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Abstract—For a class of strict-feedback nonlinear systems
with dead-zone input, the problem of adaptive neural tracking
control is studied. Considering that the system contains un-
known functions and asymmetric dead-zone. Firstly, the radial
basis function (RBF) neural network (NN) is introduced to
approach the unknown nonlinear functions in the system model.
Then, a new error transformation method is proposed and
applied to the design of performance controller. Based on the
differential Lyapunov function method, the stability of closed-
loop control system is analyzed, and the tracking error of the
closed-loop system can converge to the preset boundary. Finally,
the simulation results are used to further verify the control
effect of the proposed controller.

Index Terms—Adaptive neural tracking control, strict-
feedback nonlinear systems, dead-zone input, prescribed per-
formance control (PPC), backstepping

I. INTRODUCTION

IN practical engineering applications, most of the systems
show nonlinear characteristics [1]–[4]. In the past ten

years, the combination of backstepping design with neural
network and other general function approximators to realize
adaptive control of nonlinear systems has attracted extensive
attention. [5]–[13]. There exist several significant advantages,
such as simple structure, fast learning algorithm and strong
approximation ability [14]–[16]. For example, In [17], an
adaptive backstepping controller is designed based on NN
control for a class of disturbed nonlinear systems. In [18],
the adaptive switched neural controller and the correspond-
ing robust compensation control law are designed, and the
unknown function of the robot is approached by the neural
network.

In recent years, with the increasingly complex structure
of the control object, the control accuracy is required to
be higher, and the real-time performance is also stronger.

Manuscript received November 6, 2020; revised April 24, 2021. This
work is supported in part by the Scientific Research Fundation of Liaoning
Provincial Education Department of China (Grant Nos. 2019LNJC11 and
2019LNJC13).

Yi-Qin Zhou is Postgraduate of the School of Electronic and Information
Engineering, University of Science and Technology Liaoning, Anshan,
Liaoning, 114051, P. R. China. (e-mail: 1179820057@qq.com).

Xin-yu Ouyang is Professor of School of Electronic and Information Engi-
neering, University of Science and Technology Liaoning, Anshan, Liaoning,
CO 114051, China. (Corresponding author: e-mail: 13392862@qq.com).

Nan-nan Zhao is Associate Professor of School of Electronic and Informa-
tion Engineering, University of Science and Technology Liaoning, Anshan,
Liaoning, CO 114051, China. (Corresponding author: 723306003@qq.com).

Hai-Bo Xu is Postgraduate of the School of Electronic and Information
Engineering, University of Science and Technology Liaoning, Anshan,
Liaoning, 114051, P. R. China. (e-mail: 502679740@qq.com).

Hui Li is Postgraduate of the School of Electronic and Information
Engineering, University of Science and Technology Liaoning, Anshan,
Liaoning, 114051, P. R. China. (e-mail: 1778169103@qq.com).

In 2008, the Greek scholar Bechlioulis first proposed a
new control method called prescription performance control
(PPC) [19]. The problem of prescribe performance control
for SISO nonlinear systems is considered, and the error can
be converge to the predetermined region through adaptive
control and prescribed performance function in [20]. For
a class of unknown pure-feedback nonlinear systems, [21]
proposed a prescribed backsteping control scheme, which has
strong robustness. In [22], aiming at a class of master-slave
asymmetric remote control system, the stability and position
synchronization control of the system is studied by combin-
ing with the prescribed performance control technology.

In practice, dead-zones exist in various equipment and
actual systems, such as DC servo drives, gear set, and
processes of industrial production [23]–[26]. As a result,
the existence of this nonlinearity can lead to serious dete-
rioration of system performance and even system instability
without proper suppression. It is generally known that the
nonlinearity of dead-zone input is a non-smooth function in
real systems, which shows some insensitivity to small control
inputs. According to the SISO and MIMO nonlinear strict-
feedback systems with dead-zone, an adaptive backstepping
controller is proposed by using fuzzy or neural network
technology, which further solves the nonlinear parameterized
nonlinear systems with dead-zone and uncertainties in [27],
[28]. The effect of nonsymmetric dead-zone input can be
eliminated by using unknown dead-zone parameters to set an
adaptation auxiliary signal. in [29]. The fuzzy approximation
method is used to design adaptive controller with given
constraints, which can guarantee the transient and steady-
state performance of system tracking error. [30]. Moreover,
in order to better illustrate the uncertainty of the dead-zone
in the physical system, a fuzzy dead-zone model is shown in
[31]. In [32], an adaptive output feedback control method is
presented for a kind of SIMO nonlinear systems. Chen et al.
introduced an auxiliary design system to analyze the influ-
ence of input constraints, and proposed an adaptive tracking
control scheme for those uncertain nonlinear systems with
asymmetric input in [33].

