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Abstract—A mathematical model was used to investigate the
effect of reverse transcriptase and protease inhibitor on cells
and viruses populations. We identified that the suppression of
the infectious viruses depend on the efficacy of the drugs as
well as the time taken for the population of infectious viruses
to be suppressed. It indicates that a small number of cells is
infected because infectious viruses are continuously suppressed.

Index Terms—T cells, Viral dynamic, Reverse transcriptase
inhibitors, Protease inhibitor.

I. INTRODUCTION

HUMAN Immunodeficiency Virus (HIV) is a retrovirus
that infects the human cells dealing with the immune

system. It causes infections and destroys the body’s ability
to fight infections [1]. Without treatment, HIV progresses to
acquired immune deficiency syndrome (AIDS), which is a
final stage [2]. Mainly, there are two types of HIV; namely,
HIV-1 and HIV-2. HIV-1 is more common and can be easily
transmitted. It is the kind of HIV referred to be the most
prevalent throughout the world. HIV-2 is found in some
places primarily in West Africa. It does not tend to progress
to AIDS as quickly as HIV-1[3].

HIV transmission occurs through unprotected sexual con-
tact, direct blood contact, such as blood transfusion and in-
jection drug needles. Another way through which HIV trans-
mission occurs is from the mother to the baby; it can be either
through vertical transmission or through breastfeeding[4],
[5]. Apart from the transmission factors that lead to HIV
infections, some cofactors increase the risk of HIV trans-
missions such as gonorrhoea and syphilis [6].

In different studies, deterministic differential equations are
used to describe the interaction between T cells and the
viruses. They are also used to study the dynamics of their
populations when there is an infection. In this study, we
investigate the HIV dynamics by using the mathematical
model within the host. HIV dynamics within a host depend
on HIV replication resulting in the dynamics of infected and
uninfected cells [7]. The model used in this study investigates
the dynamics of the infected, uninfected, treated cells and
infectious viruses in the presence of treatment.

There are different antiretroviral medications (ARV) that
are used by patients with HIV. These are medications given
to the people infected with HIV to extend their lifespan. They
interfere with the life cycle of HIV to inhibit the replication
of the viruses. These drugs do not cure the disease but rather
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prevent or suppress the progress of HIV, especially when
taken in combination [8]. The drugs taken by the patients
are categorized into different classes concerning the stages
of the HIV life cycle.

In the process of treatment infectious viruses are inhibited
from attaching themselves to the CD4 receptors [4]. The
drugs classified for treating this stage are called entry in-
hibitors. They prevent HIV from entering healthy CD4 cells
(T-cells) in the body [4]. In the next step, HIV uses reverse
transcriptase enzyme to perform a reverse transcription of the
HIV genetic material RNA to HIV DNA. It is this conversion
that allows the virus to enter the cell’s nucleus [4]. This
step occurs within the CD4 cells and the treatment used at
this step is reverse transcriptase inhibitor [9]. In the next
step, the viral DNA is integrated into the host DNA by
using the enzyme integrase and is treated as part of the
host’s DNA. The treatment used to interfere with this step
is called integrase Inhibitor. The RNAs use the host cell
machinery to produce long HIV protein chains [10]. The
next step is translation. The step occurs after assembling the
viral materials and then move to the surface of the CD4 cell.
These are still immature and are not yet infectious. The newly
formed immature HIV pushes itself out of the host CD4
cells. The treatment used to interfere with this step is called
a protease inhibitor [11]. Generally, the use of a treatment
can show its effect on suppressing infectious viruses, but it
can vary from one patient to another.

The rapid increase in HIV infection is a result of high
replication of the virus, the process that occurs in the host
cells. However, treatments are needed to regulate the rate
of HIV replication. Different studies are conducted to inves-
tigate and get control of the dynamics of HIV viral loads.
The model used to investigate the dynamics of replication
and T cells indicated a decay of the T cells by assuming
total suppression of the viruses [12]. It is challenging
to develop models that can suppress completely infectious
viruses because of the genetic diversity of the viruses. In this
paper, we analyse the model for the population dynamics of
T cells and infectious viruses in the presence of treatment.
It is important to know the variations for the populations of
the T cells and infectious viruses.

