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Abstract—This paper considers the non-fragile reliable pas-
sive for switched systems based on event-triggered scheme.
In particular, exogenous disturbance and actuator failures are
considered, and the control input is segmented by the proposed
event-triggered transmission scheme. Then, a closed-loop state
feedback switched systems is established. Based on average
dwell time scheme, some stability criteria and satisfactory
passive performance of the switched with actuator failures
and exogenous disturbance are obtained by Lyapunov function
technique. In addition, the reliable feedback controller can be
designed through a special matrix transformation. Finally, the
rationality of the method is given through a simulation example.

Index Terms—Reliable, Event-triggered, Switched systems,
Exogenous disturbance.

I. INTRODUCTION

SWITCHED systems can be used to efficiently simulate
industrial practice systems due to the advantages of

high exibility and maintenance. Over the last years, with
the progress of technology and the development of econ-
omy, many engineering systems have been modeled using
switched systems, and they have become very common in
our life, such as networked systems [1], intelligent vehicle
systems [2], chemical processing [3], power plant boiler-
turbine system [4], neural network tracking control system
[5] and the references cited therein. Recently, such system
has gained extensive attention from researchers and many
valuable results have been obtained. In [6], the piecewise
Lyapunov functionals is considered, and the issue of expo-
nential stability is investigated. The author considers the use
of persistent dwell time control law, the problem of Takagi-
Sugeno fuzzy switched systems is investigated in [7], and
some stability criteria are proposed based on multiple L-
K functional technique. Specifically, the time delay between
the controller and the subsystem is considered in [8], and
the proposed switched systems can consist of all unstable
subsystems, then some sufficient condition are proposed to
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guarantee stability of switched systems under asynchronous
switching by applying mode-dependent average dwell time
law.

In actual engineering system, the actuators of the con-
trol system are suffered from failures by limited system
properties and operating performance, and they can lead
to performance degradation. In addition, the presence of
external disturbances and small uncertainties in the actuators
can lead to system unstable [9-11]. In fact, these phenomena
are very common in industrial production, and researchers
are making a lot of efforts to solve these problems. With the
development of the research, many advanced and highlighted
results related to the non-fragile and reliable control have
been studied in recent years. For instance, the mixed actuator
failures are often encountered in industrial production. The
author considered this common situation in [12], and some
stability criteria of discrete-time Markov jump system are
obtained. In [13], the reliable control for uncertain contin-
uous time systems is investigated by dissipative analysis.
Meanwhile, by employing delay fractioning approach, H∞,
passivity, (Q,S,R) dissipative control problems can obtained
respectively from the proposed conditions. Considering that
distributed and discrete delays appear randomly in the net-
work environment, [14] considers the stability problem of
stochastic networks through L-K function technology, and
some stability criteria and satisfactory passive performance
are obtained under actuator failure. In particular, these ques-
tions are also the main concern for switched systems. Howev-
er, it should be pointed out that when the system is subjected
to a complex external environment, H∞ control method is
not competent for disturbance suppression function. In fact,
the passivity has been introduced as a performance index
to overcome this obstacle. For example, when considering
switched systems with random items and uncertain items,
[15] presents a method to deal with actuator faults, and some
stability criteria and satisfactory passive performance of the
switched with actuator failures and exogenous disturbance
are proposed under state switching. By means of dissipative
theory, [16] deals with a more complex system, that is, a
switched system with nonlinear functions satisfying Lips-
chitz’s condition, and the reliability and stability are studied
in [16]. Based on the above analysis, we understand that
there are few researches on the passivity of switched systems
containing non-fragile items and actuator failures. This leads
to our current research motivation.