Inspired by the works of [33] and [30], a new adaptive
neural network tracking controller is proposed for a class of
nonlinear systems with strict-feedback nonlinear asymmetric
unknown dead-zone input. The main contributions of this
paper are as follows:

(1) Combining adaptive neural network control with back-
stepping control technology, an effective adaptive control
scheme for nonlinear systems is proposed. It not only guar-
antees that all signals in closed-loop system are bounded, but
also the tracking error is limited to a given error range;
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(2) A new error transfer function in the form of logarithmic
function is used to design the controller, because of dead-
zone disturbance, the original error transfer function has to
be reconstructed;

(3) Overcome the nonlinear design difficulties of non-
smooth input asymmetric dead-zone.

II. SYSTEM DESCRIPTIONS AND PREPARATORY
KNOWLEDGE

A. System descriptions

The mathematical description of SISO strick-feedback
nonlinear system with saturation constraints is as follows:


ẋi = fi(x̄i) + gi(x̄i)xi+1 + λi(t)

ẋn = fn(x̄n) + gn(x̄n)D(v) + λn(t)

y = x1

(1)

where x̄i = [x1, x2, · · · , xi]T ∈ Ri (i = 1, 2, · · · , n) and
y ∈ R are the system state vector and the system output,
respectively, λi (·) is a bound disturbance which converges
to λi, gi (·) and fi(·) : Ri → R are all the unknown
smooth functions, and D(v) is the plant input constrained
by nonsymmetric dead-zone nonlinearity. The dead-zone
function with input v and output u is described by

u = D(v) =

 κr(v −m), v ≥ m
0, p < v < m
κl(v − p), v ≤ p

(2)

where κr, κl,m > 0 and p < 0 are unknown constants of
input dead-zone function.

Then, the dead-zone can be defined as the follows:

u = κv(t) + s(t) (3)

and

s(t) =

 −κrm, v ≥ m−κv, p < v < m
−κlp, v ≤ p

(4)

κ =

{
κr, v ≥ 0
κl, v ≤ 0

(5)

From (4),we have

|s(t)| = |D(v)− κv|
≤ max {κrm,−κlp}
= s̄

(6)

define κ = min {κr, κl}, κ̄ = max {κr, κl}, κ ≤ κ ≤ κ̄.
The control purpose of this thesis: An adaptive neural

network controller is designed under the prescribed perfor-
mance constraint, so that the closed-loop system can track
the reference input signal yr stably. The tracking error zi
satisfies the prescribed performance function and all signals
can be ensured semi-globally consistently bounded in the
closed-loop system.

Remark 1. For the systems shown in (1), the adaptive
state feedback control problem with symmetric [34] and
asymmetric dead-zone nonlinear [35] is studied respectively.
In practical applications, due to the physical characteristics
of the driver and the influence of the environment, the

dead-zone parameters are often uncertain and inconsistent.
Because RBF neural network is highly adaptive and can
approximate any nonlinear function, this paper will use RBF
neural network to deal with the uncertain features.

Assumption 1. The sign of gi(x̄i) are known, and there
are unknown constants dm and dM , such that 0 < dm ≤
|gi(x̄i)| ≤ dM <∞. Without affecting the conclusion, it can
be assumed that dm ≤ gi(x̄i) ≤ dM <∞

Substituting (3) into (1) results in
ẋi = fi(x̄i) + gi(x̄i)xi+1 + λi(t)

ẋn = fn(x̄n) + gn(x̄n)κv + gn(x̄n)s(t) + λn(t)

y = x1

(7)

For convenience, fi(·) and gi(·) will be replaced by fi and
gi, respectively. In addition, the time t in the functions will
be omitted, for example, λi for λi(t), v for v(t), u for u(t)
and so on.

Lemma 1. For ∀(x, y) ∈ R2, the inequality as follows:

xy ≤ ηj

j
|x|j +

1

qηq
|y|q (8)

where η > 0, j > 1, q > 1, and (j − 1)(q − 1) = 1.

B. Prescribed performance control

Next, the performance function is introduced to preset the
performance index of tracking error zi.

The tracking error is defined as z1, and yr is the desired
trajectory signal, αi is the virtual control signal. Based on
backstepping technique, the derivation process needs n steps.
We first assume that zi satisfies coordinate transformation as
follows:

z1 = x1 − yr,
zi = xi − αi−1, i = 2, 3, · · · , n

(9)

A possible boundary function τ1 is formulated as:

τ1 = (τ0 − τ∞)e−δt + τ∞, (10)

Lemma 2. Continuous function is called performance func-
tion, if:

(1) τ1 is the boundary function;
(2) limt→∞ τt = τ∞ ≥ 0.

