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Abstract—Three-term conjugate gradient method is one of
the efficient method for solving unconstrained optimization
models. In this paper, we propose a new three-term conjugate
gradient method with a new search direction structure. A
remarkable feature of the proposed method is that independent
of the line search procedure, the search direction always
satisfies the sufficient descent condition. The global convergence
properties of the proposed method is established under the
strong Wolfe line search by assuming that the objective function
is Lipschitz continuous. Numerical results indicate that our
proposed method is efficient and robust, thus effective in
solving unconstrained optimization models. In addition, the
proposed method also considered practical application problem
in portfolio selection and robotic motion control.

Index Terms—Three-term conjugate gradient method, un-
constrained optimization, sufficient descent condition, global
convergence properties, portfolio selection, motion control.

I. INTRODUCTION

THREE-TERM conjugate gradient (TTCG) method is an
efficient method for solving unconstrained optimization

model as follows:
min
x∈Rn

f(x), (1)

where f : Rn → R is continuously differentiable objective
function whose gradient is given by g(x) = ∇f(x). The
TTCG method is an iterative method that generates sequence
{xk} via the following recurrence formula:

xk+1 = xk + sk, (2)

where k ≥ 0, sk = αkdk, and x0 ∈ Rn is a randomly
selected initial point [1]. Note that αk > 0 is known as the
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step length obtained by using some line search technique
such as exact or inexact line search [2]. A frequently used
line search is the inexact line search, especially Strong
Wolfe’s line search, which formula is defined as follows:

f(xk + αkdk) ≤ f(xk) + ϕαkg
T
k dk, (3)

g (xk + αkdk)
T
dk ≤ −σ

∣∣gTk dk∣∣ , (4)

where 0 < ϕ < σ < 1 [3]. To get the next iterative point (2)
of TTCG method, we need the definition of search direction
dk. The search direction in TTCG method is usually defined
as:

dk :=

{
−gk, k = 0

−gk + βkdk−1 + θkyk−1, k ≥ 1
, (5)

where gk = g(xk) is the gradient of f calculated at point xk,
θk and βk are the conjugate gradient parameters, and yk−1 =
gk−gk−1. Clearly, if the parameter θk ≡ 0, TTCG methods
reduces to the standard conjugate gradient (CG) methods.

Some of the famous and standard CG methods are the HS
method [4], the FR method [5], the PRP method [6], [7], the
CD method [8], the LS method [9], the DY method [10],
and the RMIL method [11]. The parameters βk of the above
conjugate gradient methods defined as follows:

βHSk =
gTk (gk − gk−1)

dTk−1(gk − gk−1)
,

βFRk =
‖gk‖2

‖gk−1‖2
,

βPRPk =
gTk (gk − gk−1)

‖gk−1‖2
,

βCDk = − ‖gk‖2

dTk−1gk−1
,

βLSk = −gTk (gk − gk−1)

dTk−1gk−1
,

βDYk =
‖gk‖2

dTk−1(gk − gk−1)
,

βRMIL
k =

gTk (gk − gk−1)

‖dk−1‖2
,

where ‖.‖ denotes the Euclidean norm of vectors. Numerous
studies have been done on the standard, hybrid, and spectral
conjugate gradient methods. For a comprehensive review on
new advances, readers should refer to the following articles
[12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22]
and [23].
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In recent years, several researchers have proposed various
TTCG methods. In 2018, Liu et al. [24] proposed a TTCG
method of RMIL conjugate gradient method. The given
method always satisfies the descent condition

gTk dk < 0, for all k ≥ 0, (6)

without any line search and also fulfills the global conver-
gence properties

lim
k→∞

inf ‖gk‖ = 0 (7)

under standard Wolfe line search. The proposed method
is named as TTRMIL method and search direction of the
method defined by

dk :=

−gk, k = 0

−gk +
gTk yk−1
‖dk−1‖2

dk−1 −
gTk dk−1
‖dk−1‖2

yk−1, k ≥ 1
.

Also, Baluch et al. [25] extended the approach to propose
a TTCG method. The researchers form new search directions
with formula

dk :=

{
−gk, k = 0

−gk + βBZAUk dk−1 − yk−1, k ≥ 1
,

where

βBZAUk =
gTk yk−1

−ηgTk−1dk−1 + µ
∣∣gTk dk−1∣∣ ,

θBZAUk =
gTk dk−1

−ηgTk−1dk−1 + µ
∣∣gTk dk−1∣∣ ,

for η ∈ [1,+∞), µ ∈ (η,+∞) and named the method
TTBZAU (three-term Bakhtawar, Zabidin, Ahmad and
Ummu). Under Wolfe Powell line search, the TTBZAU
satisfies global convergence properties with convex and non-
convex functions and independent of the line search chosen,
the method possesses the sufficient descent condition.

Recently, Liu et al. [26] proposed three type of TTCG
methods. One of the coefficient of their sttudy is the
MTTPRP method, where the search direction is defined as
follows:

dk :=

{
−gk, k = 0

−gk + β#
k dk−1 + θkgk−1, k ≥ 1

, (8)

where

β#
k =

(
βPRPk − gTk sk−1

‖gk−1‖2

)
,

θk =
gTk dk−1
‖gk−1‖2

,

and the method is an extension of the MTTLS method
[26]. The convergence analysis of the MTTPRP method is
established in a similar way with the MTTLS method, which
is to satisfies global convergence properties and possesses the
sufficient descent condition.

Inspired the above literature, we develop a TTCG method
which satisfies the descent condition and the global con-
vergence properties under strong Wolfe line search. The
proposed method aims to possess a better numerical results.
The rest of this paper is organized as follows: in section 2,
we present our new search direction, algorithm, and proof of

sufficient descent condition. Section 3 discusses the proof of
global convergence. The numerical results and discussions
are recorded in section 4. Application of our new method
is presented in section 5. Finally, a conclusion is given in
section 6.

II. NEW SEARCH DIRECTION AND ALGORITHM

Motivated by the structure of MTTPRP method, we make
a little change to the MTTPRP method, show that the new
method possess descent condition and establish the global
convergence proof. Our new method is formed by replacing
the β#

k in (8), that is βPRPk to βBZAUk , expand the form
gTk sk−1 by adding ‖gk−1‖2, the denominator is adjusted to
the form of the βBZAUk denominator, and always has a non
negative value. Furthermore, we change θk in (8) to θBZAUk .
Hence, the proposed method has search direction as follows:

dk :=

{
−gk, k = 0

−gk + β##+
k dk−1 + θ##

k gk−1, k ≥ 1
, (9)

where

β##+
k = max

{
0, β##

k

}
,

β##
k =

(
βBZAUk − ‖gk−1‖2gTk sk−1(

−ηgTk−1dk−1 + µ
∣∣gTk dk−1∣∣)2

)
,

θ##
k = θBZAUk ,

sk−1 = xk − xk−1, and η ∈ [1,+∞), µ ∈ (η,+∞).
The proposed TTCG method is referred to as the MT-

TBZAU method and the algorithm is described below.

Algorithm 1. (MTTBZAU method)

Step 1. Set µ = 2, η = 1, 0 < δ < σ < 1,d0 = −g0, k = 0,
and given an initial point x0 ∈ Rn.

Step 2. If ‖gk‖ < ε, where ε = 10−6, then stop; otherwise,
continue to Step 3.

Step 3. Calculate the search direction dk by using (9).
Step 4. Calculate the step length αk > 0 by using strong

Wolfe line search (3) and (4).
Step 5. Determine xk+1 = xk + αkdk by using dk in Step

3, and αk in Step 4.
Step 6. Set k = k + 1, continue to Step 2.

III. GLOBAL CONVERGENCE ANALYSIS

In this section, we establish the descent condition and
global convergence properties of MTTBZAU method. We
first make standard assumptions for the objective function.
These assumptions will be used throughout the paper.

Assumption 1. (A1) The level set Y = {x ∈ Rn : f(x) ≤
f(x0)} is bounded, i.e. there exist a positive constants ω such
that ‖x‖ ≤ ω, for all x ∈ Y . (A2) In a neighborhood P of Y ,
the objective function f is continuously differentiable and its
gradient is Lipschitz continuous, i.e. there exists a positive
constant L such that for all x,y ∈ P , ‖g(x) − g(y)‖ ≤
L‖x− y‖.