Mathematical models have been applied in different stud-
ies to solve medical problems. There is a possibility of having
a relatively small positive impact on medical applications
if the models are not well-posed. In this paper, the model
used by Ribeiro and Perelson in this paper [13] is extended
by considering the population of the treated cells and use
it to assess the dynamics of HIV, infected and uninfected
T cells. In their model, they analysed the viral reservoirs,
primary infection and immune responses. Different from the
study by Ribeiro and Perelson in [13], this paper considers
the population of the treated cells that result after reverse
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transcriptase inhibition and the inhibition in the translation
stage. In this model, we assumed that no entry inhibitor was
being used. That means all the inhibitors considered here are
active against HIV after it has infected a CD4 cell. The rest of
the paper is organised as follows: In section II, we describe
the model to present the mechanism of HIV treatment by
involving reverse transcriptase and protease inhibitors. Sec-
tion III presents the model analysis including the local and
global stability of the disease-free equilibrium point and then
prove the local stability of the endemic equilibrium point. In
section IV, we estimate parameters which will be used in the
simulation. Section V presents numerical simulations which
were done under different considerations but mainly to check
the impact of treatment. Section VI gives a discussion of the
results and conclusions.

II. MODEL FORMULATION

The model divides the cell population into susceptible
cells (Ts), infected cells (Ti) and treated cells (Tt). The
virus population is subdivided into two categories namely
infectious viruses (Vi) and the non-infectious virus (Vni). We
create a base for the formulation of our model by getting the
general understanding of the biological concepts of HIV viral
dynamics, including infections, replications, and clearance of
the viral population. The T cells are activated at the rate λ
to enter the class of susceptible cells (Ts). They vary with
respect to the time taken for the virus to infect the susceptible
cells. Under normal circumstances, the production of T cells
does decrease with the ageing of the human body [14], but
in this model, it is assumed to be a constant process. The
uninfected cells die at the rate of µ1. Also, it is assumed
that the CD4 cells become the susceptible class after being
activated.

However, when a person is infected, the cells become
susceptible to infection at a rate that is proportional to the
number of uninfected cells and the infectious virus present
at that time. Uninfected cells Ts are infected at the rate of κ
after interacting with the infectious viruses and move to the
class of infected cells Ti. After being infected, cells from the
population Ti die at the rate of µ2.

When a virus enters the cell, the reverse transcriptase en-
zyme performs reverse transcription of the HIV genetic ma-
terial RNA single-stranded into HIV DNA double-stranded.
It is this conversion that allows HIV to enter the cell’s
nucleus. So, the treatment used to interfere in this process
is considered to be effective at the proportion of νrt. The
proportion of infected cells which will not be treated at this
stage will lead to the reduced mass action term (1−νrt)κTsVi
that describes the removal from uninfected cells population
and the addition of infected cells population.

To construct the population for the treated cells, we
consider cells in which reverse transcriptase and protease
inhibitors interfered with the infectious virus life cycle in
the cell. The model does assume that no entry inhibitor was
used, so there was no inhibition at the entry in the cell.
The inhibitors considered in this model are active against
the infectious virus after it has infected the cell. So, after
treatment, infected cells from Ti move to the class Tt at
the reverting rate ρ. We assume that after a certain period
of treatment, the cells may absorb enough drugs and create
immunity and these cells die at the rate of µ3.

Also from the infected class, both the infectious viruses
Vi and non-infectious viruses Vni are replicated at the rate α
and die at the rate β. There are two ways through which
HIV can kill the cell, these include exhausting the cell’s
resources and then burst through the cell membrane. So, the
death of infected cells release new viruses that go and affect
the susceptible cells [15]. We assume that both infectious
and non-infectious viruses are replicated due to the cells
burst only. The efficacy of drugs νpr from the class of
protease inhibitors (PRI) interferes with the maturation of
new virions, which renders them non-infectious. The only
proportion (1 − νpr) of new viruses will be infectious, and
νpr proportion will be non-infectious. In our model, N will
represent the total number of viral particles.
Based on the biological description and assumptions the
following system of differential equations is obtained:

dTs

dt = λ− µ1Ts − (1− νrt)κViTs,

dTi

dt = (1− νrt)κViTs − ρTi − µ2Ti − αTi,

dTt

dt = ρTi − µ3Tt,

dVi

dt = (1− νpr)NαTi − βVi,
dVni

dt = νprNαTi − βVni.

(1)

The flow diagram of the model is presented in Figure 1 .

Fig. 1. The model is developed from the steps of the HIV life cycle
presented in [4] though the figure presented here is mine. As described
in the model formulation no entry inhibitor is considered when the virus
is entering the cell. The population of the treated cells cannot proceed
from the susceptible cells directly because we do not consider any entry
inhibitor. So, the treated cells will proceed from the population of infected
cells.

