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Abstract—Inspired by our finding in (Commun. Korean
Math. Soc. 2019 Vol. 34, No. 2, 671—684), we suggest a new
modified approach to proximal point scalarization methods
(applied to multiobjetive programming problems). This method
provides a new variant of ϕ-divirgence functions which is
diffrent from the tow last variants used in [6] and [12].
Our main contribution is the proposition of a new square root
quadratic term in the regularized subproblem. In other words,
the nonegative variables employed in the scalarization are
placed in the square term instead of using the logarithmic term
of Auslender et al. as regularization. Next, the unconstrained
variables are introduced in the quadratic term. Finally, we
prove that each limit point of the sequence generated by the
method is a weak Pareto solution.

Index Terms—Multiobjective programming, proximal point
algorithm, scalar representations, divirgence fonctions, square-
quadratic regularization, logarithm-quadratic term.

I. INTRODUCTION

This work considers the unconstrained multiobjective pro-
gramming problem

min{F (x) : x ∈ Rn}, (1)

where F is a convex mapping from Rn to Rm.
This class of problems has been addressed by Kaisa
Miettinen at Ph.D. thesis in early 1999. Thereafter, it
is included in the more general programming problems
known as vector optimization [19], see Chinchuluun and
Pardalos survey [7] for the other versions of multiobjective
programming problems. This problem has received much
attention in literature.

A bibliography of many multiobjective mathematical
programming applications is presented by White at [24].
More information about real-life problems related to the
economy, finance, industry and health services. It can be
found at [21]. For some recent applications, see [25] and
[13].

Evolutive algorithms [[9], [8] and [23]], and proximal
point algorithms (PPA) [22] have been recognized as the
most popular numerical methods and powerful algorithms
solving the problem (1).
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A classical method to solve (1) is the quadratic proximal
point method for minimizing a closed proper convex function
f in Rn generates a sequence {xk} ⊂ Rn such that, given
x0

(PPA) xk+1 ∈ argmin{f(x) + λkq(x, x
k)}, (2)

where
q(x, xk) =

1

2
‖x− xk‖2 (3)

is a quadratic function of x.

Various efforts have been devoted to replacing the usual
quadratic term with some kind of functions like-distances
such as Bregman Distances and ϕ-divergences, see [10],
[15] and [17].
Several interesting algorithms and condensed developments
have been directed to extend the different versions of
proximal point methods to a multiobjective case and vector
optimization. For more details, check, Miettinem [21],
Gopfert et al. [11], Bonnel et al. [4].

In 2010, Gregorio and Oliveira [12] developed the
proximal point scalarization method with a variant of the
logarithmic quadratic function of Auslender et al. [1] and
[2]. More precisely, the scalar representation 〈F (z), z〉 has
been used to convert problem (1) into a single objective
optimization problems or a family of such problems with
a real-valued objective function to be minimized, called
scalarized problem, see [21]. Then, the unconstrained
variables in the domain of F are introduced in the quadratic
term. The nonegative variables employed in the scalarization
are placed in the logarithmic term.

More recently, Castillo and Quintana [6] proposed a
generalisation of the method in [12]. Moreover, they
used two different scalar representations and two convex
functions defined on the positive orthant for penalizing
positive variables.

In this work, Instead of using the logarithmic quadratic
regularization in [12] and the two convex functions defined
on the positive orthant for penalizing positive variables into-
duced in [6]. We introduce a new square root quadratic term
in the regularized subproblem. Therefore, we propose the
modified proximal point method based on scalar representa-
tion and over a new differnt variant of the regularization. The
next section presents preliminary results and basic concepts
for a better understanding of the problem at hand.
In Sec. 3, we present the ϕ-divergence function used in
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the proximal method as variant of the logarithm-quadratic
regularization introduced in [12] and the inverse barrier term
used in [6], convergence results are established.

II. PRELIMINARIES

We list some fundamental basic concepts that are useful
in the consequent analysis.

Definition 1 Let y, ȳ ∈ Rm be vectors. We have,

y ≤ ȳ ⇔ yi ≤ ȳi, i = 1, ...,m,

y < ȳ ⇔ yi ≤ ȳi, i = 1, ...,m,

with the strict inequality assured at least one indice and

y � ȳ ⇔ yi < ȳi, ∀i = 1, ...,m.

It is easy to see that ≤ satisfies the axioms of partial
order relation in Rm. In a more general closed convex
pointed cone K on Rm we can build a partial order relation
≤K assuming that
y ≤K ȳ if ȳ − y ∈ K (y <K ȳ if ȳ − y ∈ int(K)).