The following lemma will be used to illustrate that the
proposed MTTBZAU method satisfy the descent condition.
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Lemma 1. Consider the sequence {xk} is generated by
MTTBZAU method and suppose the function f satisfies
Assumption 1, then we have

gTk dk ≤ −
(

1− 1

µ

)
‖gk‖2, ifβ##+

k = β##
k . (10)

and

gTk dk ≤ −2ωL‖gk‖, ifβ##+
k = 0. (11)

Hence, the search direction (9) satisfies the descent condition
(6).

Proof: We prove this lemma by induction. For k = 0, we
obtain gT0 d0 = −‖g0‖2 < 0, so that, (10) holds. Assume that
the condition (10) is true for k = k−1, that is, gTk−1dk−1 <
0.

Furthermore, multiplying (9) by gTk , we get

gTk dk = −‖gk‖2 + β##+
k gTk dk−1 + θ##

k gTk gk−1. (12)

According to value β##+
k , there are two cases:

Case 1: for β##+
k = β##

k , then from (12), we have

gTk dk = −‖gk‖2 +

(
gTk (gk − gk−1)

−ηgTk−1dk−1 + µ
∣∣gTk dk−1∣∣ −

‖gk−1‖2gTk sk−1(
−ηgTk−1dk−1 + µ

∣∣gTk dk−1∣∣)2
)
gTk dk−1

+
gTk dk−1

−ηgTk−1dk−1 + µ
∣∣gTk dk−1∣∣gTk gk−1

= −‖gk‖2 +
‖gk‖2gTk dk−1

−ηgTk−1dk−1 + µ
∣∣gTk dk−1∣∣ −

gTk gk−1g
T
k dk−1

−ηgTk−1dk−1 + µ
∣∣gTk dk−1∣∣ −

‖gk−1‖2gTk sk−1gTk dk−1(
−ηgTk−1dk−1 + µ

∣∣gTk dk−1∣∣)2 +

gTk dk−1

−ηgTk−1dk−1 + µ
∣∣gTk dk−1∣∣gTk gk−1

= −‖gk‖2 +
‖gk‖2gTk dk−1

−ηgTk−1dk−1 + µ
∣∣gTk dk−1∣∣ −

‖gk−1‖2gTk sk−1gTk dk−1(
−ηgTk−1dk−1 + µ

∣∣gTk dk−1∣∣)2
= −‖gk‖2 +

‖gk‖2gTk dk−1
−ηgTk−1dk−1 + µ

∣∣gTk dk−1∣∣ −
‖gk−1‖2gTk αk−1dk−1gTk dk−1(
−ηgTk−1dk−1 + µ

∣∣gTk dk−1∣∣)2
= −‖gk‖2 +

‖gk‖2gTk dk−1
−ηgTk−1dk−1 + µ

∣∣gTk dk−1∣∣ −
‖gk−1‖2αk−1

(
gTk dk−1

)2(
−ηgTk−1dk−1 + µ

∣∣gTk dk−1∣∣)2
≤ −‖gk‖2 +

‖gk‖2gTk dk−1
−ηgTk−1dk−1 + µ

∣∣gTk dk−1∣∣ .

Since gTk−1dk−1 < 0, η ∈ [1,+∞), and µ ∈ (η,+∞), that
implies

gTk dk ≤ −‖gk‖2 +
‖gk‖2gTk dk−1
µ
∣∣gTk dk−1∣∣

≤ −‖gk‖2 +
‖gk‖2

∣∣gTk dk−1∣∣
µ
∣∣gTk dk−1∣∣

= −
(

1− 1

µ

)
‖gk‖2.

So, relation (10) holds. Furthermore, the descent condition
is fulfilled.

Case 2: for β##+
k = 0, then from (12), we get

gTk dk = −‖gk‖2 + θ##
k gTk gk−1

= −‖gk‖2 +
gTk dk−1g

T
k gk−1

−ηgTk−1dk−1 + µ
∣∣gTk dk−1∣∣

≤ −‖gk‖2 +
|gTk dk−1||gTk gk−1|

−ηgTk−1dk−1 + µ
∣∣gTk dk−1∣∣ .

Since gTk−1dk−1 < 0, η ∈ [1,+∞), µ ∈ (η,+∞), and from
above relation, we obtain

gTk dk ≤ −‖gk‖2 + |gTk gk−1|
≤ −‖gk‖2 + ‖gk‖‖gk−1‖
= −‖gk‖ (‖gk‖ − ‖gk−1‖)
≤ −‖gk‖‖gk − gk−1‖.

From Assumption 1 and based on the above inequality, we
have

gTk dk ≤ −L‖gk‖‖xk − xk−1‖
≤ −L‖gk‖ (‖xk‖+ ‖xk−1‖)
≤ −2ωL‖gk‖. (13)

Hence, this implies that the inequality (11) holds. So, the
descent condition is satisfied.
The proof is finished.

The following lemma is called the Zoutendijk condition
for MTTBZAU method, which will be used in proving the
global convergence properties. The proof of the below lemma
is similar to the proof in [27]. So, we leave the proof.

Lemma 2. Suppose that the sequence {xk} is generated by
MTTBZAU method, and the Assumption 1 (A1) holds. If the
step length αk is determined by strong Wolfe line search (3)
and (4), and the search direction dk satisfies the descent
direction, then we have

∞∑
k=0

(
gTk dk

)2
‖dk‖2

<∞. (14)

The following two lemmas are required to establish the
global convergence properties of MTTBZAU method.

Lemma 3. Suppose that the sequence {xk} is generated by
MTTBZAU method, and the Assumption 1 holds. The step
length αk is determined by strong Wolfe line search (3) and
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(4). If there exists a positive constant ψ such that for any k,
‖gk‖ ≥ ψ, then dk 6= 0 for each k and

∑
k≥1

‖uk − uk−1‖2 <∞, (15)

where uk =
dk
‖dk‖

.

Proof: From (10) and the Cauchy-Schwartz inequality,

we have
(

1− 1

µ

)
‖gk‖ ≤ ‖dk‖. In addition, since ‖gk‖ ≥

ψ, then for all k, ‖dk‖ > 0. Likewise from (11), we have
‖dk‖ ≥ 2ωL > 0, for all k. They imply that dk 6= 0.
Furthermore, uk is well defined.

Let

rk =

−

(
1 +

θ##
k gk−1g

T
k

‖gk‖2

)
gk

‖dk‖
, (16)

and

δk = β##+
k

‖dk−1‖
‖dk‖

,

then uk = rk + δkuk−1. Because uk and uk−1 are unit
vectors, then

‖rk‖ = ‖uk − δkuk−1‖ = ‖uk−1 − δkuk‖.

Also as δk ≥ 0, then

‖uk − uk−1‖ ≤ (1 + δk)‖uk − uk−1‖
≤ ‖uk − δkuk−1‖+ ‖uk−1 − δkuk‖
= 2‖rk‖. (17)

By using the definition of θ##
k and the fact that there exists

a positive constant γ such that for all k, ‖gk‖ ≤ γ, we have

|θ##
k | ‖gk−1‖‖gk‖

‖gk‖2
≤

∣∣∣∣ gTk dk−1
µ|gTk dk−1|

∣∣∣∣ ‖gk−1‖‖gk‖‖gk‖2

≤ ‖gk−1‖
µ‖gk‖

≤ γ

µψ
. (18)

By utilizing (18), we have

∥∥∥∥∥−
(

1 +
θ##
k gk−1g

T
k

‖gk‖2

)
gk

∥∥∥∥∥
≤ ‖gk‖+

(
|θ##
k | ‖gk−1‖‖gk‖

‖gk‖2

)
‖gk‖

≤ γ +
γ2

µψ
= M1. (19)

Therefore, from Lemma 2, (10), (16), and (19),

∑
k≥0

‖rk‖2 =
∑
k≥0


∥∥∥∥∥∥∥∥∥∥
−

(
1 +

θ##
k gk−1g

T
k

‖gk‖2

)
gk

‖dk‖

∥∥∥∥∥∥∥∥∥∥


2

=
∑
k≥0

(∥∥∥∥∥−
(

1 +
θ##
k gk−1g

T
k

‖gk‖2

)
gk

∥∥∥∥∥
)2

‖dk‖2

≤
∑
k≥0

M2
1

‖dk‖2

≤
∑
k≥0

M2
1(

1− 1
µ

)2
‖gk‖4

(
1− 1

µ

)2
‖gk‖4

‖dk‖2

≤ M2
1(

1− 1
µ

)2
ψ4

∑
k≥0

(
1− 1

µ

)2
‖gk‖4

‖dk‖2
< +∞.