Where τ0 > τ∞, τ0, τ∞ and δi are prescribed positive
constants, τ0 denotes the initial value, τ∞ is the upper bound
of steady-state error, and δi represents the convergence speed
of exponential function.

For backstepping design of adaptive neural controller, a
novel error variable is defined as follows:

ς1 = ln(
τ1 + z1

τ1 − z1
) (11)

The derivative of time of ς1 is calculated by:

ς̇1 = 2Λ1

(
f1 (x̄1) + g1(x̄1)x2 + λ1 − ẏr −

z1τ̇1
τ1

)
(12)

where Λ1 = τ1
τ2
1−z21

.

Assumption 2. For the function yr and its time derivatives
are known and bounded.
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C. NN basics

Artificial neural network is the use of mathematical model
to simulate the human brain information processing function.
In 1985, Powell proposed the RBF of multivariate inter-
polation. In 1988, Broomhead and Lowe applied RBF to
neural network design and constructed RBF neural network.
Because neural network has the advantages of nonlinear
function approximation, learning and fault tolerance, this
paper introduces the following RBF neural network [36] to
approach continuous function:

fnn = WTψ(Z) (13)

where Z ∈ ΩZ ⊂ Rn, W = [w1, w2, ..., wl]
T ∈ Rl and

l > 1 are input vector, weight vector and NN node number
respectively; and ψ(Z) = [ψ1(Z), ψ2(Z), ..., ψl(Z)]T , where
ψi(Z) is Gaussian functions as follows:

ψi(Z) = exp[− (Z − µi)T (Z − µi)
N2

], i = 1, 2, ..., l (14)

where µi = [µi1, µi2, ..., µin] is the centre of the receptive
field and N denotes the width of the Gaussian function. It
has been proven in [37] that the RBF neural network (13) can
approach any continuous function on a compact set ΩZ ⊂
Rn with arbitrary accuracy in the form of

f(Z) = W ∗Tψ(Z) + β(Z),∀Z ∈ ΩZ ⊂ Rn (15)

where W ∗ is the ideal constant weight vector, and β(Z) is
the approximation error, it has |β(Z)| ≤ ε̄, Z ∈ ΩZ , ε̄ > 0
is an unknown constant.

In general, W ∗ is selected as the value of W that min-
imises β(Z) over ΩZ , that is

W ∗ := arg min
W∈Rl

sup
Z∈ΩZ

|f(Z)−WTψ(Z)| (16)

The stability results acquired in the neural network control
literature are semi-global, only the input variables Z of the
NN still within some pre-fixed compact set, ΩZ ⊂ Rn, where
the compact set ΩZ can be made as large as desired, there
exists controller with a large number of NN nodes guarantee
all the signals in the closed-loop keep bounded.

D. Controller design

Next, a backstepping method based on adaptive neural
control design procedure will be presented. For the ith
subsystem, the virtual control signal α1 and actual control
input v are constructed as follows:

α1=− ς1
Λ1

(a1 +
1

2
+

1

2c21
θ̂ψT1 ψ1) (17)

where ψ1 is the function of[x1, yr, ẏr, τ1, τ̇1] and α1 is the
function of [x1, θ̂, yr, ẏd, τ1, τ̇1],

αi = −(ai +
1

2
)zi −

1

2c2i
ziθ̂ψ

T
i ψi (18)

v = −(an +
1

2η2
)zn −

1

2c2n
znθ̂ψ

T
nψn (19)

where ψi is the function of[x̄i, yr, ẏr · · · y(i)
r , τ1, τ̇1 · · · τ (i)

1 ],
αi is the function of [x̄n, θ̂, yd, ẏr · · · y(i)

r , τ1, τ̇1 · · · τ (i)
1 ] , θ̂

is the estimate value of θ, which are unknown constants can
be written as:

θ = max
1≤i≤n

{
1

dm
‖Wi‖∗2

}
(20)

The adaptive law is defined as follow:

˙̂
θ =

r

2c21
ς21ψ

T
1 ψ1 +

n∑
i=2

r

2c2i
z2
i ψ

T
i ψi − σθ̂ (21)

where r and σ are designed to be a positive constant and
θ̃ = θ − θ̂ denotes parameter error.

III. MAIN RESULT

The design process consists of n steps.