III. MODEL ANALYSIS

In this model, the next-generation matrix method described
in [16] was used to compute the basic reproduction number
R0. This method starts by distinguishing the new infections
from all other changes in the population. The effective
reproduction number Re will be obtained from the spectral
radius or greatest eigenvalue in the spectrum. The spectrum
(the set of eigenvalues) obtained using the next-generation
matrix is{
−
√

(1−νrt)(1−νpr)αNκλ
β(ρ+µ2+α)µ1

,
√

(1−νrt)(1−νpr)αNκλ
β(ρ+µ2+α)µ1

}
Thus, dominant eigenvalue which is equivalent to Re

is
√

(1−νrt)(1−νpr)αNκλ
β(ρ+µ2+α)µ1

. When there is no any treatment
(νrt = νpr = 0), the basic reproduction number R0 is
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deduced to be,

R0 =

√
αNκλ

β(ρ+ µ2 + α)µ1

The infectious virus burst size gives the number of infectious
virus particles produced by one infected cell over its lifespan.
Therefore, R1 gives the reproductive ratio of the viruses
under the impact of drugs. Then, the reproductive ratio will
be

R1 =

(√
(1− νrt)(1− νpr)

)(√
αNκλ

β(ρ+ µ2 + α)µ1

)

R1 = [(1− νrt)(1− νpr)]
1
2 R0 =MR0,

where
[(1− νrt)(1− νpr)]

1
2 ≤ 1.

For the population which is no longer susceptible the repro-
ductive ratio R1 can be used to estimate the average number
of secondary infectious resulting from each case as suggested
by [17].

A. Stability Analysis
1) Local Stability of the Disease Free Equilibrium Point:

We need to linearise the equations of the system and perform
a stability analysis of the equilibrium points. The set of
equations can be written in the following form,

d

dt


Ts

Ti

Tt

Vi

Vni

 =


λ− µ1Ts − (1− νrt)κViTs

(1− νrt)κViTs − ρTi − µ2Ti − αTi
ρTi − µ3Tt

(1− νpr)NαTi − βVi,
νprNαTi − βVni.


Let,

f1 = λ− µ1Ts − (1− νrt)κViTs,
f2 = (1− νrt)κViTs − ρTi − µ2Ti − αTi,
f3 = ρTi − µ3Tt,

f4 = (1− νpr)NαTi − βVi,
f5 = νprNαTi − βVni.

J =



∂f1
∂Ts

∂f1
∂Ti

∂f1
∂Tt

∂f1
∂Vi

∂f1
∂Vni

∂f2
∂Ts

∂f2
∂Ti

∂f2
∂Tt

∂f2
∂Vi

∂f2
∂Vni

∂f3
∂Ts

∂f3
∂Ti

∂f3
∂Tt

∂f3
∂Vi

∂f3
∂Vni

∂f4
∂Ts

∂f4
∂Ti

∂f4
∂Tt

∂f4
∂Vi

∂f4
∂Vni

∂f5
∂Ts

∂f5
∂Ti

∂f5
∂Tt

∂f5
∂Vi

∂f5
∂Vni



J =


−µ1 − (1− νrt)κVi 0 0 −(1− νrt)κTs 0

(1− νrt)κVi −ρ− µ2 − α 0 (1− νrt)κTs 0

0 −ρ −µ3 0 0

0 (1− νpr)αN 0 −β 0

0 νprNα 0 0 −β



The local stability at the steady state is a situation that
occur before therapy initiation. The equilibrium point E0 at
the steady state is

(T ∗
s , T

∗
i , T

∗
t , V

∗
i , V

∗
ni) =

(
λ

µ1
, 0, 0, 0, 0

)

Now the Jacobian will be

JE0 =


−µ1 0 0 −(1−νrt)κ( λµ1

) 0

0 −ρ−µ2−α 0 (1−νrt)κ( λµ1
) 0

0 −ρ −µ3 0 0

0 (1−νpr)Nα 0 −β 0

0 νprNα 0 0 −β


The eigenvalues of the Jacobian matrix at E0 will be

obtained by

det(J(E0)− σI) = Pn(λ) = 0

whereby I is an identity matrix, σ is an eigenvalue of the
matrix J(E0)

det


−µ1 − σ 0 0 −(1− νrt)κ( λµ1

) 0

0 −(ρ+ µ2 + α)− σ 0 (1− νrt)κ( λµ1
) 0

0 −ρ −µ3 − σ 0 0

0 (1− νpr)Nα 0 −β − σ 0

0 νprNα 0 0 −β − σ

 = 0

We can obtain the first three eigenvalues from the following
factors,

(−µ1 − σ)(−(ρ+ µ2 + α)− σ)(−µ3 − σ) = 0

⇒ σ1 = −µ1, σ2 = −(ρ+ µ2 + α), σ3 = −µ3

The other two eigenvalues can be obtained by finding the
determinant of the sub matrix, this gives the equation,

(σ + (ρ+ µ2 + α))(σ + β)− (1− νpr)(1− νrt)Nακ λ
µ1

= 0

(2)

We can let A = (ρ + µ2 + α) and B = (1 − νpr)(1 −
νrt)Nακ

λ
µ1

, in (2), so that after expansion the polynomial
becomes

σ2 + (A+ β)σ + (Aβ −B) = 0,

whose solutions are

σ4 =
−(A+ β)−

√
(A+ β)2 − 4(Aβ −B)

2

σ5 =
−(A+ β) +

√
(A+ β)2 − 4(Aβ −B)

2
.