The above together with (17), we get∑
k≥0

‖uk − uk−1‖2 ≤ 4
∑
k≥0

‖rk‖2 < +∞.

The proof is completed.
The following lemma is properties of β##

k .

Lemma 4. Suppose that Assumption 1 holds and the se-
quence {xk} is generated by MTTBZAU method, then we
have

|β##
k | ≤ Z3‖sk−1‖, (20)

where Z3 =
γL

η
(

1− 1
µ

)
ψ2

+
γ3

η2
(

1− 1
µ

)2
ψ4

is a constant.

Proof: From definition of β##
k and βBZAUk , we have

|β##
k | ≤

∣∣∣∣∣ gTk yk−1

−ηgTk−1dk−1 + µ
∣∣gTk dk−1∣∣

∣∣∣∣∣+∣∣∣∣∣ ‖gk−1‖2gTk sk−1(
−ηgTk−1dk−1 + µ

∣∣gTk dk−1∣∣)2
∣∣∣∣∣

≤ ‖gk‖‖yk−1‖
−ηgTk−1dk−1

+
‖gk−1‖2‖gk‖‖sk−1‖(
−ηgTk−1dk−1

)2
≤ ‖gk‖L‖xk − xk−1‖

η
(

1− 1
µ

)
‖gk‖2

+
‖gk−1‖2‖gk‖‖sk−1‖

η2
(

1− 1
µ

)2
‖gk‖4

≤ γL‖sk−1‖

η
(

1− 1
µ

)
ψ2

+
γ3‖sk−1‖

η2
(

1− 1
µ

)2
ψ4

= Z3‖sk−1‖,

where Z3 =
γL

η
(

1− 1
µ

)
ψ2

+
γ3

η2
(

1− 1
µ

)2
ψ4

.

We now present the proof of the global convergence
properties of MTTBZAU method. The proof of this theorem
is similar to [28], and [29], but differs slightly in some forms.

Theorem 1. Suppose that the sequence {xk} is generated
by MTTBZAU method, and the Assumption 1 hold. The step
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length αk is calculated by strong Wolfe line search (3) and
(4), then

lim
k→∞

inf ‖gk‖ = 0. (21)

Proof: Suppose by contradiction that (21) is not true.
Then there exists ψ > 0 such that for all k, ‖gk‖ ≥ ψ.

We first prove that the sk is bounded. Based on Assump-
tion 1, we have

‖xl − xk‖ ≤ ‖xk‖+ ‖xl‖ ≤ 2ω. (22)

For any l, k ∈ Z+, l > k, and from definition of uk =
dk
‖dk‖

,

we have

xl − xk =
l−1∑
i=k

(xi+1 − xi) =
l−1∑
i=k

si =
l−1∑
i=k

‖si‖ui

=
l−1∑
i=k

‖si‖(uk + ui − uk)

=
l−1∑
i=k

‖si‖uk +
l−1∑
i=k

‖si‖(ui − uk). (23)

From (22), (23), and the triangle inequality, we have

l−1∑
i=k

‖si‖ ≤ ‖xl − xk‖+

l−1∑
i=k

‖si‖‖ui − uk‖

≤ 2ω +
l−1∑
i=k

‖si‖‖ui − uk‖. (24)

Note that from (20) and (22), we have

|β##
k | ≤ Z3‖sk−1‖ ≤ Z3L‖xk − xk−1‖ ≤ 2ωZ3L = D,

and let 4 be a positive integer, chosen large enough such
that

4 ≥ D.

Based on the criteria of Lemma 3, we can choose an
index k0 that is large enough, so that we have the following
relationship ∑

i≥k0

‖ui+1 − ui‖2 ≤
1

44
. (25)

Furthermore, if i > k ≥ k0 and i − k ≤ 4, then using
(25) and the Cauchy-Schwarz inequality, we get:

‖ui − uk‖ ≤
i−1∑
i=k

‖ui+1 − ui‖

≤
√
i− k

(
i−1∑
i=k

‖ui+1 − ui‖2
) 1

2

≤
√
4
(

1

44

) 1
2

=
1

2
. (26)

From (24) together with (26), we obtain

l−1∑
i=k

‖si‖ ≤ 2ω +
l−1∑
i=k

‖si‖
1

2
.

Hence,
l−1∑
i=k

‖si‖ ≤ 4ω. (27)

Next, we will prove that the search direction dk is bounded.
Based on the β##+

k value, there are two cases:

Case 1: if β##+
k = 0, then from (9) we have

‖dk‖ = ‖ − gk + θ##
k gk−1‖

≤ ‖gk‖+ |θ##
k | ‖gk−1‖

≤ γ +
γ

µ
:= Q. (28)

Furthermore, by using (11) and (28), it is clear that
∞∑
k=0

(
gTk dk

)2
‖dk‖2

≥
∞∑
k=0

4ω2L2ψ2

Q2
= +∞,

which contradict (14) in Lemma 2. Hence, the relation (21)
holds.

Case 2: if β##+
k = β##

k , then from (9) and (19) we have

‖dk‖2 =
(∥∥∥−gk + β##

k dk−1 + θ##
k gk−1

∥∥∥)2
≤

(∥∥∥∥∥−
(

1 +
θ##
k gk−1g

T
k

‖gk‖2

)
gk + |β##

k |‖dk−1‖

∥∥∥∥∥
)2

≤
(
M1 + |β##

k |‖dk−1‖
)2

≤ 2M2
1 + 2|β##

k |2‖dk−1‖2

≤ 2M2
1 + 2Z2

3‖sk−1‖2‖dk−1‖2.

Then, from the inequality above, we define Sj = 2Z2
3‖sj‖2,

and in the same way as inequality (3.10) in [33], for all
l ≥ k0 + 1, we get

‖dl‖2 ≤ 2M2
1

 l∑
i=k0+1

l−1∏
j=i

Sj

+ ‖dk0‖2
l−1∏
j=i

Sj . (29)

By using (27) and according to Theorem 3.1 of the reference
[33], we can deduce that the right-hand of (29) is bounded,
and the bound don’t depend on l, suppose that R. So, we
obtain

‖dk‖2 ≤ R. (30)

Furthermore, based on (10) and (30), we have

∞∑
k=0

(
gTk dk

)2
‖dk‖2

≥
∞∑
k=0

(
1− 1

µ

)2
ψ4

R
= +∞,

Therefore,
∞∑
k=0

(
gTk dk

)2
‖dk‖2

>∞.

This contradicts (14). Hence, lim
k→∞

inf ‖gk‖ = 0. The proof
is completed.

IV. COMPUTATIONAL EXPERIMENTS

In this part, we present the results of the computa-
tional experiments to illustrate the efficacy of the proposed
MTTBZAU method for solving unconstrained optimization
problems. These was achieved by comparing the experimen-
tal results of proposed MTTBZAU method with TTRMIL
[24] and MTTPRP [26] methods. Most of the test functions
used for these experiment are considered from [30], [31],
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and [32]. The strong Wolfe line search conditions (3) and (4)
were used in the computation for all methods with parameters
value:

• MTTPRP: σ = 0.8, ϕ = 10−4.
• TTRMIL and MTTBZAU: σ = 10−3, ϕ = 10−4.

In performing the computational test, the number of it-
erations (NOI), the number of function evaluations (NOF),
and the CPU time are considered as parameters to determine
the robustness of the proposed method. The value µ = 2
and η = 1 was considered for the proposed method based
on the article [25]. To stop the calculation, we use the same
criteria for all methods ‖gk‖ ≤ 10−6 and the calculation is
considered failed if the number of iterations exceeds 10,000.

MATLAB software with personal laptop; Intel Core i7
processor, 16 GB RAM, 64 bit Windows 10 Pro operating
system was used to obtain the numerical results of each
method. A total of thirty-seven test functions with ninety-
eight problems from different dimensions and initial points
are mostly considered from Andrei [30]. These problems are
listed in Table I and have also been used in papers [15], [16],
and [17].