Step 1: A positive definite Lyapunov is defined as follows:

V1 =
1

4
ς21 +

dm
2r
θ̃2 (22)

By using (12) and (22), The derivative of time of V1(t) can
be obtained

V̇1 =
1

2
ς1ς̇1 −

dm
r
θ̃

˙̂
θ

= ς1Λ1(f1 + g1x2 + λ1 − ẏr −
τ̇1z1

τ1
)

− dm
r
θ̃

˙̂
θ

(23)

Based on Lemma 2, it is not hard to obtain that ς1Λ1λ1 ≤
ς21Λ2

1

2 +
λ̄2
1

2 . Using this inequality into (23) gives

V̇1 ≤ ς1Λ1(f1 + g1x2 +
ς1Λ1

2
− ẏr −

τ̇1z1

τ1
)

+
λ̄2

1

2
− dm

r
θ̃

˙̂
θ

≤ ς1Λ1g1x2 + ς1f̄1 +
λ̄2

1

2
− dm

r
θ̃

˙̂
θ

(24)

where f̄1 = Λ1(f1 + ς1Λ1

2 − ẏr − τ̇1z1
τ1

). The RBF neural
network WT

1 ψ1(Z1) can approach the unknown function f̄1,
where Z1 = [x1, yr, ẏr, τ1, τ̇1]T ∈ ΩZ1

⊂ R5.

f̄1 = W ∗T1 ψ1(Z1) + β1(Z1), |β1(Z1)| ≤ ε̄1 (25)

where β1(Z1) is the approximation error and ε̄1 > 0 . By
using Young’s inequality, the results are as follows:

ς1f̄1 ≤
1

2c21
ς21‖W ∗1 ‖2ψT1 ψ1 +

c21
2

+
ς21
2
dm +

1

2

ε̄2
1

dm

≤ dm
2c21

ς21θψ
T
1 ψ1 +

c21
2

+
ς21
2
dm +

1

2

ε̄2
1

dm

(26)

By choosing (17), from z2 = x2−α1 the following equality
can be obtained:

ς1Λ1g1α1 ≤ −dmς21 (a1 +
1

2
+

1

2c21
θ̂ψT1 ψ1) (27)

It yields

V̇1 ≤ −a1dmς
2
1 + ς1Λ1g1z2

+
dm
r
θ̃(

r

2c21
ς21ψ

T
1 ψ1 − ˙̂

θ) + ∆1

(28)
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where ∆1 =
c21
2 +

λ̄2
1

2 +
ε̄21

2dm
.

Step 2:To stabilize the subsystem in (7), here let’s select the
following Lyapunov function candidate

V2 = V1 +
1

2
z2

2 (29)

The derivative of time of V2 is calculated by:

V̇2 = V̇1 + z2ż2

= V̇1 + z2 (f2 + g2x3 + λ2 − α̇1)
(30)

Substituting (28) into (30) yields

V̇2 ≤ − a1dmς
2
1 +

dm
r
θ̃

(
r

2c21
ς21ψ

T
1 ψ1 − ˙̂

θ

)
+∆1

+ z2(f2 + g1ς1Λ1 + g2x3 + λ2 − α̇1)

(31)

According to the (8) and (31), we havez2λ2 ≤ 1
2z

2
2 +

λ̄2
2

2

−z2
∂α1

∂x1
λ1 ≤

(
∂α1

∂x1

)2

z2
2 +

λ̄2
1

4

(32)

It yields

V̇2 ≤ −a1dmς
2
1 +

dm
r
θ̃(

r

2c21
ς21ψ

T
1 ψ1 − ˙̂

θ) + ∆1

+ z2[g1ς1Λ1 + f2

+ g2x3 +
z2

2
− ∂α1

∂x1
(f1 + g1x2)

+ z2(
∂α1

∂x1
)2 −

1∑
k=0

∂α1

∂τ
(k)
1

τ
(k+1)
1

−
1∑
k=0

∂α1

∂y
(k)
r

y(k+1)
r − ∂α1

∂θ̂

r

2c21
ς21ψ

T
1 ψ1

− ∂α1

∂θ̂

r

2c22
z2

2ψ
T
2 ψ2 +

∂α1

∂θ̂
σθ̂]

− ∂α1

∂θ̂
z2

n∑
l=3

r

2c2l
z2
l ψ

T
l ψl +

λ̄2
2

2
+
λ̄2

1

4

(33)

where

α̇1 =
∂α1

∂x1
(f1 + g1x2) +

∂α1

∂x1
λ1

+
1∑
k=0

∂α1

∂τ
(k)
1

τ
(k+1)
1 +

1∑
k=0

∂α1

∂y
(k)
r

y(k+1)
r

+
∂α1

∂θ̂

r

2c21
ς21ψ

T
1 ψ1 +

∂α1

∂θ̂

r

2c22
z2

2ψ
T
2 ψ2

+
∂α1

∂θ̂

n∑
k=3

r

2c2k
z2
kψ

T
k ψk −

∂α1

∂θ̂
σθ̂

(34)

Applying z3 = x3 − α2, we have:

V̇2 ≤ − a1dmς
2
1 +

dm
r
θ̃

(
r

2c21
ς21ψ

T
1 ψ1 − ˙̂

θ

)
+∆1 −

∂α1

∂θ̂
z2

n∑
l=3

r

2c2l
z2
l ψ

T
l ψl

+ z2

(
g2z3 + g2α2 + f̄2

)
+
λ̄2

1

4
+
λ̄2

2

2

(35)

where

f̄2 = g1ς1Λ1 + f2 +
z2

2
− ∂α1

∂x1
(f1 + g1x2)