On another research front, the sampled-data control sys-
tems are superior in flexibility, maintainability and simpler
installation than traditional control systems. The periodical
sampling mechanism (or time-triggered mechanism) is often
investigated to obtain the instantaneous sampling information
of physical plants states in earlier studies. In general, the
communication bandwidth is limited in the network transmis-
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sion and the data sampling and transmission in a periodicity
will result in a large amount of network data, which will
cause data congestion and network delay in the network
channel [17-22]. Hence, with the development of modern
network communication technology and the improvement of
data communication reliability requirements in work and life,
the event-triggered mechanism is introduced to deal with or
improve the problems arising from time-triggered scheme
while retaining a satisfactory performance. Specially, with
the popularity of the event-triggered control method, the
research of adding this method to the switched system has
also been extensively developed. In [23], a special nonlinear
problem often encountered in industrial production, namely
actuator saturation phenomenon, is considered. By introduc-
ing event-triggered method, the stability of switched system
in the network environment is solved. [24] proposed the
problem of asynchronous phenomenon, and dynamic input
quantization and constrained switching are considered at the
same time under the constructed event-triggered condition.
In [25], the author analyzes the advantages and disadvan-
tages of trigger conditions, and some stability criteria are
obtained based on state switching law. In particular, from
the perspective of practical applications, the event-triggered
transmission scheme may be a better choice. Moreover,
to our best knowledge, the passivity of switched systems
containing non-fragile items and actuator failures has not
been yet completely solved by event-triggered strategy and
results are relatively infrequent.

In order to fill this gap, the purpose of this article is to
address the non-fragile reliable passive event trigger control
problem of the switched systems affected by exogenous
disturbance and actuator failure. The main contributions of
this article include three aspects:
• The influence of actuator failures and exogenous dis-

turbance are taken into consideration simultaneously. Then,
the non-fragile control input is segmented and a closed-loop
state feedback switched systems is established under event-
triggered transmission scheme.
• By using Lyapunov stability theory, some stability crite-

ria and satisfactory passive performance of the switched with
actuator failures and exogenous disturbance are obtained.
• The reliable feedback controller can be designed by

using a proficient matrix decoupling method.

II. PROBLEM FORMULATION AND PRELIMINARIES

The switched systems considered is as follows:{
ẋ(t) = Aσ(t)x(t) +Bσ(t)u

f (t) + Cσ(t)v(t)

z(t) = Eσ(t)x(t) + Fσ(t)v(t),
(1)

The state vector, the actuator fault and disturbance, respec-
tively, are represented by x(t) ∈ Rn, uf (t) ∈ Rm, v(t). The
measured output is represented by z(t) ∈ Rn. Specifically,
The switching law function is represented by σ(t), and it is
assumed that there are s subsystems. tk is recorded as the
switching instant. For convenience of expression, we denote
σ(t) = i.

It is worth mentioning that with the increasing complexity
of industrial system models and the uncertainty of the
working environment, the actuator failure usually occurs in
the process of controlling the dynamic system, and it will

work abnormally under certain actual conditions. Therefore,
we design the reliability controller based on the practical
application and the comprehensive control method of the
model.

uf (t) =Miu(t), ∀t ∈ [t0,∞) (2)

The model of actuator fault matrix Mi, i ∈ N is given below:

Mi = diag{mi1,mi2, . . . ,mil}, (3)

where 0 ≤ mik ≤ mik ≤ mik ≤ 1, k = 1, 2, . . . , l. mik

and mik are known constants. Given the following matrix
relationship.

Li = diag{li1, li2, . . . , lil}, Ji = diag{ji1, ji2, . . . , jil}
Mi0 = diag{m̃i1, m̃i2, . . . , m̃il},

(4)
where lik = mik−m̃ik

m̃ik
, jik =

mik−mik

mik+mik
, m̃ik = 1

2 (mik+mik).
According to (4), then

Mi =Mi0(I + Li), (5)

where |Li| = diag{|li1|, |li2|, . . . , |li1|}, |Li| ≤ Ji ≤ I .

Remark 1. It is well known that actuators are suffers from
failures by limited system properties and operating perfor-
mance. In addition, when the system suffers from external
interference, the existence of this factor will cause stability of
system to be damaged and performance degradation. Taking
into account the actual situation and the application in engi-
neering practice, we have considered all the above situations.
The model considered in this paper is more comprehensive
and more practical.

