The Structure and Characterizaions of Normal Clifford Semirings

Jiao Han, Gang Li

Abstract—In this paper, we define normal Clifford semirings, which are generalizations of rectangular Clifford semirings. We also give the necessary and sufficient conditions for a semiring to be normal Clifford semiring and the spined product decomposition of normal Clifford semirings. We also discuss a special case of this kind of semirings, that is strong distributive lattices of rectangular rings.

Index Terms—rectangular rings, normal Clifford semirings, Distributive lattice congruence, normal band.

I. INTRODUCTION

A semiring $S = (S, +, \bullet)$ is an algebra with two binary operation "+", " \bullet " such that the additive reduct (S.+) and the multiplicative reduct (S, \bullet) are semigroups connected by ring-like distributive laws. A semiring $S = (S, +, \bullet)$ is called idempotent semiring, if $(\forall s \in S)s + s = s = s \bullet s$. [2] and [5] discussed left Clifford semirings and rectangular Clifford semirings respectively. In this paper we will generalize the rectangular Clifford semirings to the normal Clifford semirings. A semiring S is called a normal Clifford semiring if S is the distributive lattices of rectangular band semirings and the set of all additive idempotents of S is a normal band. Some structure and characterizations of normal Clifford semirings and a special case of this kind of semirings will be introduced by us.

II. CHARACTERIZATIONS AND STRUCTURE

Definition II.1. A semiring S is called a normal Clifford semiring if S is a distributive lattice of a rectangular ring and $E^+(S)$ is a normal band.

Similarly, we can get the definition of left normal Clifford semirings.

Theorem II.1. A semiring S is a normal Clifford semiring if and only if the additive reduct (S, +) of S is a normal orthogroup in which each maximal subgroup is abelian, $E^+(S) \subseteq E^{\cdot}(S)$ and S satisfies the following conditions. (1) $\forall s \in S, V^+(s) + s \supseteq s(s + V^+(s));$ (2) $\forall s, t \in S, V^+(st) + st \supseteq (t + V^+(t))s;$ (3) $\forall s, t \in S, V^+(s) + s \supseteq s + st + V^+(st)) + V^+(s).$

Proof: Necessity, if S is a normal Clifford semiring, then S is a distributive lattice D of rectangular rings $S_{\alpha}, \alpha \in$ D, so $E^+(S) \subseteq E^{\bullet}(S)$ and the additive reduct (S, +) of S is an upper semilattice D of rectangular commutative groups $(R_{\alpha}, +), \alpha \in D$, since $E^{\bullet}(S)$ is a normal band, the (S, +) is a normal orthogroup in which each maximal subgroup is abelian. So $S/\overset{+}{\mathcal{D}}$ is the distributive lattice D. It is clear that

$$s \overset{+}{\mathcal{D}} t \iff V^+(s) + s = t + V^+(t)$$
$$\iff (V^+(s) + s) \cap (t + V^+(t)) \neq \emptyset.$$

Due to \mathcal{D} is the distributive lattice congruence on semiring S, we get $s \mathcal{D} s^2$, $st \mathcal{D} ts$, $s(s+t) \mathcal{D} s$. Foy any $c \in sV^+(s)$, there exists $x \in V^+(s)$ such that c = sx, from the law of distribution, we have

$$s^{2} + sx + s^{2} = s(s + x + s) = ss = s^{2}$$

 $sx + s^{2} + sx = s(x + s + x) = sx$

then $sV^+(s) \subseteq V^+(s^2)$. Hence from

$$V^+(s) + s = s^2 + V^+(s^2) \supseteq s^2 + sV^+(s) = s(s + V^+(s)),$$

we can see

$$V^+(s) + s \supseteq s(s + V^+(s)) \quad (\forall s \in S).$$
 (II.1)

Also, by

$$V^+(st) + st = ts + V^+(ts) \supseteq ts + V^+(t)s = (t + V^+(t))s,$$

we have

$$V^+(st) + st \supseteq (t + V^+(t))s \quad (\forall s, t \in S).$$
(II.2)

From

$$V^{+}(s) + s = s + st + V^{+}(s + st) \supseteq (s + st) + V^{+}(st) + V^{+}(s),$$

we have

$$V^{+}(s) + s \supseteq s + st + V^{+}(st) + V^{+}(s) \quad (\forall s, t \in S).$$
 (II.3)

On the other hand, if the additive reduct (S, +) of semiring S is a normal orthogroup in which each maximal subgroup is abelian, then (S, +) is a semilattices $S/\overset{+}{\mathcal{D}}$ of rectangular commutative-groups $(S_{\alpha}, +)$. From the left and right distributive laws of multiplication over addition, we obtain that $\overset{+}{\mathcal{D}}$ is a congruence on (S, \bullet) . If (1) holds, through

$$s^{2} + V^{+}(s^{2}) \supseteq s^{2} + sV^{+}(s) = s(s + V^{+}(s))$$

we have

$$(s^2 + V^+(s^2)) \cap (V^+(s) + s) \neq \emptyset.$$

in other words for all $s \in S$, $s \overset{+}{\mathcal{D}} s^2$. If (2) holds, then, by

$$ts + V^+(ts) \supseteq ts + V^+(t)s = (t + V^+(t))s,$$

we have

$$(ts + V^+(ts)) \cap (V^+(st) + st) \neq \emptyset,$$

Jiao Han is a Master candidate of the school of Mathematics and Statistics, Shandong Normal University, Jinan, 250014, P. R. China (e-mail: 992641445@qq.com).