The result of computational experiments from all problems
in Table I are listed in Table II. With regard to the results in
Table II, it is not be sufficient to determine which method
has good numerical results. Therefore, we present the perfor-
mance profile introduced by Dolan and Moré [34] in Figs. 1,
2, and 3 to clearly show the difference in numerical effects
among the TTRMIL, MTTPRP, and MTTBZAU methods,
based on following conditions. Suppose S as a set of solvers
on a test set of problems P and ap,s as the NOI or NOF
or CPU time needed to solve problem p by solver s. The
ratio rp,s is the performance profile ratio, used to compare
the performance and its formulated as:

rp,s =
ap,s

min{ap,s : p ∈ P and s ∈ S}
.

Denote np as test problems and we let rp,s = 2 max{rp,s :
s ∈ S} for ap,s of the ”FAIL” in Tables II, then the
performance profile for each solver can be defined by

ρs(τ) =
1

np
size{p ∈ P : log2 rp,s ≤ τ}.

Thus ρs(τ) is the probability for the solver s ∈ S that the rp,s
output ratio is inside the τ ∈ R factor. Further, the function
ρs(τ) is the distribution function for the performance ratio.
In general, the solver whose curve is at the top will win over
the rest of the solvers.

From Table II, the MTTBZAU method only failed in the
Extended Powel test function, but has solved all other test
functions efficiently. However, the TTRMIL was unable to
solve 2, 4, 8, 35, 36, 42, 45, 54, 82, and 84 problems , and
the MTTPRP has failed to solve 18, 54 and 65 problems.
Based on this, we can deduce that the MTTBZAU has the
best performance compared to others.

Figs. 1, 2, and 3 illustrates the comparison based on
performance profile for all methods in NOI, NOF, and CPU
time, respectively. Based on the aspect of computing speed,
the all figure indicate that the MTTBZAU method has the
best performance compared to the TTRMIL and MTTPRP
methods.

Fig. 1: Comparison performance of TTRMIL, MTTPRP, and
MTTBZAU methods based on NOI.

Fig. 2: Comparison performance of TTRMIL, MTTPRP, and
MTTBZAU methods based on NOF.

Fig. 3: Comparison performance of TTRMIL, MTTPRP, and
MTTBZAU methods based on CPU Time.
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TABLE I: List of the test functions, dimensions, and initial points.

Problems Functions Dimensions Initial points Problems Functions Dimensions Initial points

1 Ext White & Holst 1,000 (-1.2, 1,...,-1.2,1) 50 Ext Maratos 10 (-1,..., -1)
2 Ext White & Holst 1,000 (10,...,10) 51 Six Hump Camel 2 (-1,2)
3 Ext White & Holst 10,000 (-1.2, 1,...,-1.2,1) 52 Six Hump Camel 2 (-5, 10)
4 Ext White & Holst 10,000 (5,...,5) 53 Three Hump Camel 2 (-1,2)
5 Ext Rosenbrock 1,000 (-1.2, 1,...,-1.2,1) 54 Three Hump Camel 2 (2,-1)
6 Ext Rosenbrock 1,000 (10,...,10) 55 Booth 2 (5, 5)
7 Ext Rosenbrock 10,000 (-1.2, 1,...,-1.2,1) 56 Booth 2 (10, 10)
8 Ext Rosenbrock 10,000 (5,...,5) 57 Trecanni 2 (-1,0.5)
9 Ext Freudenstein & Roth 4 (0.5,-2,0.5,-2) 58 Trecanni 2 (-5, 10)
10 Ext Freudenstein & Roth 4 (5,5,5,5) 59 Zettl 2 (-1,2)
11 Ext Beale 1,000 (1,0.8,...,1,0.8) 60 Zettl 2 (10,10)
12 Ext Beale 1,000 (0.5,...,0.5) 61 Shallow 1,000 (0,..., 0)
13 Ext Beale 10,000 (-1,..., -1) 62 Shallow 1,000 (10,..., 10)
14 Ext Beale 10,000 (0.5,...,0.5) 63 Shallow 10,000 (-1,..., -1)
15 Ext Wood 4 (-3,-1,-3,-1) 64 Shallow 10,000 (-10,..., -10)
16 Ext Wood 4 (5,5,5,5) 65 Gen Quartic 1,000 (1,...,1)
17 Raydan 1 10 (1,..., 1) 66 Gen Quartic 1,000 (20,...,20)
18 Raydan 1 10 (10,..., 10) 67 Quadratic QF2 50 (0.5,...,0.5)
19 Raydan 1 100 (-1,...,-1) 68 Quadratic QF2 50 (30,...,30)
20 Raydan 1 100 (-10,...,-10) 69 Leon 2 (2,2)
21 Ext Tridiagonal 1 500 (2,...,2) 70 Leon 2 (8,8)
22 Ext Tridiagonal 1 500 (10,...,10) 71 Gen Tridiagonal 1 10 (2,...,2)
23 Ext Tridiagonal 1 1,000 (1,...,1) 72 Gen Tridiagonal 1 10 (10,...,10)
24 Ext Tridiagonal 1 1,000 (-10,...,-10) 73 Gen Tridiagonal 2 4 (1,1,1,1)
25 Diagonal 4 500 (1,...,1) 74 Gen Tridiagonal 2 4 (10,10,10,10)
26 Diagonal 4 500 (-20,...,-20) 75 POWER 10 (1,...,1)
27 Diagonal 4 1,000 (1,...,1) 76 POWER 10 (10,...,10)
28 Diagonal 4 1,000 (-30,...,-30) 77 Quadratic QF1 50 (1,...,1)
29 Ext Himmelblau 1,000 (1,...,1) 78 Quadratic QF1 50 (10,...,10)
30 Ext Himmelblau 1,000 (20,...,20) 79 Quadratic QF1 500 (1,...,1)
31 Ext Himmelblau 10,000 (-1,...,-1) 80 Quadratic QF1 500 (-5,...,-5)
32 Ext Himmelblau 10,000 (50,...,50) 81 Ext Quad Pen QP2 100 (1, . . . ,1)
33 FLETCHCR 10 (0,...,0) 82 Ext Quad Pen QP2 100 (10,...,10)
34 FLETCHCR 10 (10,...,10) 83 Ext Quad Pen QP2 500 (10,...,10)
35 Ext Powel 100 (3,-1,0,1,...) 84 Ext Quad Pen QP2 500 (50,...,50)
36 Ext Powel 100 (5,...,5) 85 Ext Quad Pen QP1 4 (1,1,1,1)
37 NONSCOMP 2 (3,3) 86 Ext Quad Pen QP1 4 (10,10,10,10)
38 NONSCOMP 2 (10, 10) 87 Quartic 4 (10,10,10,10)
39 Ext DENSCHNB 10 (1, . . . , 1) 88 Quartic 4 (15,15,15,15)
40 Ext DENSCHNB 10 (10,...,10) 89 Matyas 2 (1,1)
41 Ext DENSCHNB 100 (10,...,10) 90 Matyas 2 (20, 20)
42 Ext DENSCHNB 100 (-50,...,-50) 91 Colville 4 (2,2,2,2)
43 Ex Penalty 10 (1,2,...,10) 92 Colville 4 (10,10,10,10)
44 Ex Penalty 10 (-10,...,-10) 93 Dixon and Price 3 (1,1,1)
45 Ex Penalty 100 (5,...,5) 94 Dixon and Price 3 (10,10,10)
46 Ex Penalty 100 (-10,..., -10) 95 Sphere 5,000 (1,...,1)
47 Hager 10 (1,...,1) 96 Sphere 5,000 (10,...,10)
48 Hager 10 (-10,...,-10) 97 Sum Squares 50 (0,1,...,0,1)
49 Ext Maratos 10 (1.1,0.1,... ) 98 Sum Squares 50 (10,...,10)

TABLE II: Numerical results of the TTRMIL, MTTPRP, and MTTBZAU methods.