+ z2(
∂α1

∂x1
)2 −

1∑
k=0

∂α1

∂τ
(k)
1

τ
(k+1)
1

−
1∑
k=0

∂α1

∂y
(k)
r

y(k+1)
r − ∂α1

∂θ̂

r

2c21
ς21ψ

T
1 ψ1

− ∂α1

∂θ̂

r

2c22
z2

2ψ
T
2 ψ2 +

∂α1

∂θ̂
σθ̂

(36)

A similar method was used as described above, we can apply
RBF neural network WT

2 ψ2(Z2) to approach f̄2.

f̄2 = W ∗T2 ψ2(Z2) + β2(Z2), |β2(Z2)| ≤ ε̄2 (37)

where β2(Z2) is the approximation error and ε̄2 > 0.
According to the Young’s inequality, we have

z2f̄2 ≤
dm
2c22

z2
2θψ

T
2 ψ2 +

1

2
c22 +

1

2
dmz

2
2 +

1

2

ε̄2
2

dm
(38)

By choosing (18), the following equality can be obtained:

z2g2α2 ≤ −dmz2
2

(
a2 +

1

2

)
− dm

2c22
z2

2 θ̂ψ
T
2 ψ2 (39)

Substituting (38) and (39) to (35) yields

V̇2 ≤ − a1dmς
2
1 − a2dmz

2
2 + z2g2z3

+
dm
r
θ̃

(
r

2c21
ς21ψ

T
1 ψ1 +

r

2c22
z2

2ψ
T
2 ψ2 − ˙̂

θ

)
+∆1 +∆2 −

∂α1

∂θ̂
z2

n∑
l=3

r

2c2l
z2
l ψ

T
l ψl

(40)

where ∆2 =
c22
2 +

λ̄2
2

2 +
λ̄2
1

4 +
ε̄22

2dm

Step i (3 ≤ i ≤ n− 1): The virtual control signal α̇i will
construct control the zi+1 system, we have

α̇i−1 =

i−1∑
k=1

∂αi−1

∂xk
(fk + gkxk+1)

+

i−1∑
k=1

∂αi−1

∂xk
λk +

∂αi−1

∂θ̂

r

2c21
ς21ψ

T
1 ψ1

+
∂αi−1

∂θ̂

i∑
k=2

r

2c2k
z2
kψ

T
k ψk −

∂αi−1

∂θ̂
σθ̂

+
i−1∑
k=0

∂αi−1

∂τ
(k)
1

τ
(k+1)
1 +

i−1∑
k=0

∂αi−1

∂y
(k)
r

y(k+1)
r

+
∂αi−1

∂θ̂

n∑
k=i+1

r

2c2k
z2
kψ

T
k ψk

(41)

Select the Lyapunov function as follows:

Vi = Vi−1 +
1

2
z2
i (42)

The derivative of time of Vi can be obtained by

V̇i = V̇i−1 + ziżi (43)
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where Vi in (43) can be acquired by duplicating the similar
procedures as those in Step 1:

V̇i−1 ≤ − a1dmς
2
1 −

i−1∑
k=2

akdmz
2
k + zi−1gi−1zi

+
dm
r
θ̃

(
r

2c21
ς21ψ

T
1 ψ1 +

i−1∑
k=2

r

2c2k
z2
kψ

T
k ψk −

˙̂
θ

)

+
i−1∑
k=1

∆k −
i−2∑
k=1

∂αk

∂θ̂
zk+1

n∑
l=i

r

2c2l
z2
l ψ

T
l ψl

(44)

where ∆k =
c2k
2 +

λ̄2
k

2 +
ε̄2k

2dm
.

Substituting (44) and żi into (43), it follows that:

V̇i ≤ − a1dmς
2
1 −

i−1∑
k=2

akdmz
2
k

+
dm
r
θ̃

(
r

2c21
ς21ψ

T
1 ψ1 +

i−1∑
k=2

r

2c2k
z2
kψ

T
k ψk −

˙̂
θ

)

+

i−1∑
k=1

∆k −
i−2∑
k=1

∂αk

∂θ̂
zk+1

n∑
l=i+1

r

2c2l
z2
l ψ

T
l ψl

+ zi[gi−1zi−1 −
r

2c2i
z2
i ψ

T
i ψi

i−2∑
k=1

∂αk

∂θ̂
zk+1

+ fi + gixi+1 +
zn
2
−

i−1∑
k=1

∂αi−1

∂xk
(fk + gkxk+1)