Under the event trigger mechanism, we will show the
entire process framework of the switched systems operation
through Figure 1. In particular, an event detector is intro-
duced in Figure 1. The significance of the event detector is
to determine newly sampled information by using the event
trigger condition, and then pass the data to the controller. If
the trigger condition is satisfied, a new trigger instant will
be generated; if not, the next trigger instant will be judged
by the trigger condition. We consider the following mode-
dependent event-triggered conditions:

trk+1 = inf{t > trk|eT (t)Φie(t) > ρix
T (t)Φix(t)} (6)

The measurement error is represented by e(t) = x(t) −
x(trk), and the event-triggered weighting matrix are rep-
resented by Φi. The event-triggered constant threshold is
represented by ρi and ρi ∈ [0, 1). m sampling data generated
on the interval [tk, tk+1) in the following analysis, and the
first sampling time in the above interval is represented by
x(trk+1), then the piecewise non-fragile control inputs u(t)
can be given by

u(t) =


(Ki +∆Ki)x(trk) t ∈ [tk, trk+1),

(Ki +∆Ki)x(trk+1) t ∈ [trk+1, trk+2),

· · · ,
(Ki +∆Ki)x(trk+m) t ∈ [trk+m, tk+1).

(7)

where Ki is the controller gain and the perturbations satis-
fying ∆Ki = HiFi(t)Oi, FT

i (t)Fi(t) ≤ I , where Fi(t) are
unknown matrix functions. Oi and Hi are given constant
matrices. The state x(trk) is sampled and transmitted at
event-triggered sampling instant trk.
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x(t)

xk(t)
Fig. 1: Event-triggered control structure

Remark 2. Compared with the periodical sampling mecha-
nism in [16] and [22], an event-triggered mechanism condi-
tion is introduced in (6) to reduce some unnecessary waste
of communication transmissions from a resource utilisation
point of view. Moreover, the piecewise non-fragile control
input in the presence of the additive gain perturbations of
the form ∆Ki is imposed in (7), and the closed-loop state
feedback switched system can keep continuous via a zero-
order holder (ZOH).

Then, by combining (1) and (7), the following system is
generated:

ẋ(t) = (Ai +BiMi(Ki +∆Ki))x(t) + Civ(t)

−BiMi(Ki +∆Ki)e(t),

z(t) = Eix(t) + Fiv(t).

(8)

Before proving the theorem, we give some definitions and
lemmas that have an effect on the calculation process.

Definition 1.([26]) For T > t ≥ 0, Nσ(t, T ) represents
the number of switching an interval (t, T ). If exist N0 ≥
1, τα ≥ 0, the following inequality

Nσ(t, T ) ≤ N0 +
(T − t)

τα
(9)

holds, then, the constant τα is called the average dwell
time.

Definition 2.([27]) When v(t) = 0, the closed-loop (8)
with is exponentially stable for any σ(t), if the following
inequality

∥x(t)∥2 ≤ ηe−δ(t−t0)∥x(t0)∥, ∀t ≥ t0, η ≥ 1, δ > 0,
(10)

holds.
Definition 3.([15]) Given γ > 0, the closed-loop (8) is

said to be exponential stabilization and and satisfies passive
performance, if (1) and (2) hold:
(1) When v(t) = 0, the closed-loop (8) is exponentially
stabilizable .
(2) There is

2

∫ T

0

zT (t)v(t)dt ≥ −γ
∫ T

0

vT (t)v(t)dt, γ > 0. (11)

holds under any nonzero exogenous disturbance.

Lemma 1([27]) Given matrix Λ =

(
Λ11 Λ12

∗ Λ22

)
with

Λ11 = ΛT
11,Λ22 = ΛT

22, then the following conditions are
equivalent:

(1) Λ < 0,

(2) Λ11 < 0,Λ22 − ΛT
12Λ

−1
11 Λ12 < 0,

(3) Λ22 < 0,Λ11 − Λ12Λ
−1
22 Λ

T
12 < 0.

Lemma 2([15]) For matrices P,Q and S with appropriate
dimensions with ST = S. Then, for all STS ≤ I , there exists
θ > 0, such that

PSQ+QTSTPT ≤ θPPT + θ−1QTQ.

III. MAIN RESULTS

In the following, the influence of actuator failures and
exogenous disturbance are taken into consideration simulta-
neously under the proposed event-triggered mechanism. We
consider the first case, that is, when v(t) = 0.