Problem TTRMIL MTTPRP MTTBZAU

NOI NOF CPU NOI NOF CPU NOI NOF CPU
1 75 316 0.1497 25 159 0.0604 15 106 0.0564
2 FAIL FAIL FAIL 57 455 0.169 29 266 0.1185
3 60 262 1.0275 25 159 0.5981 15 106 0.397
4 FAIL FAIL FAIL 54 365 1.2764 25 231 0.8574
5 41 191 0.0575 30 148 0.0398 19 123 0.0268
6 107 440 0.1059 47 263 0.0611 19 136 0.0434
7 41 191 0.354 22 123 0.2473 19 123 0.2652
8 FAIL FAIL FAIL 23 137 0.2294 29 206 0.3816
9 50 187 0.0195 14 86 0.0099 8 48 9.16E-04
10 54 287 0.1799 18 105 9.48E-04 8 48 9.25E-04
11 33 113 0.0884 15 66 0.0426 10 55 0.0423
12 37 119 0.0907 12 48 0.0262 10 47 0.0384
13 32 114 0.5667 15 62 0.2579 9 43 0.1833
14 39 127 0.5599 12 48 0.2063 10 47 0.2203
15 512 1903 0.0387 120 542 0.0172 148 588 0.0083

(Continued on next page)
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TABLE II – Continued
Problem TTRMIL MTTPRP MTTBZAU

NOI NOF CPU NOI NOF CPU NOI NOF CPU
16 389 1258 0.0146 135 597 0.0052 302 1290 0.0262
17 19 90 0.0154 19 85 0.0058 17 80 0.0014
18 158 876 0.0207 FAIL FAIL FAIL 32 179 0.0037
19 110 332 0.0258 72 217 0.0169 76 361 0.0254
20 184 565 0.0453 181 558 0.0251 169 886 0.0484
21 13 65 0.0369 10 53 0.022 14 72 0.0304
22 22 112 0.039 9 43 0.0134 7 46 0.0191
23 16 88 0.0541 10 53 0.0305 16 86 0.0543
24 22 112 0.0686 10 50 0.0212 7 51 0.0359
25 2 6 0.0093 2 6 0.0067 2 6 0.0026
26 2 6 0.002 2 6 0.0019 2 6 0.0022
27 2 6 0.0032 2 6 0.0033 2 6 0.003
28 2 6 0.0032 2 6 0.0029 2 6 0.0036
29 9 32 0.0331 7 26 0.0153 7 31 0.0112
30 15 64 0.0272 12 59 0.0201 6 31 0.0098
31 10 41 0.1126 12 50 0.0976 8 44 0.0963
32 10 47 0.099 10 48 0.1181 7 38 0.0899
33 75 295 0.0183 46 206 0.0089 56 263 0.005
34 165 825 0.0132 88 500 0.0071 79 407 0.0067
35 FAIL FAIL FAIL 392 1316 0.0976 FAIL FAIL FAIL
36 FAIL FAIL FAIL 550 1824 0.1097 FAIL FAIL FAIL
37 19 68 0.0019 13 47 0.0032 11 54 0.0013
38 28 107 0.0207 25 115 0.0013 14 85 0.0011
39 8 24 6.00E-04 7 21 0.0039 5 19 6.07E-04
40 9 37 0.0013 10 41 7.88E-04 9 44 7.93E-04
41 9 37 0.0048 10 41 0.0043 9 44 0.0035
42 FAIL FAIL FAIL 11 52 0.0047 7 36 0.0023
43 27 95 0.0073 31 106 0.0068 38 134 0.003
44 16 64 0.0268 12 52 8.61E-04 7 39 7.73E-04
45 FAIL FAIL FAIL 20 102 0.007 8 47 0.0038
46 20 85 0.0134 19 114 0.0074 15 101 0.0071
47 12 36 7.79E-04 12 36 0.0096 12 37 9.73E-04
48 17 53 0.0087 19 62 0.0017 18 67 0.0011
49 34 169 0.0025 52 285 0.0136 38 281 0.0042
50 27 137 0.0136 36 211 0.0036 24 185 0.0042
51 8 29 6.46E-04 7 26 0.0065 7 34 5.47E-04
52 8 41 0.0111 11 55 7.36E-04 6 34 4.91E-04
53 18 62 0.0217 16 55 0.0081 9 273 0.0021
54 FAIL FAIL FAIL FAIL FAIL FAIL 11 264 0.0024
55 2 6 1.63E-04 2 6 0.015 2 6 2.68E-04
56 2 6 0.0075 2 6 0.0029 2 6 1.85E-04
57 1 3 1.49E-04 1 3 0.0118 1 3 1.70E-04
58 16 59 0.0055 11 39 0.0052 5 24 4.02E-04
59 16 58 7.58E-04 14 53 0.0135 10 52 6.59E-04
60 29 108 0.0062 17 78 0.0038 9 50 8.51E-04
61 43 129 0.0443 8 24 0.0286 7 29 0.0112
62 18 72 0.0302 15 58 0.0267 11 56 0.0134
63 33 102 0.2472 9 29 0.0733 8 31 0.0739
64 49 165 0.3467 13 53 0.1293 11 53 0.1261
65 7 218 0.0535 FAIL FAIL FAIL 7 219 0.0541
66 16 80 0.0375 32 120 0.0421 12 305 0.0612
67 81 267 0.013 67 223 0.0271 70 250 0.0077
68 95 379 0.0149 77 313 0.0209 54 262 0.0106
69 56 242 0.0026 22 118 0.0083 14 121 0.0017
70 177 725 0.0073 54 418 0.0047 27 260 0.0033
71 22 69 0.0017 23 72 0.0147 23 77 0.0012
72 28 114 0.0083 32 127 0.0037 27 117 0.0029

(Continued on next page)
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TABLE II – Continued
Problem TTRMIL MTTPRP MTTBZAU

NOI NOF CPU NOI NOF CPU NOI NOF CPU
73 7 21 3.86E-04 5 15 3.92E-04 4 13 2.98E-04
74 10 38 0.0113 9 36 0.0135 11 57 8.21E-04
75 123 369 0.0042 10 30 7.64E-04 10 30 4.69E-04
76 139 417 0.0089 10 30 0.0083 10 30 5.95E-04
77 69 207 0.0086 38 114 0.0054 38 114 0.0041
78 78 234 0.0076 40 120 0.006 40 120 0.0051
79 447 1341 0.1612 131 393 0.0638 131 393 0.0522
80 500 1500 0.1862 137 411 0.0736 137 411 0.049
81 394 1465 0.0558 33 293 0.0228 25 259 0.0104
82 FAIL FAIL FAIL 41 413 0.0307 24 241 0.0111
83 111 844 0.1271 48 461 0.0858 44 488 0.0677
84 FAIL FAIL FAIL 47 429 0.089 45 508 0.0737
85 14 46 8.96E-04 8 28 4.18E-04 6 28 2.83E-04
86 20 77 0.0078 13 58 0.0126 7 37 6.13E-04
87 764 2502 0.0215 161 667 0.0119 151 637 0.0072
88 734 2386 0.0206 293 1071 0.0273 156 656 0.006
89 1 8 5.58E-04 1 8 1.60E-04 1 8 1.15E-04
90 1 8 6.33E-04 1 8 0.0068 1 8 1.60E-04
91 861 3094 0.0166 223 776 0.0118 253 1124 0.0085
92 502 1779 0.0127 279 1082 0.0248 91 377 0.0039
93 22 72 9.54E-04 21 68 8.74E-04 10 41 4.19E-04
94 56 216 0.0012 38 157 0.0136 53 252 0.0038
95 1 3 0.0093 1 3 0.0067 1 3 0.0054
96 1 3 0.0069 1 3 0.0179 1 3 0.0064
97 46 138 0.0061 25 75 0.0033 25 75 0.0023
98 81 243 0.0057 41 123 0.0154 41 123 0.0041

TABLE III: Historical Real Time Closing Prices of BBCA, UNVR, BBRI, TLKM, and ICBP (currency in IDR) in Three
Years .