+ zi

i−1∑
k=1

(
∂αi−1

∂xk
)
2

−
i−1∑
k=0

∂αi−1

∂τ
(k)
1

τ
(k+1)
1

−
i−1∑
k=0

∂αi−1

∂y
(k)
r

y(k+1)
r − ∂αi−1

∂θ̂

r

2c21
ς21ψ

T
1 ψ1

− ∂αi−1

∂θ̂

i∑
k=2

r

2c2k
z2
kψ

T
k ψk

− ∂αi−1

∂θ̂

n∑
k=i+1

r

2c2k
z2
kψ

T
k ψk +

∂αi−1

∂θ̂
σθ̂]

+
λ̄2
i

2
+

i−1∑
k=1

λ̄2
k

4

(45)

From xi+1 = zi+1 + αi, it follows that:

V̇i ≤ − a1dmς
2
1 −

i−1∑
k=2

akdmz
2
k

+
dm
r
θ̃

(
r

2c21
ς21ψ

T
1 ψ1 +

i−1∑
k=2

r

2c2k
z2
kψ

T
k ψk −

˙̂
θ

)

+
i−1∑
k=1

∆k −
i−1∑
k=1

∂αk

∂θ̂
zk+1

n∑
l=i+1

r

2c2l
z2
l ψ

T
l ψl

+ zi[gizi+1 + giαi + f̄i]

+
λ̄2
i

2
+

i−1∑
k=1

λ̄2
k

4

(46)

where

f̄i = gi−1zi−1 −
r

2c2i
z2
i ψ

T
i ψi

i−2∑
k=1

∂αk

∂θ̂
zk+1

+ fi +
zn
2
− ∂αi−1

∂θ̂

i∑
k=2

r

2c2k
z2
kψ

T
k ψk

−
i−1∑
k=1

∂αi−1

∂xk
(fk + gkxk+1)

+ zi

i−1∑
k=1

(
∂αi−1

∂xk
)
2

−
i−1∑
k=0

∂αi−1

∂τ
(k)
1

τ
(k+1)
1

−
i−1∑
k=0

∂αi−1

∂y
(k)
r

y(k+1)
r − ∂αi−1

∂θ̂

r

2c21
ς21ψ

T
1 ψ1

− ∂αi−1

∂θ̂

n∑
k=i+1

r

2c2k
z2
kψ

T
k ψk +

∂αi−1

∂θ̂
σθ̂

(47)

Similar to (38), it can be written as

zif̄i ≤
dm
2c2i

z2
i θψ

T
i ψi +

1

2
c2i +

1

2
dmz

2
i +

1

2

ε̄2
i

dm
(48)

By choosing (18), the following equality can be obtained:

zigi(x̄i)αi ≤ −dmz2
i

(
ai +

1

2

)
− dm

2c2i
z2
i θ̂ψ

T
i ψi (49)

Combining (48) and (49) to (46) yields

V̇i ≤ − a1dmς
2
1 −

i∑
k=2

akdmz
2
k + zigizi+1

+
dm
r
θ̃

(
r

2c21
ς21ψ

T
1 ψ1 +

i∑
k=2

r

2c2k
z2
kψ

T
k ψk −

˙̂
θ

)

+
i∑

k=1

∆k −
i−1∑
k=1

∂αk

∂θ̂
zk+1

n∑
l=i+1

r

2c2l
z2
l ψ

T
l ψl

(50)

where ∆i =
c2i
2 +

λ̄2
i

2 +
i−1∑
k=1

k∑
l=1

λ̄2
l

4 +
ε̄2i

2dm
.

Step n: take the following Lyapunov function as

Vn = Vn−1 +
1

2
z2
n (51)
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From (7), we obtain:

V̇n = V̇n−1 + znżn

≤ − a1dmς
2
1 −

n−1∑
k=2

akdmz
2
k +

n−1∑
k=1

∆k

+
dm
r
θ̃(

r

2c21
ς21ψ

T
1 ψ1 +

n−1∑
k=2

r

2c2k
z2
kψ

T
k ψk −

˙̂
θ)

+ zn[gn−1zn−1 + fn

− r

2c2n
znψ

T
nψn

n−2∑
k=1

∂αk

∂θ̂
zk+1

+ gnκv + gns(t) +
zn
2

−
n−1∑
k=1

∂αn−1

∂xk
(fk + gkxk+1)

+ zn

n−1∑
k=1

(
∂αn−1

∂xk
)
2

−
n−1∑
k=0

∂αn−1

∂τ
(k)
1

τ
(k+1)
1

−
n−1∑
k=0

∂αn−1

∂y
(k)
r

y(k+1)
r − ∂αn−1

∂θ̂

˙̂
θ]

+
λ̄2
n

2
+
n−1∑
k=1

λ̄2
k

4

(52)