If (A+ β)2− 4(Aβ−B) ≥ 0, then in this condition we are
sure that σ4 has a negative eigenvalue. Also σ5 must have a
negative value for the condition to be satisfied.
We can let,

η = (A+ β)2 − 4(Aβ −B)

η = (ρ+ µ2 + α+ β)2 − 4
{
(ρ+ µ2 + α)β − (1− νpr)(1− νrt)Nακ λ

µ1

}
η = (ρ+ µ2 + α+ β)2 − 4(ρ+ µ2 + α)β

(
1− (1−νpr)(1−νrt)Nακλ

β(ρ+µ2+α)µ1

)
In this case we ignore the effect of treatment because it is

a disease free point. So we have,

η−(ρ+µ2+α+β)
2 = −4(ρ+µ2+α)β

(
1− Nακλ

β(ρ+µ2+α)µ1

)
η−(ρ+µ2+α+β)

2 = −4(ρ+µ2+α)β
(
1−R2

0

)
(3)

From equation (3) we can establish the following theorem,
Theorem 3.1 If R0 < 1, the disease free equilibrium is
locally asymptotically stable in R5

+ otherwise it is unstable.
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Proof:
The point E0 =

(
λ
µ1
, 0, 0, 0, 0

)
is locally asymptotically

stable if and only if σ5 < 0. But this can be achieved when
the value of R0 < 1. Thus σ5 < 0 if R0 < 1. This shows that
all the eigenvalues have negative real parts, thus the proof
shows the establishment of the theorem.

The physiological implication:
If R0 < 1, then there exist only one stable steady state that is
the disease free state. Looking at the dynamics of the infected
and uninfected cells; there will be a competition between the
cells if and only if β, α, λ, ρ, and µ1 are not the same.

2) Global Stability Analysis at the Disease Free equilib-
rium Point: The approach used in this research is to divide
the population of uninfected and infected cells. Using the
concept given by [18], the population is divided into the
following way,

dX1

dt
= F (X1, X2), and

dX2

dt
= G(X1, X2), G(X1, 0) = 0.

whereby X1 = (Ts, Tt, Vni), X2 = (Ti, Vi) and X1 ∈ R3
+

represents the number of uninfected cells, treated cells and
non-infectious Virus respectively. X2 ∈ R2

+ represents the
number of infected cells and infectious virus respectively.
The disease free equilibrium is now denoted by E0 = (X0, 0)
We need to prove the following two conditions:
(H1) For dX1

dt = F (X1, 0), X0 is globally asymptoti-
cally stable and

(H2) Ĝ(X1, X2) = JX2 −G(X1, X2), Ĝ(X1, X2) ≥ 0.

Where J is a Jacobian matrix with respect to the infected
compartment. The Jacobian is obtained by using

J =
∂G(X2, 0)

∂X2
.

We start the proof of H1 as follows. From our model

X1 = (Ts, Tt, Vni) and
X2 = (Ti, Vi).

The system for uninfected class is given by

X
′

1(t) =
d

dt

 Ts

Tt

Vni

 =

λ− µ1Ts − (1− νrt)κViTs
ρTi − µ3Tt

νprNαTi − βVni.


(4)

For the infected classes the subsystem will be

X
′

2(t) =
d

dt

(
Ti

Vi

)
=

(
(1− νrt)κViTs − (ρ+ µ2 + α)Ti

(1− νpr)NαTi − βVi

)
.

When Ti = Vi = 0 the uninfected subsystem will be,

d

dt

 Ts

Tt

Vni

 =

λ− µ1Ts

−µ3Tt

−βVni.

 (5)

Solving the system (5) we have

Ts(t) =
λ

µ1
+ (Ts(0)−

λ

µ1
)e−µ1t, Tt(t) = Tt(0)e

−µ3t,

Vni(t) = Vni(0)e
−βt

as t→∞, Ts(t)→
λ

µ1
, Tt(t)→ 0, Vni(t)→ 0.