Date BBCA.JK UNVR.JK BBRI.JK TLKM.JK ICBP.JK

Dec 28, 2020 33,850 7,350 4,170 3,310 9,575
Dec 21, 2020 33,625 7,425 4,160 3,320 9,525
Dec 14, 2020 34,000 7,600 4,280 3,510 9,700
Dec 07, 2020 33,675 7,475 4,280 3,280 9,825
Nov 30, 2020 31,950 7,600 4,300 3,250 9,950
Nov 23, 2020 31,925 7,750 4,270 3,460 10,600
Nov 16, 2020 33,000 7,725 4,020 3,220 10,100
Nov 09, 2020 31,950 7,750 4,000 2,990 9,700
Nov 02, 2020 31,500 8,075 3,560 2,830 9,875
Oct 26, 2020 28,950 7,825 3,360 2,620 9,650
Oct 19, 2020 28,850 7,925 3,290 2,630 9,725
Oct 12, 2020 28,800 8,000 3,250 2,750 9,750
Oct 05, 2020 28,875 8,050 3,150 2,730 10,050
Sep 28, 2020 27,525 8,000 3,100 2,680 10,075
Sep 21, 2020 28,050 7,925 3,160 2,690 10,050
Sep 14, 2020 28,150 8,025 3,220 2,890 10,175
Sep 07, 2020 29,525 8,300 3,250 2,810 10,250
Aug 31, 2020 31,900 8,400 3,550 2,860 10,300
Aug 24, 2020 32,475 8,250 3,690 2,960 10,325
Aug 17, 2020 31,650 8,200 3,560 3,000 10,100
Aug 10, 2020 32,025 8,200 3,340 3,030 10,175
Aug 03, 2020 30,900 8,125 3,110 2,980 10,175
Jul 27, 2020 31,200 8,400 3,160 3,050 9,200
Jul 20, 2020 30,500 8,050 3,090 3,020 9,175
Jul 13, 2020 30,600 8,125 3,100 3,060 9,275
Jul 06, 2020 31,000 7,925 3,110 3,110 9,225

(Continued on next page)
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TABLE III – Continued
Date BBCA.JK UNVR.JK BBRI.JK TLKM.JK ICBP.JK

Jun 29, 2020 29,350 7,900 3,050 3,120 9,425
Jun 22, 2020 28,225 7,900 3,030 3,190 9,225
Jun 15, 2020 27,875 8,050 3,100 3,280 8,925
Jun 08, 2020 28,350 8,200 3,030 3,030 8,600
Jun 01, 2020 28,625 8,050 3,110 3,230 8,625
May 25, 2020 25,950 7,750 2,950 3,150 8,150
May 18, 2020 23,825 8,050 2,480 3,180 9,600
May 11, 2020 23,925 8,575 2,240 3,100 9,700
May 04, 2020 26,225 8,050 2,590 3,190 9,625
Apr 27, 2020 25,850 8,275 2,730 3,500 9,875
Apr 20, 2020 24,600 7,500 2,630 3,090 9,900
Apr 13, 2020 27,125 6,875 2,830 3,230 10,200
Apr 06, 2020 27,975 7,250 2,790 3,120 10,100
Mar 30, 2020 27,475 7,100 2,890 3,200 10,000
Mar 23, 2020 27,550 6,800 3,230 3,090 9,975
Mar 16, 2020 23,675 6,225 2,810 2,880 8,975
Mar 09, 2020 27,800 7,225 3,720 3,310 10,975
Mar 02, 2020 31,000 7,450 4,010 3,750 10,950
Feb 24, 2020 31,450 6,825 4,190 3,490 10,275
Feb 17, 2020 33,075 7,500 4,510 3,690 10,950
Feb 10, 2020 33,400 7,475 4,550 3,640 10,775
Feb 03, 2020 33,800 7,900 4,550 3,790 11,500
Jan 27, 2020 32,400 7,950 4,460 3,800 11,375
Jan 20, 2020 34,050 8,175 4,740 3,920 11,700
Jan 13, 2020 34,375 8,400 4,630 3,810 11,575
Jan 06, 2020 33,625 8,250 4,410 3,980 11,525
Dec 30, 2019 34,000 8,575 4,420 3,980 11,250
Dec 23, 2019 33,475 8,560 4,430 3,990 11,175
Dec 16, 2019 33,300 8,325 4,360 4,020 11,525
Dec 09, 2019 31,800 8,245 4,280 3,990 11,450
Dec 02, 2019 31,975 8,450 4,170 4,100 11,425
Nov 25, 2019 31,400 8,360 4,090 3,930 11,325
Nov 18, 2019 31,525 8,430 4,210 4,050 11,425
Nov 11, 2019 31,375 8,445 4,090 4,080 11,400
Nov 04, 2019 31,400 8,630 3,990 4,110 11,275
Oct 28, 2019 31,625 8,740 4,180 4,080 11,625
Oct 21, 2019 31,000 8,630 4,230 4,280 11,425
Oct 14, 2019 30,800 8,625 4,170 4,190 11,275
Oct 07, 2019 30,625 8,835 3,920 4,170 11,625
Sep 30, 2019 30,225 9,085 3,950 4,190 12,225
Sep 23, 2019 30,350 9,400 4,180 4,310 11,950
Sep 16, 2019 29,950 9,230 4,160 4,290 11,950
Sep 09, 2019 30,150 9,320 4,310 4,160 11,600
Sep 02, 2019 30,125 9,410 4,270 4,210 11,900
Aug 26, 2019 30,500 9,770 4,270 4,450 12,050
Aug 19, 2019 29,975 9,165 4,080 4,380 11,775
Aug 12, 2019 29,800 8,995 4,210 4,280 11,625
Aug 05, 2019 30,325 8,965 4,330 4,260 11,300
Jul 29, 2019 30,825 9,000 4,450 4,280 10,850
Jul 22, 2019 30,975 8,960 4,440 4,160 10,575
Jul 15, 2019 31,000 9,160 4,480 4,270 10,850
Jul 08, 2019 30,050 8,955 4,510 4,180 10,275
Jul 01, 2019 29,850 8,990 4,400 4,280 10,100
Jun 24, 2019 29,975 9,000 4,360 4,140 10,150
Jun 17, 2019 29,400 9,060 4,360 4,040 10,025
Jun 10, 2019 29,000 8,960 4,230 3,990 9,975
May 27, 2019 29,100 8,900 4,100 3,900 9,800
May 20, 2019 28,050 8,705 3,850 3,750 9,700
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TABLE III – Continued
Date BBCA.JK UNVR.JK BBRI.JK TLKM.JK ICBP.JK

May 13, 2019 25,900 8,320 3,790 3,510 9,300
May 06, 2019 28,050 8,840 4,120 3,790 9,825
Apr 29, 2019 28,375 8,930 4,380 3,820 9,625
Apr 22, 2019 28,100 9,100 4,330 3,910 9,175
Apr 15, 2019 28,125 9,880 4,460 3,860 9,100
Apr 08, 2019 27,500 9,820 4,310 3,830 9,050
Apr 01, 2019 27,650 9,755 4,270 4,060 9,075
Mar 25, 2019 27,550 9,840 4,110 3,960 9,325
Mar 18, 2019 27,425 9,830 4,050 3,800 10,325
Mar 11, 2019 27,700 9,960 3,950 3,750 10,425
Mar 04, 2019 27,200 9,620 3,850 3,740 10,250
Feb 25, 2019 27,700 9,810 3,870 3,910 10,300
Feb 18, 2019 27,450 9,900 3,900 3,840 10,400
Feb 11, 2019 26,800 9,600 3,770 3,790 10,425
Feb 04, 2019 27,600 9,965 3,890 3,850 10,600
Jan 28, 2019 28,175 10,000 3,920 3,870 10,750
Jan 21, 2019 27,500 9,810 3,780 3,880 10,750
Jan 14, 2019 27,125 9,785 3,820 4,020 10,150
Jan 07, 2019 26,250 9,690 3,730 3,860 10,150
Dec 31, 2018 26,025 9,560 3,660 3,710 10,600
Dec 24, 2018 26,000 9,080 3,660 3,750 10,450
Dec 17, 2018 25,850 9,320 3,620 3,760 10,525
Dec 10, 2018 25,825 8,900 3,680 3,730 10,100
Dec 03, 2018 25,950 8,800 3,620 3,670 9,700
Nov 26, 2018 26,050 8,450 3,620 3,680 9,850
Nov 19, 2018 25,100 8,430 3,480 3,990 8,925
Nov 12, 2018 24,825 8,295 3,490 4,050 8,775
Nov 05, 2018 24,000 8,065 3,340 3,920 8,575
Oct 29, 2018 24,000 8,545 3,280 3,940 8,925
Oct 22, 2018 23,600 8,835 2,990 3,630 8,775
Oct 15, 2018 23,375 8,970 3,020 3,730 8,775
Oct 08, 2018 23,250 8,860 2,950 3,680 8,725
Oct 01, 2018 23,050 8,535 2,980 3,530 8,800
Sep 24, 2018 24,150 9,405 3,150 3,640 8,825
Sep 17, 2018 23,700 9,415 3,120 3,600 8,950
Sep 10, 2018 23,975 9,420 3,070 3,590 8,925
Sep 03, 2018 24,850 8,895 3,030 3,390 8,850
Aug 27, 2018 24,800 8,770 3,180 3,490 8,675
Aug 20, 2018 25,075 8,600 3,270 3,290 8,875
Aug 13, 2018 23,375 8,505 3,050 3,350 8,650
Aug 06, 2018 23,875 8,710 3,390 3,500 8,975
Jul 30, 2018 23,450 8,990 3,330 3,460 8,775
Jul 23, 2018 23,225 8,865 3,090 3,940 8,600
Jul 16, 2018 23,100 8,840 2,980 3,990 8,600
Jul 09, 2018 23,025 9,380 2,970 4,020 8,875
Jul 02, 2018 20,925 9,150 2,840 3,860 8,700
Jun 25, 2018 21,475 9,220 2,840 3,750 8,850
Jun 18, 2018 21,925 8,840 2,980 3,580 8,400
Jun 04, 2018 22,250 9,080 3,140 3,610 8,850
May 28, 2018 22,700 9,120 3,080 3,520 8,700
May 21, 2018 22,550 9,360 3,120 3,560 8,300
May 14, 2018 21,700 9,235 2,940 3,490 8,000
May 07, 2018 22,750 9,800 3,160 3,630 8,375
Apr 30, 2018 22,025 9,070 3,030 3,730 8,200
Apr 23, 2018 22,925 9,600 3,490 3,830 8,350
Apr 16, 2018 22,975 10,315 3,660 3,770 8,325
Apr 09, 2018 22,900 10,040 3,550 3,660 8,350
Apr 02, 2018 22,725 10,155 3,480 3,650 8,175

