,

µ
′

k =

∫ +∞

0

xkg(x;α, β, γ)dx

=

∫ +∞

0

xkαβγe−βx
−α

(1− e−βx
−α

)γ−1x−α−1dx.

Using the following expansion of (1−e−βx−α)γ−1 given by

(1− e−βx
−α

)γ−1 =
∞∑
n=0

(−1)n
(
γ − 1

n

)
e−nβx

−α
,

then we have

µ
′

k = αβγ

∫ +∞

0

xkx−α−1e−βx
−α

∞∑
n=0

(−1)n
(
γ − 1

n

)
×e−nβx

−α
dx

= αβγ
∞∑
n=0

(−1)n
(
γ − 1

n

)
×
∫ +∞

0

xk−α−1e−βx
−α(1−n)dx.

By∫ +∞

0

xk−α−1e−βx
−α(1−n)dx = α

Γ(−α2 + 2k)

β2(n− 1)−α2+2k
,

we have µ
′

k = α2γ
∑∞
n=0(−1)n

(
γ−1
n

) Γ(−α2+2k)

β(n−1)−α2+2k
.

It is noted that µ
′

k are not easy to compute due to the

sum and the gamma function including in the right part of

the above formula. Hence, we can approximate the gamma

function Γ(a) using the Stirlings formula (Tian et al. [10])

as follows Γ(a) '
√

2πaa−1/2e−a.

B. Quantile function, Skewness and Kurtosis.

The quantile function of X is determined by inverting (1)

as

Q(u) = G−1(u) = [− 1

β
log(1− (1− u)

1
γ )]−

1
α . (5)

The skewness and kurtosis measures can be calculated from

the ordinary moments given in (4) using the following well-

known expressions,

skewness(β1) =
µ2

3

µ3
2

, (6)

kurtosis(β2) =
µ4

µ2
2

, (7)

where µ2 = [µ
′

2 − (µ
′

1)2], µ3 = [µ
′

3 − 3µ
′

1µ
′

2 + 2(µ
′

1)3] and

µ4 = [µ
′

4−4µ
′

1µ
′

3+6(µ
′

1)2µ
′

2−3(µ
′

1)4]. The shortcomings of

the skewness (6) and kurtosis (7) measures are approximate

computing. Hence, in this paper, we use Bowley’s skewness

and the Moors’ kurtosis to compute skewness and kurtosis,

respectively. The Bowley’s skewness is based on quartiles

S =
Q( 3

4 )− 2Q( 2
4 ) +Q( 1

4 )

Q( 3
4 )−Q( 1

4 )

and the Moors’ kurtosis is based on octiles

K =
Q( 7

8 )−Q( 5
8 ) +Q( 3

8 )−Q( 1
8 )

Q( 6
8 )−Q( 2

8 )
,

where Q(·) is given by (5). For fixed β and γ, the plots of

the measures S and K as a function of α are shown in Fig.

3. These plots reveal that both the measures depend on the

parameter α. The skewness and kurtosis tend to decrease as

α increases.
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Fig. 3: Plots of the skewness and kurtosis of the new
distribution for selected β and γ (solid line: β = 2, γ = 3;

dotted line: β = 2, γ = 1; long dotted line: β = 2,
γ = 0.5.)

C. The moment generating function

Theorem 2. The moment generating function of (2),
denoted as MX(t), is given by

MX(t) = α2γ
∞∑
j=0

∞∑
n=0

tj

j!

(
γ − 1

n

)
(−1)n

Γ(−α2 + 2j)

β2(n− 1)−α2+2j
.

Proof. By definition of the moment generating function of
X , we have

MX(t) = E(etX) =

∫ ∞
0

etXg(x;α, β, γ)dx

=
∞∑
j=0

tj

j!

∫ ∞
0

xjg(x;α, β, γ)dx.

Substituting (4) into the above expression, the result is
obtained.

We can easily obtain the characteristic function, φX(t) =
E(eitX), by replacing t with it in MX(t). The characteristic
function may be a more convenient tool.

D. Conditional moment and moment generating function

It is very important to obtain the conditional measures
E{Xk | X > t}(k = 1, 2, · · ·) and E{etX | X > x0} in
reliability analysis.