A. Stability analysis

Theorem 1. Given positive scalar α, ε1i, ε2i, ε3i and λ ≥
1, if exist positive definite matrices Xi, ϕ̄i and matrices Yi,
such that the following matrix inequalities hold for all i, j ∈
N, i ̸= j,

Xi ≤ µXj i, j ∈M, (12)

Θ̌i =



Θ̌i
11 Θ̂i

12 Θ̂i
13 Θ̂i

14 Θ̃i
15 0 Θ̂i

17

∗ −ϕ̄i 0 0 0 Θ̃i
26 Θ̂i

27

∗ ∗ −I 0 0 0 Θ̂i
37

∗ ∗ ∗ −I 0 0 Θ̂i
47

∗ ∗ ∗ ∗ −ε1iI 0 0
∗ ∗ ∗ ∗ ∗ −ε2i 0

∗ ∗ ∗ ∗ ∗ ∗ Θ̂i
77


< 0

(13)
where

Σi
11 = AiXi +XiA

T
i +BiMi0Yi + Y T

i M
T
i0B

T
i + αXi

+ ρiΦ̄i + ε3iBiMi0JiMi0Bi,

Θ̂i
27 = −Y T

i J
1
2
i , Θ̂

i
37 = Θ̂i

47 = HT
i J

1
2
i , Θ̂

i
12 = −BiMi0Yi,

Θ̂i
13 = Θ̂i

14 = BiMi0Hi, Θ̂
i
15 =

√
ε1iXiO

T
i ,

Θ̂i
26 =

√
ε2iXiO

T
i , Θ̂

i
17 = Y T

i J
1
2
i , Θ̂

i
77 = −ε3iI,

then, the resulting closed-loop system (8) when v(t) = 0 is
exponentially stabilizable for τa > τ∗a = lnλ

α . Moreover, the
controller gains are given by Ki = YiX

−1
i .

Proof: For [tk, tk+1), we assume that the ith subsystem is
activated. The following multiple L-K functional is consid-
ered:

V (t) = Vi(t) = xT (t)Pix(t) (14)

Derivation of (14), we have

V̇i(t) =x
T (t)[Pi(Ai +BiMiKi) + (Ai +BiMiKi)

TPi

+ 2P iBiMi∆Ki]x(t)− eT (t)KT
i M

T
i B

T
i Pix(t)

− xT (t)PiBiMiKie(t)− 2xT (t)PiBiMi∆Kie(t)
(15)
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Further, we have

2xT (t)PiBiMi∆Kix(t) ≤xT (t)(ε−1
1i PiBiMiHiH

T
i MT

i BT
i Pi

+ ε1iO
T
i Oi)x(t)

2xT (t)PiBiMi∆Kie(t) ≤ε−1
2i x

T (t)(PiBiMiHiH
T
i MT

i BT
i Pi)

x(t) + ε2ie
T (t)OT

i Oie(t)
(16)

Form (6), we have

ρix
T (t)Φix(t)− eT (t)Φie(t) ≥ 0 (17)

By (15)-(17), then

V̇i(t) + αVi(t) ≤ xT (t)[Pi(Ai +BiMiKi) + ε1iO
T
i Oi

+ ε−1
1i PiBiMiHiH

T
i M

T
i B

T
i Pi + (Ai

+BiMiKi)
TPi + ρiΦi + ε−1

2i PiBiMiHi

×HT
i M

T
i B

T
i Pi + αPi]x(t)− eT (t)Φie(t)

− eT (t)KT
i M

T
i B

T
i Pix(t)

− xT (t)PiBiMiKie(t)

+ ε2ie
T (t)OT

i Oie(t)

= ηT (t)Θiη(t),
(18)

where

ηT (t) =
[
xT (t) eT (t)

]
,Θi =

[
Θi

11 Θi
12

∗ Θi
22

]
,

Θi
11 = Pi(Ai +BiMiKi) + (Ai +BiMiKi)

TPi + αPi

+ ε−1
1i PiBiMiHiH

T
i M

T
i B

T
i Pi + ε1iO

T
i Oi

+ ρiΦi + ε−1
2i PiBiMiHiH

T
i M

T
i B

T
i Pi,

Θi
12 = −PiBiMiKi, Θ

i
22 = ε2iO

T
i Oi − Φi.