(Continued on next page)
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TABLE III – Continued
Date BBCA.JK UNVR.JK BBRI.JK TLKM.JK ICBP.JK

Mar 26, 2018 23,300 9,905 3,600 3,600 8,275
Mar 19, 2018 23,800 10,195 3,600 3,660 8,700
Mar 12, 2018 23,350 9,940 3,680 3,820 8,750
Mar 05, 2018 23,300 10,110 3,690 4,150 9,000
Feb 26, 2018 22,875 10,780 3,790 4,070 9,100
Feb 19, 2018 24,250 10,890 3,790 4,030 8,925
Feb 12, 2018 23,450 10,910 3,840 4,010 8,975
Feb 05, 2018 23,575 11,080 3,710 3,950 8,925
Jan 29, 2018 23,975 11,005 3,740 4,000 8,800
Jan 22, 2018 22,700 10,910 3,850 4,150 8,825
Jan 15, 2018 22,450 10,890 3,620 4,160 8,700
Jan 08, 2018 22,425 10,850 3,540 4,130 8,850
Jan 01, 2018 22,250 10,800 3,590 4,280 9,275

V. APPLICATIONS IN PORTFOLIO SELECTION AND
ROBOTIC MOTION CONTROL

In this section, we will discuss the application of the
MTTBZAU method in portfolio selection as in [35], [36],
[37] and motion control as in [38], [39]. Another application
of the conjugate gradient method can be seen in [40], [41],
[42], [43], and [44].

A. Minimizing Risk in Portfolio Selection

A portfolio is defined as a collection of investments com-
posed of various types of assets, such as bonds and stocks.
One of the goals of investors in investing is to maximize
returns, without forgetting the risk factors for investment
that may occur. Return is one of the factors that motivates
investors to invest and is also a reward for the courage of
the investor to take the risk of his investment [45].

1) Return and Risk: Return is the level of profit that
investors get in investing. The main source of return in
investment consists of two components, namely yield and
capital gain (loss). Yield is the return on investment for
an investor expressed as a percentage. Yield measures the
rate of return on a financial instrument, for example, stocks
or bonds, which is based on dividends and interest rates.
Capital gain is defined as the profit an investor receives
when the selling price is reduced by the purchase price. The
difference between the selling price and the buying price
is then calculated as capital gain. This profit can occur in
many assets such as property, goods, mutual funds, bonds,
collectibles and businesses, and options. The opposite of
capital gains is capital loss, which is a condition when the
difference in selling price is lower than the purchase price.
Based on the two sources of return above, we can calculate
the total return on an investment with the formula:

Total Return = yield + capital gain (loss)

Besides calculating returns, investors also need to consider
the level of risk of an investment as a basis for making
investment decisions. Risk is the possible difference between
the actual return received and the expected return. Please
note that greater the possible of difference, then greater
the investment risk. In its application, there are several
sources of risk that can affect the amount of risk in an
investment, including market risk, interest rate risk, inflation
risk, business risk, liquidity risk, financial risk, country risk,

and currency exchange rate risk. To reduce investment risk,
investors need to diversify. Diversification is the spread or
separation of investments into several assets classes, for
example, stocks, currencies, property, options, land, gold, and
bonds.

On the other hand, some investors may diversify their port-
folios focusing on only one asset class, stocks for example.
The problem that arises is which company shares should be
included in the portfolio and what percentage of funds will
be allocated in each of the selected shares.

Therefore, in this paper we focus on portfolio prob-
lems in only one asset class, namely stocks. We have
collected five real stocks data for PT Bank Central Asia
Tbk (BBCA.JK), PT Unilever Indonesia Tbk (UNVR.JK),
PT Bank Rakyat Indonesia (Persero) Tbk (BBRI.JK), PT
Telekomunikasi Indonesia Tbk (TLKM.JK), and PT Indo-
food CBP Sukses Makmur Tbk (ICBP.JK) from the database
http://finance.yahoo.com. The website provides, the opening
price, the highest price, the lowest price, the closing price,
the adjusted price, and the volume of stocks. In this case we
use the closing price, which is the price at the end of the
trade on that day. The stocks we choose are listed as the 20
best blue chip stocks 2020 on the IDX. We can use daily,
weekly, or monthly prices, but in this paper, we consider to
use weekly prices [45].

2) Problem Formulations: Portfolio optimization is a pro-
cess of selecting the proportions of various assets in a
portfolio that make the portfolio better than others based
on certain criteria. Some of the criteria that can be done
to optimize a portfolio include: minimize risk, maximize
return, and minimize risk with a certain target return [46],
[47]. To adjust problem 1, in this paper we choose the
optimal portfolio determination by minimizing risk. Portfolio
optimization model formulation here, we will use the closing
price only in Table III. First, we define the return of a stock
at time t as follows:

rt =
Pt − Pt−1
Pt−1

, (31)

where Pt is the closing prices at time t and Pt−1 is the
closing prices at time t − 1. We will also have formula of
the mean of return of stock as follows:

r̄i =
1

n

n∑
i=1

rit, (32)
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where n is number of stocks and rit is individual return on
stock.

Apart from that, we also need the value of the variance and
the covariance between two assets. The variance measures
how far each number in the set is from the mean. The
variance of the return of stock can be calculated by

σ2
v =

1

n− 1

n∑
t=1

(rit − r̄i)2, (33)

where n, rit, and r̄i are total number of returns on stocks,
individual return on stocks, and mean of returns of stocks,
respectively [48].

Meanwhile, covariance measures the directional relation-
ship between the returns on two assets. If positive covari-
ance then that asset returns move together while a negative
covariance means they move inversely. Covariance can be
calculated by formula as follows:

cov(ri, rj) =
1

n− 1

n∑
t=1

(rit − r̄i)(rjt − r̄j), (34)

where r̄i, rit are mean of return on stock and returns on stock
of asset i, and r̄j , rij are mean of return on stock and returns
on stock of asset j, where i 6= j.