Without regard to the values of Ts(0), Tt(0) and Vni(0),
X0 = ( λµ1

, 0, 0) is globally asymptotically stable. This
implies that the solution of (4) exist for large t and X

′

1(t)→
0 as t→∞.
Also we need to prove (H2)

Ĝ(X1, X2) = JX2 −G(X1, X2), Ĝ(X1, X2) ≥ 0,

by computing the Jacobian matrix J as follows: From

X
′

2(t) =
d

dt

(
Ti

Vi

)
=

(
(1− νrt)κViTs − (ρ+ µ2 + α)Ti

(1− νpr)NαTi − βVi

)
the Jacobian matrix will be

J(X2) =

(
−(ρ+ µ2 + α) (1− νrt)κTs
(1− νpr)Nα −β

)
At the DFE the Jacobian matrix J(X2) becomes

J(X2) =

(
−(ρ+ µ2 + α) (1− νrt)κ( λµ1

)

(1− νpr)Nα −β

)
.

But Ĝ(X1, X2) = JX2 −G(X1, X2)

JX2 =

(
−(ρ+ µ2 + α) (1− νrt)κ( λµ1

)

(1− νpr)Nα −β

)(
Ti

Vi

)

JX2 =

(
(1− νrt)κVi( λµ1

)− (ρ+ µ2 + α)Ti

(1− νpr)NαTi − βVi

)

G(X1, X2) =

(
(1− νrt)κViTs − (ρ+ µ2 + α)Ti

(1− νpr)NαTi − βVi

)

Ĝ(X1, X2) =

(
Ĝ1(X1, X2)

Ĝ2(X1, X2)

)
=

(
(1− νrt)κVi( λµ1

− Ts)
0

)
It is clearly seen that Ĝ1 = (1−νrt)κVi( λµ1

−Ts) = 0 and
Ĝ2 = 0.
Since Ĝ1 = Ĝ2 = 0, the disease free equilibrium point E0

is globally asymptotically stable.
3) Local Stability Analysis at the Endemic

Equilibrium Point: The endemic equilibrium point
E1(T

∗
s , T

∗
i , T

∗
t , V

∗
i , V

∗
ni) for the disease to persist in

the population of cells, this occurs when the state variables
assume the following form:

T ∗
s =

λβ(ρ+ µ2 + α)

Nακλ(1− νrt)(1− νpr)
,

T ∗
i =

β [Nακλ(1− νrt)(1− νpr) + βµ1(ρ+ µ2 + α)]

(1− νpr)Nαβ(ρ+ µ2 + α)(1− νrt)κ
,

T ∗
t =

ρ [Nακλ(1− νrt)(1− νpr) + βµ1(ρ+ µ2 + α)]

µ3β(ρ+ µ2 + α)(1− νrt)κ
,

V ∗
i = −Nακλ(1− νrt)(1− νpr) + βµ1(ρ+ µ2 + α)

β(ρ+ µ2 + α)(1− νrt)κ
,

V ∗
ni =

Nακλ(1− νrt)(1− νpr) + βµ1(ρ+ µ2 + α)

Nα(1− νpr)(ρ+ µ2 + α)(1− νrt)κ
.

The local stability analysis at the endemic equilibrium will
be performed by using the Jacobian matrix of the System (1).
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Routh-Hurwitz criteria will be used to determine the stability.
Theorem 3.2 The endemic equilibrium point E1 is said to
be locally asymptotically stable, if R0 > 1.
Proof:
The Jacobian J at E1 yields

J(E1) =


A1 0 0 −A4 0

A2 A3 0 A4 0

0 −ρ −µ3 0 0

0 (1− νpr)αN 0 −β 0

0 νprNα 0 0 −β


where

A1 = −µ1 − (1− νrt)κVi
A2 = (1− νrt)κVi
A3 = −ρ− µ2 − α

A4 = (1− νrt)κ
λ

µ1

The characteristic polynomial corresponding to the matrix
J(E1) is

P5(σ) = σ5 + a1σ
4 + a2σ

3 + a3σ
2 + a4σ + a5 = 0

whereby,

a1 = 2β + µ3 −A3 −A1

a2 = NαA4(νpr − 1) + β2 − 2β(A1 +A3 − µ3)+

A1A3 −A1µ3 −A3µ3

a3 = NαA4(β −A1 −A2 + µ3)(νpr − 1)− β2(A1

+A3 − µ3) + 2β(A1A3 −A1µ3 −A3µ3) +A1A3µ3

a4 = NαA4(1− νpr) [β(A1 +A2 − µ3) + µ3(A1 +A2)]

+ β2(A1A3 −A1µ3 −A3µ3) + 2βA1A3µ3

a5 = −βµ3NαA4(A1 +A2)(νpr − 1) + β2µ3A1A3

Using Routh-Hurwitz criteria J(E1) is asymptotically stable
if
(i) a1 > 0

(ii) a1a2 − a3 > 0
(iii) a1a2a3 + a1a5 − a21a4 − a23 > 0
(iv) (a3a4 − a2a5)(a1a2 − a3)− (a1a4 − a5)2 > 0
(v) a4

[
(a3a4 − a2a5)(a1a2 − a3)− (a1a4 − a5)2

]
> 0

otherwise J(E1) will be unstable.
The physiological implication:

If R0 > 1, this implies that the production of the infected
and uninfected cells is greater than the number of the cells
dying. So, we expect the competition between the infected
and uninfected cells to exist. Thus, the time for clearing the
virus will depend on the initial values of the infected cells,
infectious virus, and the efficacy of the therapy used.