Definition 2 We say that a ∈ Rn is a local pareto solution
to the problem (1) if there is a disc Bδ(a) ⊂ Rn, with δ > 0,
such that there is no x ∈ Bδ(a) satisfying F (x) < F (a).

Definition 3 a ∈ Rn is known as weak local pareto solution
if there is a disc Bδ(a) ⊂ Rn, with δ > 0, such that there
is no x ∈ Bδ(a) satisfying F (x)� F (a).

We will denote by argmin{F (x)|x ∈ Rn} and
argminw{F (x)|x ∈ Rn} the local pareto solution and the
local weak pareto solution set to the problem (1). It is easy
to see that
argmin{F (x)|x ∈ Rn} ⊂ argminw{F (x)|x ∈ Rn}. More
details about pareto optimality and multiobjective optimiza-
tion can be found in Chinchuluun et al. [7].

A. Scalar representation

Scalarization is a concept in vector optimization that
plays a fundamental role in the development of methods to
solve this class of problems and it is also employed as a
tool to get the convergence of other algorithms, such as, for
example, the proximal point method presented by Göpfert
et al. [4] and Bonnel et al. [5].

Definition 4 A real valued function f : Rn → R is said
to be a strict scalar representation of a map F : Rn → Rm

when given x, x̄ ∈ Rn

F (x) ≤ F (x̄)⇒ f(x) ≤ f(x̄),

and
F (x)� F (x̄)⇒ f(x) < f(x̄).

Futhermore, we say that f is a weak scalar representation of
F if

F (x)� F (x̄)⇒ f(x) < f(x̄).

It is obvious that all strict scalar representations are weak
scalar representations. The next result shows an interesting
form to get scalar representation for maps.

Proposition 1 Let f : Rn → R be a function. f is a strict
scalar representation of F if, and only if f is a composition
of F with a strictly increasing function g : F (Rn)→ R.

Proof. Suppose that g is a strictly increasing function. Given
x, y ∈ Rn,

F (x) ≤ F (y) implies g ◦ F (x) ≤ g ◦ F (y).

F (x)� F (y) implies g ◦ F (x) < g ◦ F (y).

We have that f = g ◦F is a strict scalar representation of
F .
Now, suppose that f is a strict scalar representation.
We must build a function g. Given z ∈ F (Rn), we put
g(z) = f(x), for any x ∈ Rn, such that F (x) = z.
We can see that f is well defined. Of course, if exists
y ∈ Rn with F (y) = z we have that F (x) ≤ F (y)
and F (y) ≤ F (x). The definition of scalar representation
implies f(x) = f(y). This fact shows that g(z) independs
from the choice of x ∈ Rn, such that F (x) = z. It is
easy to see that g is an strictly increasing function. In
fact, given z, w ∈ F (Rn), i.e., z = F (x) and w = F (y),
for any x, y ∈ Rn, if z ≤ w (respectively, z � w) then
g(z) = f(x) ≤ f(y) = g(w)(respectively, g(z) < g(w)).
Our argumentation employs the next result to establish
the convergence of the method proposed in the Sect. 5.
Note that we search for a weak pareto solution for the
multiobjective optimization problem (1).

Proposition 2 Let f : Rn → R be a weak scalar represen-
tation of a map F : Rn → Rm and argmin{f(x)|x ∈ Rn}
the local minimizer set of f . We have the inclusion

argmin{f(x)|x ∈ Rn} ⊂ argminw{F (x)|x ∈ Rn}.

Proof. The Proposition follows immediately from the
Definition 4.

B. Scalar representation and convexity

Definition 5 We say that F : Rn → Rm is a convex map
if, and only if, for every x, y ∈ Rn and λ ∈ (0, 1),

F (λx+ (1− λ)y) ≤ λF (x) + (1− λ)F (y). (1)