Applying Lemma 1, we understand that Θi < 0 is equivalent
to 

Θ̄i
11 Θi

12 Θi
13 Θi

14 Θi
15 0

∗ −Φi 0 0 0 Θi
26

∗ ∗ −I 0 0 0
∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ −ε1iI 0
∗ ∗ ∗ ∗ ∗ −ε2iI

 < 0 (19)

where

Θ̄i
11 = Pi(Ai +BiMiKi) + (Ai +BiMiKi)

TPi + αPi

+ ρiΦi,

Θi
13 = Θi

14 = PiBiMiHi,Θ
i
15 =

√
ε1iO

T
i ,Θ

i
26 =

√
ε2iO

T
i .

Multiply both sides of (19) by Υi. Denote Υi =
diag{P−1

i , P−1
i , I, I, I, I}. P−1

i = Xi, Yi = KiXi, Φ̄i =
XiΦiXi, we have

Θ̃i
11 Θ̃i

12 Θ̃i
13 Θ̃i

14 Θ̃i
15 0

∗ −Φ̄i 0 0 0 Θ̃i
26

∗ ∗ −I 0 0 0
∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ −ε1iI 0
∗ ∗ ∗ ∗ ∗ −ε2iI

 < 0 (20)

where

Θ̃i
11 = AiXi +XiA

T
i +BiMiYi + αXi + Y T

i M
T
i B

T
i + ρiΦ̄i,

Θ̃i
12 = −BiMiYi, Θ̃

i
13 = Θ̃i

14 = BiMiHi, Θ̃
i
15 =

√
ε1iXiO

T
i ,

Θ̃i
26 =

√
ε2iXiO

T
i .

Substituting (5) into (20), the following formula can be
obtained:

Θ̂i +


BiMi0

0
0
0
0
0

Li

[
Yi −Yi Hi Hi 0 0

]

+


Y T
i

−Y T
i

HT
i

HT
i

0
0

L
T
i

[
MT

i0B
T
i 0 0 0 0 0

]
(21)

where

Θ̂i =


Θ̂i

11 Θ̂i
12 Θ̂i

13 Θ̂i
14 Θ̃i

15 0

∗ −ϕ̄i 0 0 0 Θ̃i
26

∗ ∗ −I 0 0 0
∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ −ε1iI 0
∗ ∗ ∗ ∗ ∗ −ε2iI

 (22)

where

Θ̂i
11 = AiXi +XiA

T
i +BiMi0Yi + Y T

i M
T
i0B

T
i + αXi

+ ρiΦ̄i,

Θ̂i
12 = −BiMi0Yi, Θ̂

i
13 = Θ̂i

14 = BiMi0Hi.

From (5) and Lemma 2, we have Θi is equivalent to (13)
to

Θ̂i +


BiMi0

0
0
0
0
0

Li

[
Yi −Yi Hi Hi 0 0

]

+


Y T
i

−Y T
i

HT
i

HT
i

0
0

L
T
i

[
MT

i0B
T
i 0 0 0 0 0

]

≤ Θ̂i +


BiMi0

0
0
0
0
0

 Ji
[
Yi −Yi Hi Hi 0 0

]

+


Y T
i

−Y T
i

HT
i

HT
i

0
0

 J
T
i

[
MT

i0B
T
i 0 0 0 0 0

]

(23)
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Θ̂i + ε3i


BiMi0

0
0
0
0
0

 Ji

BiMi0

0
0
0
0
0



T

+ ε−1
3i


Y T
i

−Y T
i

HT
i

HT
i

0
0

 J
T
i

[
Yi −Yi Hi Hi 0 0

]
< 0

(24)
Then,

V̇i(t) + αVi(t) < 0. (25)

So
(eαtVi(t))

′ = αeαtVi(t) + eαtV̇i(t) ≤ 0. (26)

The integral of (26) is obtained

Vσ(t)(t) ≤ Vσ(tk)(tk)e
−α(t−tk), tk ≤ t < tk+1. (27)

From (12), we can get

Vσ(tk)(tk) ≤ λVσ(t−k )(t
−
k ). (28)

From (27) and (28) the relation Nσ(t0, t) ≤ t−t0
τa

, we have

Vσ(t)(t) ≤ λVσ(t−k )(tk
−)e−α(t−tk)

≤ · · ·
≤ λNσ(t0,t)Vσ(t0)(t0)e

−α(t−t0),

≤ e−(t−t0)(α−lnλ/τa)Vσ(t0)(t0).