IV. PARAMETERS ESTIMATION

We use the uncertainty technique related to the repro-
ductive number R1, which is performed by using Adaptive
Metropolis technique to describe the effect of the parameters
in our dynamic system model. We obtained the initial pa-
rameters and states from different literature reviews. We use
the Adaptive Metropolis technique to obtain the values that
will give us good estimates to be used for simulation. The
estimates were obtained under the conditions (Iterations =

200000-400000, burn = 100000-200000, thin = 20, verbose
= 1). Below are the graphs indicating the behaviour for some
parameters.

Fig. 2. Trace plot (x-axis = number of iterations, y-axis = samples) shows
that the values of λ converge to 9.5327.

Fig. 3. The autocorrelation plot (x-axis = Number of lags, y-axis
= autocorrelation coefficients), the autocorrelation coefficients decay and
stabilize around zero as the number of lags increase.

Fig. 4. The figure shows the values of λ converging to 9.5327 and the
posterior is distributed normally.
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Fig. 5. Trace plot (x-axis = number of iterations, y-axis = samples) shows
the values of νpr converging to 0.8767.

Fig. 6. The autocorrelation plot (x-axis = Number of lags, y-axis
= autocorrelation coefficients), the autocorrelation coefficients decay and
stabilize around zero as the number of lags increases.

Fig. 7. The figure shows the values of νpr converges to 0.8767 and the
posterior is distributed normally.

Figures 2 and 5 show trace plots. Figures 3 and 6 show
autocorrelation plots and figures 4 and 7 show the histogram.
The parameters show lower autocorrelation, including the
other parameters whose figures are not indicated here. This

implies that the samples which were drawn, accurately
represent the posterior distribution. Moreover, the lower auto-
correlation observed in these Figures show higher efficiency
in the chains which leads to better estimates.

TABLE I
PARAMETERS AND THE ESTIMATED VALUES.

Parame
ter Descriptions Interval Estimated

Value
Source

λ

Activation rate of the
T cells to enter un-
infected cells popula-
tion.

10
9.53273
mm−3day−1 [19]

α
The rate at which the
viruses are replicated. 0.1 - 0.8 0.1554day−1 [20]

µ1
Death rate of unin-
fected T Cells

0.004 -
0.02

0.0101
day−1 [20]

µ2

Death rate of the in-
fected T Cells from in-
fected class.

0.015 0.0150
day−1 [19]

µ3

Death rate of the cells
in the class of treated
T Cells.

0.015 0.0100day−1 estim
ated

κ
Infection rate of the
susceptible cells

0.000024
2356

100000000
mm−3day−1 [19]

νrt
Drug efficacy due to
RTI treatment. 0.6 - 0.9 0.7545 (ratio) [21],

[19]

νpr
Drug efficacy due to
PRI treatment. 0.6 - 0.9 0.8767 (ratio) [19]

ρ

The reverting rate (the
incompletion of the
reverse transcription
process).

0.26 0.2573
day−1 [19]

β
Death rate of the in-
fectious and non infec-
tious viruses.

2.4 - 3.0 2.40000
day−1 [20]

V. NUMERICAL SIMULATION

In this subsection, we present some of the simulated
results from the model and visualise the population dynamics
of uninfected, infected, treated cells, infectious and non-
infectious viruses.

Fig. 8. The Dynamics of the populations which were obtained after
simulation of the system at νpr = νrt = 0.6 keeping constant the other
conditions. The population of the infectious viruses is still high.

Figure 8 shows the variation of cells and viruses pop-
ulations that are involved in the system. The populations
for infectious and non infectious viruses are much higher
compared to the populations of the cells.
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Fig. 9. The Dynamics of the populations which were obtained after
simulation of the system at νpr = νrt = 0.8 keeping constant the other
conditions. The increase of treatment efficacy leads to the suppression of
infectious viruses. Therefore, low number of infected cells.

Figure 9 shows the dynamics for Cells and viruses pop-
ulation after increasing the efficacy νpr = νrt = 0.8. We
note the suppression of the infectious viruses compared to
figure 8 when the efficacy was νpr = νrt = 0.6. We
also note the increase in the gap between the number of
non-infectious and infectious viruses. This indicates that
the number of infectious viruses is decreasing due to the
increased treatment effect. It has been observed that the
increase of drug efficacy will suppress the population of
infectious virus to an undetectable level.