For our cases, portfolio risk is symbolized as σ2
p and is

defined as the variance of the portfolio (see [46], [47]), i.e.:

σ2
p = XTVX (35)

where XT =
[
x1 x2 x3 x4 x5

]
, x1, x2, x3, x4 and x5 are

the invested fractions in BBCA.JK, UNVR.JK, BBRI.JK,
TLKM.JK, and ICBP.JK assets, respectively, and V is
variance-covariance matrix

V =


σ2
11 C12 C13 C14 C15

C21 σ2
22 C23 C24 C25

C31 C32 σ2
33 C34 C35

C41 C42 C43 σ2
44 C45

C51 C52 C53 C54 σ2
55

 (36)

where σ2
11, σ

2
22, σ

2
33, σ

2
44, σ

2
5,5 are the variance of BBCA.JK,

UNVR.JK, BBRI.JK, TLKM.JK, and ICBP.JK assets, re-
spectively, which can be calculated using formula (33).
Meanwhile, Ci,j are the covariance between i asset and j
asset, where i 6= j, i, j = 1, 2, 3, 4, 5, which can be obtained
from (34).

Based on the above discussion, we can formulate a port-
folio optimization problem by minimizing risk as:{

minimize : σ2
p = XTVX

subject to :
∑5
l=1 xl = 1

. (37)

The next step is to turn the minimization problem defined
(37) into an unconstrained minimization problem. We sup-
pose that x5 = 1− x1 − x2 − x3 − x4, then we can write

XT =
[
x1 x2 x3 x4 1− x1 − x2 − x3 − x4

]
. (38)

Therefore, the problem (37) changes into a unconstrained
optimization problem as follows:

min
X∈R4

XTVX. (39)

According to Table III, we have mean of return, and vari-
ance for BBCA.JK, UNVR.JK, BBRI.JK, TLKM.JK, and
ICBP.JK assets as follows:

TABLE IV: Mean of return and variance for Five Stocks

Asset Mean of Return Variance

BBCA.JK -0.00204 0.00134
UNVR.JK 0.00311 0.00127
BBRI.JK 0.00033 0.00273
TLKM.JK 0.00247 0.00166
ICBP.JK 0.00047 0.00142

Based on the value of return and mean return of each asset,
we can obtain the value of covariance as in the following
table.

TABLE V: Covariance of Five Stocks

BBCA UNVR BBRI TLKM ICBP

BBCA 0.00134 0.00052 0.00133 0.00059 0.00049
UNVR 0.00052 0.00127 0.00058 0.00053 0.00062
BBRI 0.00133 0.00058 0.00273 0.00091 0.00059
TLKM 0.00059 0.00053 0.00091 0.00166 0.00048
ICBP 0.00049 0.00062 0.00059 0.00048 0.00142

Then, from (36) and Table V, we have

V =


0.00134 0.00052 0.00133 0.00059 0.00049
0.00052 0.00127 0.00058 0.00053 0.00062
0.00133 0.00058 0.00273 0.00091 0.00059
0.00059 0.00053 0.00091 0.00166 0.00048
0.00049 0.00062 0.00059 0.00048 0.00142

 .
In this context, we employ our proposed method to solve
the problem (39) and compare with TTRMIL and MTTPRP
methods. We choose some initial points and we obtain the
result as in the following table:

TABLE VI: Test Result of TTRMIL Method for Solving
Portfolio Risk Optimization

Initial Point NOI NOF CPU Time

(0.25, 0.25, 0.25, 0.25)T 6 70 0.0013
(0.35, 0.15, 0.35, 0.15)T 7 80 9.9340e-04

(0.3, 0.3, 0.2, 0.2)T 6 70 7.8190e-04

TABLE VII: Test Result of MTTPRP Method for solving
portfolio risk optimization

Initial Point NOI NOF CPU Time

(0.25, 0.25, 0.25, 0.25)T 4 48 9.6400e-04
(0.35, 0.15, 0.35, 0.15)T 4 48 8.2000e-04

(0.3, 0.3, 0.2, 0.2)T 4 48 5.6400e-04

TABLE VIII: Test Result of MTTBZAU Method for Solving
Portfolio Risk Optimization

Initial Point NOI NOF CPU Time

(0.25, 0.25, 0.25, 0.25)T 4 48 5.7750e-04
(0.35, 0.15, 0.35, 0.15)T 4 48 5.9160e-04

(0.3, 0.3, 0.2, 0.2)T 4 48 5.2750e-04

Table VI, VII, and VIII display the numerical results of
MTTPRP, TTRMIL, and MTTBZAU methods in NOI, NOF,
and CPU time for, repectively. According to Table VI and
Table VIII, it is clear that the MTTBZAU performs the best in
NOI, NOF, and CPU time, which implies that the MTTBZAU
method is efficient than TTRMIL method.
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From Table VII and Table VIII, it is indicates that the
MTTBZAU is efficient than MTTPRP under CPU time only.
Both gave the same results for NOI and NOF. So, the
MTTBZAU method requires less time to obtain optimal
values, and applicable for portfolio selection problem.

Based on the test results, each method also gave the
following results:
• Minimum point: (0.3125, 0.2300,−0.1004, 0.3371)T .
• Minimum objective function value: σ2

p = 0.00071.
• Proportion of stock invested for BBCA.JK asset:
x1 = 0.3125.

• Proportion of stock invested for UNVR.JK asset:
x2 = 0.2300.

• Proportion of stock invested for BBRI.JK asset:
x3 = −0.1004.

• Proportion of stock invested for TLKM.JK asset:
x4 = 0.3371.

• Proportion of stock invested for ICBP.JK asset:
x5 = 0.2208.

Hence, selection of a portfolio with a minimum risk, which
can be done with the proportion of stock investment in
BBCA.JK asset is 31.25%, 23% in UNVR.JK, 33.71% in
TLKM.JK and 22.08% in ICBP.JK asset. While for BBRI.JK
asset, the value of the proportion of asset is −10.04%. A
negative sign indicates that the investor is short shelling.
Finally, the portfolio risk value is 0.00071, with expected
portfolio return is 0.00098.

B. Robotic Motion Control

In this section, MTTBZAU method is used to solve the
robotic motion control problem. The discrete-time kinematics
equation of a two-joint planar robot manipulator at the
position level is given in [49] as follows:

f(θk) = rk,

where θk = θ(tk) is the joint angle vector-effector position
vector in R2, rk is the end-effector position vector in R2 and
f(.) is the kinematics mapping function with known structure
and formulated as

f(θ) =

[
h1 cos(θ1) + h2 cos(θ1 + θ2)
h1 sin(θ1) + h2 sin(θ1 + θ2)

]
,

where h1 and h2 are the length of the rod links. For the
robotic motion control problem, we must solve the mini-
mization problem below at each computational time interval
tk ∈ [0, tf ]:

min
rk∈R2

1

2
‖rk − rdk‖2,

where rdk is the desired path vector at time instant tk. In this
problem, the end-effector is controlled to track a Lissajous
curve, declared as:

rdk =

 0.2 sin

(
πtk
5

)
+ 1.5

0.2 sin

(
2πtk

5
+
π

3

)
+

√
3

2

 .
The initial point chosen for the joint angle vector is set

as θ0 =
[
0,
π

3

]T
. For the length of the rod links, we set

h1 = h2 = 1 and the time duration in the close interval
[0, 10] is divided into 200 equal parts.

Fig. 4: Robot trajectories synthesized by MTTBZAU.

Fig. 5: End effector trajectory and desired path.

Fig. 6: Tracking residual error by MTTBZAU on x-axis.
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Fig. 7: Tracking residual error by MTTBZAU on y-axis.

We show the numerical results of the motion control
problem by MTTBZAU method in Figs. 4, 5, 6 and 7. Fig.
4 represents robot trajectories synthesized. Fig. 5 represents
the end effector trajectory and the desired path. Finally,
tracking eror on x-axis and y-axis represents in Figs. 6 and
7, respectively. Based on Figs. 4 and 5, we can see that
MTTBZAU successfully solves the robotic motion control
problem. As shown in Figs. 6 and 7, the residual error
produced by the MTTBZAU method is below 10−6. So, it
shows the effectiveness of the proposed method.

VI. CONCLUSION

In this paper, we proposed a new direction of three-term
conjugate gradient method and established the descent con-
dition based on some assumptions. The global convergence
properties is presented under the strong Wolfe line search.
Based on the numerical experiments, we conclude that the
our proposed method is the best and efficient for NOI,
NOF, and CPU time. The proposed method was extended to
solve applications problem of portfolio selection and robotic
motion control.
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