(29)

From (14), then

Vσ(t)(t) ≥ a∥x(t)∥2, Vσ(t0)(t0) ≤ b∥x(t0)∥2, (30)

where
a = min

i∈N̄
λmin(Pi), b = max

i∈N̄
λmax(Pi).

So

∥x(t)∥ ≤
√
b

a
∥x(t0)∥ e−

1
2 (α−

lnλ
τa

)(t−t0). (31)

Therefore, through the above proof process, we can draw the
conclusion of the Theorem 1 from Definition 2.

B. Passivity control
In the following subsection, we considered the issue of

non-fragile reliable event-triggered passive control for the re-
sulting system (8) with respect to the exogenous disturbance
input ω(t) ̸= 0.

Theorem 2. Given positive scalar α, ε1i, ε2i, ε3i and λ ≥
1, if exist positive definite matrices Xi, ϕ̄i and Yi, such that
the following matrix inequalities hold,

Xi ≤ µXj i, j ∈ N, (32)

Λ̄i
11 Λ̄i

12 Λ̄i
13 Λi

14 Λi
15 Λi

16 0 Λi
18

∗ −ϕ̄i 0 0 0 0 Λi
27 Λi

28

∗ ∗ Λi
33 0 0 0 0 Λi

38

∗ ∗ ∗ −I 0 0 0 Λi
48

∗ ∗ ∗ ∗ −I 0 0 0
∗ ∗ ∗ ∗ ∗ −ε1iI 0 0
∗ ∗ ∗ ∗ ∗ ∗ −ε2iI 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Λi

88


< 0

(33)

where

Λi
11 = AiXi +XiA

T
i +BiMi0Yi + Y T

i M
T
i0B

T
i + αXi

+ ρiΦ̄i + ε3iBiMi0JiMi0Bi,

Λi
28 = −Y T

i J
1
2
i ,Λ

i
38 = Λi

48 = HT
i J

1
2
i , Λ̄

i
13 = Ci −XiE

T
i ,

Λi
33 = −2FT

i − γ2I,Λi
14 = Λi

15 = BiMi0Hi,

Λi
16 =

√
ε1iXiO

T
i ,Λ

i
27 =

√
ε2iXiO

T
i ,

Λi
18 = Y T

i J
1
2
i ,Λ

i
88 = −ε3iI.

Then, the resulting system (8) is passive and exponential-
ly stabilizable with attenuation performance γ for τa >
τ∗a = lnλ

α . Moreover, the controller gains are given by
Ki = YiX

−1
i .

Proof: For v(t) ̸= 0, we choose L-K functional (14) of
Theorem 1, thus

V̇i(t) + αVi(t)− 2zT (t)v(t)− γ2vT (t)v(t)

≤ xT (t)[Pi(Ai +BiMiKi) + ε1iO
T
i Oi + ρiΦi

+ ε−1
1i PiBiMiHiH

T
i M

T
i B

T
i Pi + (Ai +BiMiKi)

T

× Pi + αPi + ε−1
2i PiBiMiHiH

T
i M

T
i B

T
i Pi]x(t)

− xT (t)ET
i v(t)− vT (t)Eix(t)− γ2vT (t)v(t)

− 2vT (t)FT
i v(t)− eT (t)ϕie(t) + vT (t)CiPix(t)

− xT (t)PiBiMiKie(t)− eT (t)KT
i M

T
i B

T
i Pix(t)

+ xT (t)PiCiω(t) + ε2ie
T (t)OT

i Oie(t)

= ζT (t)Λiζ(t)
(34)

where

Λi =

Λi
11 Λi

12 Λi
13

∗ Λi
22 0

∗ ∗ Λi
33

 ,
ζT (t) =

[
ηT (t) vT (t)

]
,

Λi
11 = Pi(Ai +BiMiKi) + (Ai +BiMiKi)