The following relation can be derived:

V̇n ≤ − a1dmς
2
1 −

n−1∑
k=2

akdmz
2
k +

n−1∑
k=1

∆k

+
dm
r
θ̃(

r

2c21
ς21ψ

T
1 ψ1 +

n−1∑
k=2

r

2c2k
z2
kψ

T
k ψk −

˙̂
θ)

+ zn(gnκv + gns(t) + f̄n)− 1

2
dmz

2
n

+
λ̄2
n

2
+

n−1∑
k=1

λ̄2
k

4

(53)

The α̇n−1 is expressed by (38), where i = n

f̄n = gn−1zn−1 −
r

2c2n
znψ

T
nψn

n−2∑
k=1

∂αk

∂θ̂
zk+1

+ fn +
zn
2
−
n−1∑
k=1

∂αn−1

∂xk
(fk + gkxk+1)

+ zn

n−1∑
k=1

(
∂αn−1

∂xk
)
2

−
n−1∑
k=0

∂αi−1

∂τ
(k)
1

τ
(k+1)
1

−
n−1∑
k=0

∂αn−1

∂y
(k)
r

y(k+1)
r − ∂αn−1

∂θ̂

˙̂
θ +

1

2
dmzn

(54)

Similar to (48), it can be written as

znf̄n ≤
dm
2c2n

z2
nθψ

T
nψi +

1

2
c2n +

dm
2
z2
n +

1

2

ε̄2
n

dm
(55)

where an is a design parameter. At this stage, using the actual
control input v in (19) and (6), it produces

zngns(t) ≤
1

2η2
gnκz

2
n +

η2

2κ
dM s̄

2 (56)

zngnκv ≤ − angnκz2
n −

1

2η2
gnκz

2
n

− dm
2c2n

z2
nθ̂ψ

T
nψn

(57)

From (56) and (57), (53) can be rewritten as

V̇n ≤ − a1dmς
2
1 −

n−1∑
i=2

aidmz
2
i − angnκz2

n +
n−1∑
k=1

λ̄2
k

4

+
n−1∑
i=1

∆i +
1

2
c2n +

1

2
λ̄2
n +

1

2

ε̄2
n

dm
+
dM
2k

η2s̄2

+
dm
r
θ̃(

r

2c21
ς21ψ

T
1 ψ1 +

n∑
k=2

r

2c2k
z2
kψ

T
k ψk −

˙̂
θ)

(58)

Now, by applying the adaptive law ˙̂
θ in (21) into (58), it

follows

V̇n ≤ − a1dmς
2
1 −

n−1∑
i=2

aidmz
2
i − angnκz2

n

+
n−1∑
i=1

∆i +
1

2
c2n +

1

2
λ̄2
n +

1

2

ε̄2
n

dm
+
dM
2k

η2s̄2

+
n−1∑
k=1

λ̄2
k

4
+
dmσ

r
θ̃θ̂

(59)

Theorem 1. Consider the system of (1) and unknown input
dead-zone nonlinearities (2), the controller (19), and the
adaptive law (21). Under the premise of Assumption 1 − 2,
and the package functions f̄i can be approached by RBF NN
with a bounded approximation error zi. If the initial error
e(0) < τ1(0). Then, there exist design parameters σ, τ1 and
dm such that for all signals in the closed loop system are
consistently, semi-globally and ultimately bounded, and the
output tracking error e(t) = y(t) − yr(t) converges to pre-
scribed boundness and satisfies the prescribed performance.

Proof 1. On account of the stability analysis of the strict-
feedback system, the form of Lyapunov function is recon-
structed V = Vn

V̇n ≤ − a1dmς
2
1 −

n∑
i=2

aidmz
2
i +

n−1∑
i=1

∆i

+
1

2
c2n +

1

2
λ̄2
n +

1

2
ε̄2
n +

dM
2k

η2s̄2

+
n−1∑
k=1

λ̄2
k

4
+
dmσ

r
θ̃θ̂

(60)

Due to
dσ

r
θ̃θ̂ ≤ −dmσ

2r
θ̃2 +

dmσ

2r
θ2 (61)

Substituting (58) into (57) produces

V̇n ≤ −a1dmς
2
1 −

n∑
i=2

aidmz
2
i −

dmσ

2r
θ̃2 +

n∑
i=1

∆i (62)

where

∆n =
dmσ

2r
θ2 +

1

2
c2n +

1

2
z2
n +

n−1∑
k=1

λ̄2
k

4

+
1

2

ε̄2
n

dm
+
dM
2k

η2s̄2

(63)
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Select the control gains k1 = 1
4a1

χ1,kj = 1
2aj

χj , j =

2, 3, ..., n, σ = χ, Let χ = min[χ1, χ2, ..., χn], and Υ =
n∑
i=1

∆i are positive constants. Then we have

V̇ ≤ −χV + Υ (64)