Under this assumption, the problem (1) is said convex.
The inequality (2) also implies that F is a convex map if,
and only if, each component Fi : Rn → R, i = 1, ...,m,
is a convex function. The relevance of the convexity in
multiobjective programming is due to the fact that every local
(weak) pareto solution is also a global (weak) pareto solution
for unconstrained or constrained multiobjective optimization
problems. This result is discussed in Theorem 2.2.3, in
Miettinen [3].
The Proposition 1 establishes necessary and sufficient con-
ditions to build strict scalar representations of F. According
to the Proposition 2.9 in Luc [1], to get the convexity of the
scalar problem we must choose a convex increasing function
g from F (Rn) to R. The function gz : Rm → R given by
gz(y) = 〈y, z〉, with z ∈ Rm+ {0} fixed, is an example of
convex increasing function that we can compose with F to
get a convex escalar strict representation f of F .
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Bonnel et al. [5] employ this representation to get the con-
vergence of the classical proximal point algorithm extended
to vector optimization. Göpfert et al. [4] also present a scalar
proximal point algorithm with Bregman distances in the same
lines for vector optimization on spaces of finite dimension.
Note that gz ◦ F (x) is convex just when z is fixed. If z is
a variable incorporated to the problem we can not guarantee
the convexity of the function f(x, z) = 〈F (x), z〉.
In our case, we assume the existence of a convex function
f : Rn ×Rm+ → R that satisfies the following properties
(P1) f is bounded below for any α ∈ R, i.e, f(x, z) ≥ α
for every (x, z) ∈ Rn ×Rm+ ;
(P2) f is convex in Rn×Rm+ , i.e., given (x1, z1), (x2, z2) ∈
Rn ×Rm+ and λ ∈ (0, 1)

f(λ(x1, z1)+(1−λ)(x2, z2)) ≤ λf(x1, z1)+(1−λ)f(x2, z2);

(P3) f is a strict scalar representation of F , with respect to
x, i.e.,

F (x) ≤ F (y)⇒ f(x, z) ≤ f(y, z),

and
F (x)� F (y)⇒ f(x, z) < f(y, z),

for every x, y ∈ Rn and z ∈ Rm+ ;
(P4) f is differentiable, with respect to z and

∂

∂z
f(x, z) = h(x, z),

where h(x, z) = (h1(x, z), ..., hm(x, z))T is a continuous
map from Rn × Rm to Rm+ , i.e, hi(x, z) ≥ 0 for all i =
1, ...,m.
The set of functions that satisfy these properties is nonempty,
for example, we have
(1) (see [12])

f(x, z) =
m∑
i=1

exp(zi + Fi(x)) (2)

(2) (see [12]) f(x, z) =
m∑
i=1

[zi + h(Fi(x))] with

h(x) =

{
1

2−x x ≤ 1

x2 x > 1
(3)

(3) (see [6])

f(x, z) =
m∑
i=1

g(zi + h(Fi(x))), (4)

where g(w) = w + w+
√

1+w2

2 , such that g ∈ G : R →
R++ is a crescent function satisfying some proprieties
of the family functions G. For more informations about
the family functions G, see [6]. The function h is given
by {

x
1−x x ≤ 0

x3 x > 0,
(5)

or {
x

1−x x ≤ 0

x2 x > 0.
(6)

Note that the assumption (P1) is not a strong hypothesis
because the definition of f implies that there is no point
(x, z) ∈ Rn × Rm+ such that f(x, z) = ∞ (we use this
notation to mean that there is no point (x, z) ∈ Rn × Rm+

with lim
k→+∞

|f(xk, zk)| = +∞ for all sequence

{(xk, zk)}k∈N ⊂ Rn ×Rm+ satisfying

lim
k→+∞

(xk, zk) = (x, z).

On the other hand, we do not exclude the possibility of z
vanishing. The set of functions satisfying those properties
is not empty. As an example it is easy to show that
f(x, z) =

∑m
i=1 exp(zi + Fi(x)) satisfies (P1) to (P4).

In this work, we search for a x∗ ∈ argmin{fz̄(x) =
f(x, z̄)|x ∈ Rn}, for any z̄ ∈ Rm+ . Therefore, by (P3) and
Proposition 2 we conclude that x∗ is a weak pareto solution
for the unconstrained multiobjective optimization problem
(1).

Before the introduction of the proximal point scalarisation
method, we give in the next subsection some basis about
the family of ϕ-divergence functions that we will use in our
approach..

C. Family of ϕ-divergence functions

Consider ϕ : R → R+ a closed proper convex function
and it must hold the following properties,

1) ϕ is twice continuously differentiable on int(Rn) =
(0,+∞).

2) ϕ is strictly convex on its domain.
3) lim

x→0+

dϕ(x)
dx = −∞.

4) ϕ(1) = dϕ(1)
dx = 0 and d2ϕ(1)

dx2 > 0.

5) There exists ν ∈
(

1
2

d2ϕ(1)

dx2 ,
d2ϕ(1)

dx2

)
such that ∀t > 0(

1−
1

t

)(
d2ϕ(1)

dx2
+ ν(t− 1)

)
≤
dϕ(t)

dx
≤
d2ϕ(1)

dx2
(t− 1).