TPi + ρiΦi

+ ε−1
1i PiBiMiHiH

T
i M

T
i B

T
i Pi + αPi + ε1iO

T
i Oi

+ ε−1
2i PiBiMiHiH

T
i M

T
i B

T
i Pi,

Λi
22 = ε2iO

T
i Oi − Φi, Λi

13 = PiCi − ET
i ,

Λi
12 = −PiBiMiKi, Λi

33 = −2FT
i − γ2I

So,

V̇ (t) + αV (t)− 2zT (t)v(t)− γ2vT (t)v(t) ≤ 0. (35)

Integrating from tk to t on both sides of (35), then

V (t) ≤ e−α(t−tk)V (tk)−
∫ t

tk

e−α(t−s)ψ(s)ds. (36)

where ψ(t) = −2zT (t)v(t)− γ2vT (t)v(t).
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Then, we have

V (t) ≤ e−α(t−tk)V (tk)−
∫ t

tk

e−α(t−s)ψ(s)ds

≤ λkV (t0)e
−αt − µk

∫ t1

0

e−α(t−s)ψ(s)ds

− λk−1

∫ t2

t1

e−α(t−s)ψ(s)ds

− · · · − λk−1

∫ t

tk

e−α(t−s)ψ(s)ds

≤ e−αt+Nσ(0,t) lnλV (0)−
∫ t

0

e−αt+Nσ(s,t) lnλψ(s)ds.

(37)
So,

0 ≤ −
∫ t

0

e−α(t−s)+Nσ(s,t) lnλψ(s)ds. (38)

Form τa > τ∗a = lnλ
α , we have Nσ(s, t) ≤ t−s

τa
≤ (t−s)α

lnλ .
Then, we can get

−
∫ t

0

ψ(s)ds ≥ 0. (39)

Therefore,

2

∫ t

0

zT (s)ω(s)ds ≥ −γ
∫ t

0

ωT (s)ω(s)ds.

Therefore, through the above proof process, we can draw the
conclusion of the Theorem 2 from Definition 2.
Remark 3. The Lyapunov function candidate (14) is mode
dependent, which is essential to obtain less conservative
result. Moreover, the event-triggered mechanism condition
(6) is related to subsystem information, which is more
practical than [28] and [29] in engineering application.
Specifically, the L-K functional technique is used as an
important method to deal with the switching signal sequence
and event-triggered transmission sequence in this paper.
Remark 4. In actual engineering system, the designed con-
trollers may be very sensitive when there are small uncer-
tainties in controllers, that is to say, the system is fragile,
and may be unstable or performance degradation. Therefore,
when we deal with complex situations, considering the actual
application performance level of the system, we need to
consider non-fragility and reliability of controller.
Remark 5. It should be mentioned that there is still room to
reduce the conservatism if free-weighting matrices technique
can be employed to estimate the useful terms. In event-
triggered control, due to the interaction between switching
interval and the event-triggered interval, there may be a
mismatch between the subsystems and their corresponding
controllers, that is to say, there may be asynchrony between
them. It is worth noting that if the two intervals are handled
properly, the asynchronous phenomenon will not appear. This
paper considers the synchronization of the subsystem and the
controller.
Remark 6. It is clear that (32) and (33) are mutually
dependent. The matrix Xi is obtain by solving linear matrix
inequalities (32) and (33). Therefore, the following algorithm
is given to solve the controller gain Ki.
Step 1: Choose some values for scalars α and λ.
Step 2: Define the variable Xi.
Step 3: Solving (32) and (33) through constant adjustment

of the parameters.
Step 4: The controller gains are given by Ki = YiX

−1
i .

Finally, the reliability controller can be designed by the above
steps.

IV. NUMERICAL EXAMPLES

Based on the proof and analysis of the theorem, in order
to obtain effective results, we will give an example.