Fig. 10. The Dynamics of Ts, Ti and Tt populations obtained after
simulation of the system at νpr = νrt = 0.6 keeping constant the other
conditions. The high number of treated cells shows tha many cells are treated
after being infected.

In figure 10 and 11, we only compare the dynamics for
cells populations in their respective groups. We note a small
number of infected T cells compared to the uninfected and
treated T cells. Figure 8 and 9 show that the increase in
the treatment effect causes the suppression of the infectious
viruses and in turn we experience much increase in the
uninfected cells than the treated cells in figures 10 and 11.
The number of infected cells will continue decreasing as well
as the number of treated cells as seen from 11.

Fig. 11. The Dynamics of Ts, Ti and Tt populations obtained after
simulation of the system at νpr = νrt = 0.8 keeping constant the other
conditions. The increase of treatment efficacy leads to the suppression of
infectious viruses. Hence, low number of infected cells and high number of
uninfected cells.

Looking at figures 8, 9, 10 and 11 together the results
show the continuous suppression of the infectious viruses
due to the increased treatment effect. The number of infected
cells continues to decrease, the factor that decreases the
number of treated cells. We note that when the efficacy of
the treatment effect increases, non-infectious viruses increase
and the number of infectious viruses decreases, causing a
continuous decrease of the infected cells.
Figures 12, 13 and 14 indicate the dynamics of uninfected,
infected and treated cells, respectively. The simulation is
performed to check the dynamics of the cells populations
and study the impact of the two treatments used to limit the
rate of producing the infectious viruses.

Fig. 12. The dynamics of Uninfected Cells at different levels of combined
treatment efficacy. The increase of the treatment efficacy leads to increase
of uninfected cells.

The graph in Figure 12 shows the dynamics of uninfected
cells. The continuous increase in the efficacy of both treat-
ments leads to the continuous increase of uninfected cells.
The efficacy of the treatments varying from (0.65 to 0.85),
while other parameters are kept constant shows the impact of
treatment in cells and viruses population.When the number of
infectious viruses decreases, we expect a continuous increase
in the number of uninfected cells.

IAENG International Journal of Applied Mathematics, 51:2, IJAM_51_2_22

Volume 51, Issue 2: June 2021

 
______________________________________________________________________________________ 



Fig. 13. The dynamics of infected Cells at different levels of treatment
efficacy. The increase of the treatment efficacy leads to decrease of infected
cells.

Figure 13 indicates that the number of infected cells varies
with the damped oscillations while indicating a continuous
decrease in the number of infected cells. The graph indi-
cates the stability after some days of applying treatment.
Also, figure 13 indicates a decrease in the infected cells
when the efficacy of both treatments vary in the interval of
(0.65 - 0.85). In some levels of treatment, the population
of uninfected cells shows a continuous variation of the
population, but as the efficacy of the drugs increases, the
population of infected cells decreases and becomes stable.
The population of infected cells obtained at 0.85 efficacy in
figure 13 indicates that the population of uninfected cells
in figure 12 continues increasing and become stable after a
certain number of days.

Fig. 14. The dynamics of treated Cells at different levels of treatment
efficacy show that the increase of treatment efficacy leads to decrease in the
number of treated cells.

Figure 14, indicates the variation of the treated cells when
the two treatments are applied. The graph shows the decrease
in the number of treated cells as the efficacy of the treatments
increases. The dynamics of the treated cells depend much
on the number of cells that are infected and the efficacy
of the treatment applied. Because of treatment, the number
of treated cells decreases continuously as the number of
infectious viruses decreases. The big efficacy of treatment
reduces the chance of escape of infectious viruses, which
decreases infected cells and hence low number of treated
cells. When both treatment efficacy increases to 0.85 the
number of treated cells approaches to zero.

Fig. 15. The dynamics of infectious viruses at different levels of treatment
efficacy show that the increase of the treatment efficacy leads to decrease
of infectious viruses.

In figure 15, we note a high suppression of the infectious
virus after using two treatments. The population of the
infectious virus indicates big variation at the beginning,
followed by the stabilisation, however a step-by-step decrease
in the population of the infectious viruses as the efficacy of
the treatments increases is noted. Figure 15 indicates that
the increase of νrt and νpr between 0.6 and 0.9 decreases
infectious viruses and infected cells in figure 13.
Also, we note that as νrt and νpr approaches 0.85 the
graph indicates that the suppression of the infectious viruses
goes to zero after a certain number of days of treatment.
The biological implication of this follow-up in clinical care
would be; the suppression of the viruses to the extent that it
cannot be detected does not mean the total extinction of the
infectious viruses.

Fig. 16. The dynamics of non infectious viruses at different levels of
treatment efficacy. The graph shows that the increase of the treatment
efficacy leads to decrease of non infectious viruses.