Equation (64) can become V̇ +χV ≤ Υ and eχt(V̇ +χV ) ≤
eχtΥ, then we have

deχtV

dt
≤ eχtΥ (65)

Let C = Υ
χ and integrating (50) over [0, t], we have

eχtV (t)− V (0) ≤ Ceχt − C (66)

From (66), it easily to obtain

0 ≤ V (t) ≤ C + (V (0)− C)e−χt (67)

Therefore, zi(i = 1, 2, ..., n) and θ̃ are bounded. θ defined
as a constant, and θ̂ is also bounded. We have z1 = x1−yd,
and yd is a reference signal, it can deduce the x1 is
bounded. Besides, α1 is the function of z1 and θ̂ which are
bounded variables; thus, x2 = z2 + α1 is also bounded.
Similarly, it can be easily verified that xj(j = 3, ..., n) is
bounded. From (19), it is follows that v is also bounded.
Therefore, all the signals in the closed-loop systems remain
bounded. From (62) and (67), it can be inferred that |zi| ≤√

2C + 2(V (0)− C) exp(−χt). If V (0) = C, zi can con-
verge to

√
2C, i.e, limt→∞ |zi(t)| =

√
2C. Therefore ,this

implies the tracking errors can converge to the prescribed
bounds

IV. SIMULATION EXAMPLE
In order to verify the effectiveness of our result via exam-

ple. Take the following third-order strict-feedback nonlinear
system with input dead-zone constraints:

ẋ1 = x2 + 0.1

ẋ2 = x3

ẋ3 = x2 + (2 + sin(x2
2))u+ 0.1cos(u)

y = x1

(68)

where x1, x2, x3 represent the state variables, y is the
system output, u denotes the output of the saturation limits
are choosen as m = 1 and p = −1, respectively. Based
on Theorem 1, the adaptive neural network controller is
designed for the system (68). Let the system output y follows
desired reference signal yr = 0.5sin(t) + 0.5sin(0.5t).

The initial values of the prescribed performance function
for tracking error are as follows: τ0 = 3 , τ∞ = 0.07, and δ =
−1. Thus, the boundary function is ρ = (3−0.07)e−t+0.07.
The virtual control signal αi and the actual control input v
are as follows:

αi = −(ai +
1

2
)zi −

1

2c2i
ziθ̂ψ

T
i ψi (69)

v = −(a3 +
1

2η2
)z3 −

1

2c23
z3θ̂ψ

T
i ψi (70)

The adaptive law is defined as follow:

˙̂
θ =

r

2c21
ς21ψ

T
1 ψ1 +

3∑
i=2

r

2c2i
z2
i ψ

T
i ψi − σθ̂ (71)

where a3, c3, σ and r take appropriate positive parameters,
from formula (9), it has z3 = x3−α2. From the simulation,
the system parameters are taken as follows: a1 = 10, a2 =
10, a3 = 11, c1 = 11, c2 = 11, c3 = 11, r = 3, σ =
2, and η = 1. The initial state is [x1(0), x2(0), x3(0)]T =
[−0.2, 0.1, 0.1]T , and θ̂(0) = 0.

The simulation time is set to 40 seconds, and the sim-
ulation results of the proposed control scheme are shown
in Figs. 1-5. The output error z1 and the performance
prescribed function τ1 are shown in Fig. 1. The system
output y can track the reference signal yr well in Fig. 2
despite the existence of external disturbances. And then,
Figs.3 shows the actual control signal v(t) of the system
and the function u(t) constrained by the dead-zone function
D(·). The adaptive parameter θ̂ is shown in Fig. 4. Finally,
other states x2 and x3 of the system are shown in Fig. 5.
It is no hard to find from these simulation figures that PPC
is implemented in the case of input dead-zone nonlinearity,
unknown nonlinearity and unknown external disturbance.
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Fig. 1: Performance bound τ1 and tracking error z1
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Fig. 2: Output y and the reference signal yr
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Fig. 3: Control input signal v and dead-zone output signal u
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Fig. 5: State variables x2 and x3

V. CONCLUSION

The paper presented an adaptive neural control method for
a class of strict-feedback nonlinear systems with nonsymmet-
ric dead-zone input and external disturbances. Then, a new
error transformation method and a prescribed performance
control method are proposed to realize the prescribed perfor-
mance constraint of tracking error. The unknown function in

the system is approximated by RBF neural network, which is
combined with backstepping technology and adaptive neural
network control technology to complete the design of the
controller. Moreover, the stability of the closed-loop system
and the tracking performance are guaranteed. By simulating,
it indicates that the scheme is effective. It can be further
studied and applied to switching systems, nonlinear multi-
agent systems and nonlinear interconnected systems.
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