Example 1. Consider the switched systems model where
it is composed of two subsystems:
Mode 1:

A1 =

[
−1.5 −1
0 −1.1

]
, B1 =

[
0.2 0
−0.1 0.2

]
,

C1 =

[
0.1 0
0 −2

]
, E1 =

[
0.1 0
0 0.2

]
,

F1 =

[
0.1 0
0 0.1

]
,H1 =

[
0.2 0
0 0.2

]
,

O1 =

[
0.2 0
0 0.2

]
,

Mode 2:

A2 =

[
−1.2 0
−1 −0.6

]
, B2 =

[
0.1 −0.1
0 0.2

]
,

C2 =

[
0.1 0
0 0.2

]
, E2 =

[
0.1 0
0 0.2

]
,

F2 =

[
0.2 0
0 −0.25

]
,H2 =

[
0.2 0
0 0.2

]
,

O2 =

[
0.2 0
0 0.2

]
,

The actuator failures matrices are as follows:
0.2 ≤ m11 ≤ 0.6, 0.1 ≤ m12 ≤ 0.9,

0.2 ≤ m21 ≤ 0.8, 0.1 ≤ m22 ≤ 0.7.
According to (6) ,we can get

M10 =

[
0.6 0
0 0.3

]
, J1 =

[
0.5 0
0 0.5

]
,

M20 =

[
0.3 0
0 0.6

]
, J2 =

[
0.55 0
0 0.45

]
,

Let α = 0.7, µ = 1.05, γ = 0.8, ε1i = 1.1, ε2i =
1.2, ε3i = 1.4(i = 1, 2), ρ1 = 0.1, ρ2 = 0.2, v(t) = 2

e5t .
By τa > τ∗a = lnλ

α , we can get τa > 0.0697.
By solving (34) and (35), we have

X1 =

[
0.5901 −0.2513
−0.2513 0.4494

]
,

X2 =

[
0.5891 0.2508
0.2508 0.4470

]
,

Y1 =

[
−0.0222 0.0510
0.0808 −0.0518

]
,

Y2 =

[
0.0275 0.0381
0.1368 0.1257

]
Then, the controller gains are

K1 =

[
−0.0259 0.0285
−0.0607 −0.0436

]
,

K2 =

[
−0.0257 −0.0239
0.0491 0.0219

]
.

The system switched signal σ(t) and the state trajectories
during time interval [0, 10] are given in Fig. 2 and Fig. 3,
respectively. Fig.4 represents the event triggering instants.
In the figure, 1 is used to indicate that new transmission
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TABLE I: The event triggering times under different ρi

ρi 0 0.2 0.3 0.4 0.5 0.6 0.7 0.9

n 100 32 30 29 28 25 22 18

Fig. 2: The switching law.

Fig. 3: State response.

Fig. 4: Event-triggered time-instant.

data is generated at the current moment, and 0 is not
violated. Moreover, only a few instants in Figure 4 violate
the event trigger condition, that is, only 35 out of 100
samples violated the event-triggered mechanism condition
(6). Obviously, from the analysis of the data results, the
trigger condition we considered has a good effect in avoiding
network congestion due to the reduction of data transmission.
Then, the effectiveness of the method is verified.

In (6), an event-triggered mechanism with different trig-
gering thresholds ρi is proposed. we understand that the
thresholds of the event-triggered ρi has a great influence
on the number of sampled data transmissions, namely, the
frequency of event triggering is related to the thresholds
scalar ρi. The smaller ρi is selected, the more frequently the
sampling data is transmitted. Conversely, the larger ρi is the
selected, the less frequently the sampling data is transmitted.
From TABLE I, we can obviously see that the relationship
between the selection of threshold scalar ρi and sampling
data transmission.

V. CONCLUSIONS

The non-fragile reliable passive control for switched sys-
tems subject to exogenous disturbance and actuator failures
has been investigated by using event-triggered method. A
segmented non-fragile control input is presented for the con-
sidered switched systems with the effect of event-triggered
control, then a closed-loop state feedback switched sys-
tem model is established. Based on the multiple Lyapunov
function technique, some stability criteria and satisfactory
passive performance of the switched with actuator failures
and exogenous disturbance are obtained. In addition, the
reliable feedback controller can be designed through a special
matrix transformation. Next, we will consider a common
problem in engineering practice, that is, there is a large
amount of delays in the network, where the introduction of
an event-triggered strategy will cause asynchrony problems,
and expand theoretical results to other fields[30-32].
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