The following few examples of ϕ functions enjoys many
attractive properties for developing efficient algorithms to
solve Multiobjective programming problems.

ϕ1(t) = t− log(t)− 1 (7)

ϕ2(t) = tlog(t)− t+ 1 (8)

ϕ3(t) = bt+ at−b − (a+ b), with a ≥ 1, b > 0 (9)

ϕ4(t) = (
√
t− 1)2. (10)

III. PROXIMAL POINT SCALARISATION METHOD

Consider the ϕ-divergence function ϕ, F : Rn → Rm and
f satisfying (P1) to (P4). Given (x0, z0) ∈ Rn×Rm++, the
bounded sequences βk, µk > 0, k = 0, 1, ..., the proximal
point scalarization method generates sequences {xk} ⊂
Rn, {zk} ⊂ Rm+ , with xk+1 and zk+1 solving the problem

(xk+1, zk+1) ∈ argmin{f(x, z) + βk

m∑
i=1

ϕ(
zi

zki
) +

µk

2
‖x− xk‖2},

(1)
where xk ∈ Ωk, z ∈ Rm++ and Ωk = {x ∈ Rn|F (x) ≤

F (xk)}.
Note that ϕ involves only the variable z and the quadratic
term involves the variable x.
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In [12], R. Gregorio, P. Oliveira et al. have used ϕ1(t)
as a variant of the logarithmic-quadratic regularisation
introduced by Auslender in [2].

Later on, R. Castillo, C. Quintana et al. [6], have proposed
a new modified proximal point scalarisation method by
using the inverse barrier ϕ3(t) as ϕ-divergence function
(with a = b = 1).

Based on our finding published in [12], this manuscript
proposes the ϕ-divergence function ϕ4(t).

A. Square Quadratic Proximal Point scalarisation Method

In our proposed method, we considered the ϕ function ϕ4,
and (1) is equivalent to solve the problem
F : Rn → Rm and f : Rn×Rm+ → R verifies the properties
(P1) to (P4). Given x0 ∈ Rn, z0 ∈ Rm++ and the sequences
βk, µk > 0, k = 0, 1, ..., the square root quadratic proximal
point scalarization method generates sequences {xk} ⊂ Rn,
zk ⊂ Rm+ , where xk+1 and zk+1 solve the problem

(xk+1, zk+1) ∈ argmin θk(x, z), (2)

with

θk(x, z) = f(x, z) + βk
m∑
i=1

(√
zi
zki
− 1

)2

+
µk

2
‖x− xk‖2,

where xk ∈ Ωk, z ∈ Rm++ and Ωk = {x ∈ Rn|F (x) ≤
F (xk)}.
z
zk

and
√

z
zk

are the vectors whose ith-components are
given by zi

zk
i

and
√

zi
zk
i

and e ∈ Rm is the vector with all

components equal to 1.

Lemma 1 (Well-posedness) Let F : Rn → Rm be a convex
function and f : Rn×Rm+ → R a convex function verifying
properties (P1) to (P4). Then, for each k ∈ N , there exists
only one solution (xk+1, zk+1) for problem (SQPS) problem
characterized by

µk(xk − xk+1) ∈ {∂xk+1f(xk+1, zk+1)}, (3)

and

1

zk+1
i

√
zk+1
i

zki
− 1

zki
=

hi(x
k+1, zk+1)

βk
(4)

for i ∈ {1, ...,m}, xk+1 ∈ Ωk and zk+1 ∈ Rm++.

Proof. The convexity of F implies its continuity and the
convexity of Ωk. It is followed from the continuity of F that
Ωk is closed. Therefore, Ωk × Rm+ is a closed convex set.
Taking t = zi

zk
i

, we have that the function g : R++ → R,
defined by

g(t) = (
√
t− 1)2

is strictly convex (g′′(t) = 1

2
√
t3
> 0 , for every t > 0), with

its minimum at g(1) = 0. We conclude that g(t) ≥ 0, for
every t > 0. This implies that the function

〈(√
z
zk
− e
)2
, e
〉

is strictly convex and nonegative. On the other hand,

f(x, z) + β

〈(√
z

zk
− e
)2

, e

〉
+
µ

2
‖x− xk‖2

= f(x, z) + β

〈(√
z

zk
− e
)2

, e

〉
+

µ

2
(‖x‖2 − 2〈x, xk〉+ ‖xk‖2)

≥ α+
µ

2
(‖x‖ − ‖xk‖)2

+ β

(∥∥∥∥∥
(√

z

zk
− e
)2
∥∥∥∥∥

1

)
,

where ‖ • ‖1 is the 1–norm on Rm defined by
‖z‖1 =

∑m
i=1 |zi|. The inequality above is given by

the Cauchy–Schawrz inequality.