Gang Li is a Professor of the school of Mathematics and Statistics, Shandong Normal University, Jinan, 250014, P. R. China(corresponding author to provide e-mail: 1318152976@qq.com).

in other words, for $s, t \in S, st \overset{+}{\mathcal{D}} ts$. If (3) holds, then, by

$$s + st + V^+(s + st) \supseteq s + st + V^+(ts) + V^+(s),$$

we have

$$(s+st+V^+(s+st)\cap (V^+(s)+s\neq\emptyset,$$

in other words for all $s,t \in S$, $(s + st) \overset{+}{\mathcal{D}} s$. So $\overset{+}{\mathcal{D}}$ is a distributive lattice congruence on semiring S. Because $E^+(S) \subseteq E^{\bullet}(S)$, each $\overset{+}{\mathcal{D}}$ -class is a rectangular semiring. This indicates that S is a distributive lattice of rectangular semiring S_{α} . Since $E^+(S)$ is a normal band, the semiring S is a normal Clifford semiring.

corollary II.1. A semiring S is a normal Clifford semiring if and only if $\stackrel{+}{D}$ is a distributive lattice congruence on S, every $\stackrel{+}{D}$ -class is a rectangular semiring and $E^+(S)$ is a normal band.

With the help of the research method of theoremII.1, we can get the following proposition:

Proposition II.1. A semiring S is a left normal Clifford semiring if and only if the additive reduct (S, +) of S is a left normal orthogroup in which each maximal subgroup is abelian, $E^+(S) \subseteq E^{\cdot}(S)$ and S satisfies the following conditions.

(1) $\forall s \in S, V^+(s) + s \supseteq s(s + V^+(s));$ (2) $\forall s, t \in S, V^+(st) + st \supseteq (t + V^+(t))s;$ (3) $\forall s, t \in S, V^+(s) + s \supseteq s + st + V^+(st)) + V^+(s).$

Next, for some distributive lattice skeleton D, let $[D, L_{\alpha}, \varphi_{\alpha,\beta}]$ be the strong distributive lattice D decomposition of left normal band semiring L into left zero band semirings $L_{\alpha}, \bigcup_{\alpha \in D} T_{\alpha}$ be the distributive lattice D decomposition of Clifforg semiring T into rings $T_{\alpha}, [D, R_{\alpha}, \psi_{\alpha,\beta}]$ be the strong distributive lattice D decomposition of right normal band semiring R into right zero band semirings R_{α} , we have:

Theorem II.2. The spined product $L \times_D T \times_D R = \bigcup_{\alpha \in D} (L_{\alpha} \times T_{\alpha} \times R_{\alpha})$ of left normal band semiring $L = [D, L_{\alpha}, \varphi_{\alpha,\beta}]$, Clifford semiring $T = \bigcup_{\alpha \in D} T_{\alpha}$ and right normal band semiring $R = [D, R_{\alpha}, \psi_{\alpha,\beta}]$ with respect to the same distributive skeleton D is a normal Clifford semiring. On the other hand, every normal Clifford semiring can be expressed by such a spined product.

Proof: The spined product $L \\[-2mm] \\[-2mm$

Conversely, let S is a normal Clifford semiring, so (S, +) is a normal orthogroup and (S, +) is the spined product of left normal band $(L, +) = [D, (L_{\alpha}, +), \varphi_{\alpha,\beta}]$, Clifford semigroup $(T, +) = [D, (T_{\alpha}, +), \phi_{\alpha,\beta}]$ and right normal band $(R, +) = [D, (R_{\alpha}, +), \psi_{\alpha,\beta}]$, where $(L_{\alpha}, +)$ is a left zero band, $(T_{\alpha}, +)$ is a commutative group and $(R_{\alpha}, +)$ is a right zero band, and hence, in S, if $(i, x, \lambda) \in L_{\alpha} \times T_{\alpha} \times$

$$T_{\alpha}, (j, y, \mu) \in L_{\beta} \times T_{\beta} \times R_{\beta}$$
, then we have