Theorem 3. The conditional moment E{Xk | X > t} and
the conditional moment generating function E{etX | X >
x0} are given by

E{Xk | X > t}

=
−α2βγ

∑∞
n=0

(
γ−1
n

)
(−1)nΥ(−α2 + 2k, t−α)

(1− e−βt−α)γ
,

and

E{etX | X > x0}

=
−α2βγ

∑∞
j=0

∑∞
n=0

tj

j!

(
γ−1
n

)
(−1)nΥ(−α2 + 2k, x−α0 )

(1− e−βx−α0 )γ
,

where Υ(a, x) =
∫ x

0
ta−1e−tdt.

Proof. By the definitions

E{Xk | X > t} =
1

G(t)

∫ +∞

t

xkg(x)dx

and

E{etX | X > x0} =
1

G(x0)

∫ +∞

x0

etxg(x)dx,

the result is easily obtained, where G(t) = 1−G(t).

E. Residual life functions with some reliability measures

In reliability, the residual life of non-negative random
variable X is defined by R(t) := X − t | X > t, the R(t)

is interpreted as the remaining lifetime of a unit given that
it has survival up to time t. The residual life plays a vital
role in some areas like engineering, medical science, survival
studies, economics and risk theory.

The survival function of the residual life R(t) of the new
distribution is

SR(t)
(x) =

G(x+ t)

G(t)
=

(1− e−β(x+t)−α)γ

(1− e−βt−α)γ
, x > 0,

the associated PDF is

gR(t)
(x) =

g(x+ t)

G(t)

=
αβγe−β(x+t)−α [(1− e−β(x+t)−α)γ−1](x+ t)(−α−1)

(1− e−βt−α)γ
,

and the HRF of R(t) is

hR(t)
(x) =

gR(t)
(x)

SR(t)
(x)

=
αβγe−β(x+t)−α [(1− e−β(x+t)−α)γ−1](x+ t)(−α−1)

(1− e−β(x+t)−α)γ
.

The mean and variance of residual lifetime have been
studied in reliability, statistics and survival analysis. Many
useful result have been derived. We refer the reader to Gupta
and Kirmani [11].

Theorem 4. The mean and variance of residual life
associated with X are given by

E(R(t)) =
αβγ

(1− e−βt−α)γ

∞∑
n=0

(
γ − 1

n

)
(−1)n

× −α
[−β(n+ 1)]α+1

Υ(α+ 1, t−α)− t

and

V ar(R(t)) =
1

G(t)

[
E(X2)− α2γ

∞∑
n=0

(
γ − 1

n

)
(−1)n+1

× 1

−β(n+ 1)−α2+2α
Γ(−α2 + 2α, t−α)

]
−t2 − 2tE(R(t))− [E(R(t))]

2,

where Γ(a, x) =
∫ +∞
x

ta−1e−tdt.
Proof. By the definitions

E(R(t)) =
1

G(t)

∫ +∞

t

ug(u)du− t

and

V ar(R(t)) =
2

G(t)

∫ +∞

t

uG(u)du− 2tE(R(t))

−[E(R(t))]
2
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=
1

G(t)
[E(X2)−

∫ t

0

u2g(u)du]

−t2 − 2tE(R(t))− [E(R(t))]
2,

the result is easily obtained.

F. Distribution of order statistics

The PDF and CDF of the ith order statistics of size n from
(2), say Y(i), are given by

gY (y) =
n!

(i− 1)!(n− i)!
[G(y)]i−1[1−G(y)]n−ig(y)

=
n!

(i− 1)!(n− i)!

n−i∑
l=0

(
n− i
l

)
(−1)lGi+l−1(y)

×g(y)

and

GY (y) =
n∑
j=i

(
n

j

)
[G(y)]j [1−G(y)]n−j

=
n∑
j=i

n−j∑
l=0

(
n

j

)(
n− j
l

)
(−1)lGj+l(y),

respectively, for i = 1, 2, · · · , n.
Thus, the PDF and the CDF of the ith order statistics of

(2) are obtained as

gY (y) =
αβγn!

(i− 1)!(n− i)!

n−i∑
l=0

(
n− i
l

)
(−1)l

×[1− (1− e−βy
−α

)γ ]i+l−1e−βy
−α

×(1− e−βy
−α

)γ−1y−α−1

and

GY (y) =

n∑
j=i

n−j∑
l=0

(
n

j

)(
n− j
l

)
(−1)l

×[1− (1− e−βy
−α

)γ ]j+l.