Looking at figure 16 the population of the non-infectious
viruses varies similarly to the population of the infectious
viruses. More important is that the non-infectious viruses
have no effect on the HIV infections caused in the body.
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Fig. 17. Three Dimensional figure showing the variation of the effective
reproductive number. νpr ∈ (0.8, 0.9) and λ ∈ (0, 10) , the variation of
the effective reproductive number is between 0.1-1.0

Biologically, the relation between the T cells activation
rate λ and the treatment effect νpr is shown in Figure 17. In
the paper [22], they investigated the relationship between T
cells activation and the CD4+ T cell counts and confirmed
that lower the CD4+ T cells counts were associated with
a higher level of activated CD4+ cells. [22] also confirmed
that an indirect mechanism of HIV can cause the T cells
activation rate even if there is a viral suppression. Thus, the
relationship between the treatment effect and the activation
rate is not a proper way of confirming the clearance of the
disease.

VI. DISCUSSIONS AND CONCLUSION

A. Discussions

In this study, we investigated the dynamics of the viruses
and T cells in the presence of treatment to understand the im-
pact of the drugs administered to the patients. ARV therapy
comes as a means to control the rapid replication of virus
of which some have no clear descriptions of their replication
rates. This study intended to identify the conditions under
which the therapy applied has a positive impact on HIV
treatment.

We analysed a mathematical model of five compartments
which includes uninfected, infected, treated cells, infectious
and non-infectious viruses. Between these, the population of
infectious viruses appear to have more effect on the increase
and decrease of the uninfected cells.

In the model analysis, we considered two treatments,
that is reverse transcriptase inhibitors and protease inhibitors
which were incorporated in the model. Different from the
existing models from the literature, the proposed model
accounts for the treated cells population which is considered
during the therapy. We added a compartment that develops
from the treated cells. Stability analysis for the possible
equilibrium points was performed and found to be stable
under certain conditions which clear the infections.

The model simulated at different efficacy values of the
drugs indicated that the dynamics of the population depends
on the effects of the drug. The treatment effect leads to
the increase of the treated cells which were infected. The

variation of the drug efficacy from 0.6 to 0.8 leads to the
suppression of the infectious virus. It implies that a small
number of T cells is infected leading to the decrease of the
treated cells and the infected cells, in turn, there is an increase
of uninfected cells, the result which matches the findings of
[19].

Focusing on the dynamics of the treated cells; the sim-
ulation at νpr = νrt = 0.6 indicated that the population
of the treated cells was higher than that of other T cells.
It implies that a higher number of treated cells was caused
by a higher number of infected cells which were moving to
treated compartment after treatment. When we increased the
drug efficacy to 0.8 we noted the decrease in the population
of treated cells and the increase of uninfected cells. It implies
that there was a high suppression of infectious viruses. Only
a few cells were infected and hence increased the number of
uninfected cells and decreased the number of infected cells.

The results suggest that the treatment (PRI) that interferes
the stage of producing the infectious viruses has more impact
on the population dynamics even though the effect of other
drugs can not be left out. Other studies suggest that an
optimal adherence to RT suppresses the viral replication [23].
Results on the study of Rapid turnover of plasma virions
and CD4+ lymphocytes in HIV-I infection [24] states about
an exponential decrease of viruses when Protease inhibitor
is administered. Suppressed number of infectious viruses
will lead to the decrease of infected cells and increase of
uninfected cells, but this depends on the time since the
initiation of treatment; the fact which is also confirmed by
[13].

The results suggest that the use of two treatments with the
maintained drug efficacy suppress the rapid increase of the
viruses replication in the body of the infected person, but this
depends on the initial populations of the cells infected and
the infectious viruses. Even though our result is simulation-
based, the study on the Virion Clearance Rate, Infected Cell
Life-Span, and Viral Generation Time based on real data
which performed in the paper [25] similarly suggests that
the multiple combinations are effective treatment on the viral
suppression.

B. Conclusion
We aimed at modelling the population dynamics when the

treatment parameters are included in the model. It has pointed
out that the variation of different viral and cells populations
depends on the drug effects and the time taken to clear the
population of the infectious viruses. The model has shown
the drug effects on the populations involved in the model.

Different from the previous models used to investigate
the population dynamics of HIV models, it has visualised
the dynamics of the treated T cells in the infected and
uninfected cells populations. The model has pointed out
that the population of the treated cells can increase and
attain a maximum point during the continuous suppression
of infectious viruses.

The simulations of the within-host viral dynamics model
can be implemented by sampling from distributions that
describe the variation of parameters amongst populations
involved in the model. We simulate using the parameters
which were estimated using sampling and they give good
results of the dynamics that take place in the system.
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