Now, define ‖(x, z)‖ = ‖x‖ + ‖z‖ and suppose that
‖(x, z)‖ → +∞. This implies that ‖x‖ → +∞ or ‖z‖ →
+∞. In the first case it is obvious that

θk(x, z) = f(x, z) + β

〈(√
z

zk
− e
)2

, e

〉
+

µ

2
‖x− xk‖2 → +∞.

Suppose that ‖z‖ → +∞. Since all norms are equivalent on
Rm, without loss of generality, we assume that ‖z‖1 → +∞.
This implies that |zl| → +∞ for some 1 ≤ l ≤ m.

Since zi ≥ 0 for all i = 1, ...,m, we have for this indice
l that zl → +∞.

On the other hand,
∥∥∥(√ z

zk
− e
)2∥∥∥

1
=
∑m
i=1

(√
zi
zk
i

− 1

)2

.

Therefore, the part of the sum associated to the component

zl satisfies
(√

zl
zk
l

− 1

)2

→ +∞.

Notice that g(t) is a strictly increasing function for t > 1
(g′(t) > 0 for every t > 1). This is sufficient to
have θk(x, z) → +∞ when ‖z‖1 → +∞. Therefore, θk is
coercive. We also have that θk is a sum of a convex function
f with two strictly convex regularization. This implies that
θk is strictly convex.
Then, the first part of the lemma follows. Take the optimality
conditions for the square quadratic proximal scalarization
problem and we have the relation (3) and the Eq. (4).

To finish this proof we must show that
zk+1
i > 0, i = 1, ...,m. By induction, z0 > 0 by the

initialization of the method. Let zk > 0. Then, by Eq. (4)
we obtain that

zk+1
i =

1
hi(xk+1,zk+1)

βk + 1
zk
i

√
zk+1
i

zki
,

since h satisfies (P4), we conclude that

zk+1
i > 0,∀i = 1, ...,m.

Note that each function hi is not necessarily separable, i.
e., we do not need to have hi(x, z) = ξ(x) + η(z) as we
are going to see in the following.
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In our work we can establish the same stopping rule as in
Bonnel et al. [4], i.e., if

(xk+1, zk+1) = (xk, zk), (5)

then xk is a weak pareto solution for the unconstrained
multiobjective optimization problem (1).

Now, we can prove the convergence of our method if the
stopping rule never applies.
Theorem 1 (Convergence) Let F : Rn → Rm be a convex
map and f : Rn × Rm+ → R be a function verifying the
properties (P1) to (P4). Suppose that Ω0 = {x ∈ Rn|F (x) ≤
F (x0)} is bounded. If {µk}k∈N and {βk}k∈N are sequences
of real positive numbers, with {µk}k∈N bounded, then
the sequence {(xk, zk)}k∈N generated by the square root
quadratic proximal point scalarization method is bounded
and each cluster point of {xk}k∈N is a weak pareto solution
for the unconstrained multiobjective optimization problem.
Proof. Similar to [[12], Theorem 1].
Proposition 3 (Stop criterion) Let {(xk, zk)}k∈N be the se-
quence generated by the (SQPS) method. If (xk+1, zk+1) =
(xk, zk) for any integer k then xk is a weak pareto solution
for the unconstrained multiobjective optimization problem
(1).
Proof. Similar to [[12], Proposition 3].

IV. CONCLUSION

The contribution of this manuscript is twofold.

First, for solving multiobjective programming problems,
the researchers adopted just two divergence functions in the
regularized subproblem by using a logarithmic term or the
inverse barrier term.
For this reason, we thought to propose a new modified
proximal point method based on scalar representation and
over a new square root quadratic term as regularization.

Second, this manuscript demonstrates theoretically that
the convergence can be proved under mild assumptions.

The suggested work offers :
1. A basic and reference article for all future works that

seeks to develop our approach.
2. A new direction for researchers in their scientific re-

search concerning the development of new alternative
and concurrent methods to solve multiobjective pro-
gramming problems.

In summary, we proposed a new class of scalarization
algorithms for solving multiobjective programming problems
using a square root quadratic proximal term. This work
revolves around convergence and the basic theory of the new
method. The upcoming research will focus on the numerical
results portion and comparison with other similar recent
algorithms.
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