G. Bonferroni and Lorenz curves

The Bonferroni and Lorenz curves have been used in
economics to study income and poverty. Nowadays, these
curves have many applications not only in economics to
study income and poverty but also in other sciences including
demography, insurance, medicine and engineering.

The Bonferroni curve BG[G(x)] for the new distribution
is obtain as

BG[G(x)] =
1

E(X)G(x)

∫ x

0

yg(y)dy

=
1

E(X)G(x)

∫ x

0

yαβγe−βy
−α

×(1− e−βy
−α

)γ−1y−α−1dy

=
αβγ

E(X)G(x)

∫ x

0

e−βy
−α

+∞∑
n=0

(
γ − 1

n

)
×(−1)ne−nβy

−α
y−αdy

=
αβγ

E(X)G(x)

∞∑
n=0

(
γ − 1

n

)
(−1)n

×
∫ x

0

e−(1+n)βy−αy−αdy.

Let y−α = Y , then∫ x

0

e−(1+n)βy−αy−αdy = −
∫ ∞
x−α

Y e−(1+n)βY αY α−1dY

= − α

[(1 + n)β]α+1
Γ(α+ 1, x−α).

Therefore,

BG[G(x)] =
αβγ

E(X)G(x)

+∞∑
n=0

(
γ − 1

n

)
(−1)n+1

× α

[(1 + n)β]α+1
Γ(α+ 1, x−α).

Consequently, the Lorenz curve of the new distribution is

LG[G(x)] = BG[G(x)]×G(x)

=
αβγ

E(X)

+∞∑
n=0

(
γ − 1

n

)
(−1)n+1

× α

[(1 + n)β]α+1
Γ(α+ 1, x−α).

H. Measure of uncertainty

The entropy of a random variable Z is the measure of
variation of uncertainty. There are various entropy measures
available in statistics literature but one popular entropy
measure is Renyi entropy. If Z is a continuous random
variable having PDF f(·), then Renyi entropy is defined as

IR(r) =
1

1− r
log
{∫

fr(z)dz
}
,

where r > 0 and r 6= 1.
For the new distribution, the Renyi entropy is given by

IR(r) =
1

1− r
log
{∫ ∞

0

[αβγe−βx
−α

×(1− e−βx
−α

)γ−1x−α−1]rdx
}

=
1

1− r
log
{

(αβγ)r
∫ ∞

0

e−βrx
−α

×(1− e−βx
−α

)γr−rx−αr−rdx
}

=
1

1− r
log
{

(αβγ)r
∫ ∞

0

e−βrx
−α

×
∞∑
n=0

(
γr − r
n

)
(−1)ne−nβx

−α
x−αr−rdx

}
=

1

1− r
log
{

(αβγ)r
∞∑
n=0

(
γr − r
n

)
(−1)n

×
∫ ∞

0

e−β(r+n)x−αx−αr−rdx
}
.

Let x−α = u, then∫ ∞
0

e−β(r+n)x−αx−αr−rdx

= −α
∫ ∞

0

u−α
2r−αr+α−1e−β(r+n)udu

=
1

β(r + n)−α2r−αr+α

∫ ∞
0

[β(r + n)u]−α
2r−αr+α−1
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×e−β(r+n)ud[β(r + n)u]

=
Γ(−α2r − αr + α)

β(r + n)−α2r−αr+α .

Therefore,

IR(r) =
1

1− r
log
{

(αβγ)r
∞∑
n=0

(
γr − r
n

)
×(−1)n

Γ(−α2r − αr + α)

β(r + n)−α2r−αr+α

}
.

IV. CONCLUDING REMARKS

In this paper, we propose a new model for complex sys-
tems. The attractiveness of the proposed model is that it has
closed cumulative distribution function, closed probability
distribution function, closed hazard rate function, mono-
tonic and non-monotonic hazard rate functions. Moreover,
it has little number of parameters. These properties make
it very useful to analyse lifetime data in engineering. Its
mathematical and statistical properties have been discussed.
Furthermore, explicit expressions for Bonferroni and Lorenz
curves and Renyi entropy measure of the new distribution
have been derived. We hope that the proposed model may
attract wider applications in engineering use.
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