$$(i, x, \lambda) + (j, y, \mu) = (i + j, x + y, \lambda + \mu)$$

where $i + j(x + y, \lambda + \mu)$ is the sum of i and j (x and y, λ and μ) in (L, +)((T, +), (R, +)). Next, we will study the product of $(i, x, \lambda) \in L_{\alpha} \times T_{\alpha} \times R_{\alpha}$ and $(j, y, \mu) \in L_{\beta} \times T_{\beta} \times R_{\beta}$. Let

$$(i, x, \lambda)(j, y, \mu) = (k, z, c).$$

we will get that k(z,c) only depends i and j (x and y, λ and μ). Let $(i, x, \lambda) \in L_{\alpha} \times T_{\alpha} \times R_{\alpha}$ and $(i, x', \lambda) \in L_{\alpha} \times T_{\alpha} \times R_{\alpha}$, then $(i, x, \lambda) \stackrel{+}{\mathcal{H}}(i, x', \lambda)$. Actually, $\stackrel{+}{\mathcal{H}}$ is a congruence on (S, \bullet) , so $(i, x, \lambda)(j, y, \mu) \stackrel{+}{\mathcal{H}}(i, x', \lambda)(j, y, \mu)$. Let

$$(i, x, \lambda)(j, y, \mu) = (k, z, c),$$

 $(i, x^{'}, \lambda)(j, y, \mu) = (k^{'}, z^{'}, c^{'}).$

we have $(k, z, c) \stackrel{+}{\mathcal{H}}(k', z', c')$. It is clear that k = k', c = c', so we can see k and c are not related to x. Similarly, we can prove k and c is not related to y. Also, in fact, $E^+(S)$ is an ideal of (S, \bullet) . So, for $(i, x, \lambda), (i', x, \lambda) \in L_{\alpha} \times T_{\alpha} \times R_{\alpha},$ $(j, y, \mu) \in L_{\beta} \times T_{\beta} \times R_{\beta}$, if

$$\begin{split} (i,x,\lambda)(j,y,\mu) &= (k,z,c), \\ (i^{'},x,\lambda)(j,y,\mu) &= (k^{'},z^{'},c^{'}) \end{split}$$

through the distributive laws of S, we have

$$\begin{split} (k, z, c) &= (i, x, \lambda)(j, y, \mu) \\ &= ((i, 0, \lambda) + (i^{'}, x, \lambda))(j, y, \mu) \\ &= (i, 0, \lambda)(j, y, \mu) + (i^{'}, x, \lambda)(j, y, \mu) \\ &= (k, 0, c) + (k^{'}, z^{'}, c^{'}) \\ &= (k, z^{'}, c^{'}) \end{split}$$

and hence z = z', c = c', that is z and c are not related to i. In the same way, through the distributive laws of S, we will get that z and c are not related to j. For $(i, x, \lambda), (i, x, \lambda') \in L_{\alpha} \times T_{\alpha} \times R_{\alpha}, (j, y, \mu) \in L_{\beta} \times T_{\beta} \times R_{\beta}$, if

$$\begin{split} (i,x,\lambda)(j,y,\mu) &= (k,z,c), \\ (i,x,\lambda^{'})(j,y,\mu) &= (k^{'},z^{'},c^{'}) \end{split}$$

in view of the distributive laws of S, we have

$$\begin{split} (k, z, c) &= (i, x, \lambda)(j, y, \mu) \\ &= ((i, x, \lambda^{'}) + (i, 0, \lambda))(j, y, \mu) \\ &= (i, x, \lambda^{'})(j, y, \mu) + (i, 0, \lambda)(j, y, \mu) \\ &= (k^{'}, z^{'}, c^{'}) + (k, 0, c) \\ &= (k^{'}, z^{'}, c) \end{split}$$

and hence k = k', z = z', that is k and z is not related to λ . In the same way, through the distributive laws of S, we can show that k and z are not related to μ . In summary, we can see k(z,c) only depends on i and j (x and y,λ and μ). Next, we can define a multiplication on L(T, R) as follows: for any $i \in L_{\alpha}, j \in L_{\beta}[x \in T_{\alpha}, y \in T_{\beta} \text{ and } \lambda \in R_{\alpha}, \mu \in R_{\beta})$,

$$\begin{split} ij &= k \Leftrightarrow (i,0,\lambda)(j,0,\mu) = (k,0,\lambda\mu); \\ [\lambda\mu &= c \Leftrightarrow (i,0,\lambda)(j,0,\mu) = (ij,0,c)]; \end{split}$$

Volume 51, Issue 3: September 2021

$$[xy = z \Leftrightarrow (i, x, \lambda)(j, y, \mu) = (ij, z, \lambda\mu)].$$

It is obvious that $(L, +, \bullet)[(T, +, \bullet), (R, +, \bullet)]$ is a semiring and by the result in [1], we know $(L, +, \bullet)[(T, +, \bullet), (R, +, \bullet)]$ is a left normal band semiring [clifford semiring, right normal band semiring].

This illustrates that semiring S is a spined product of left normal band semiring $L = [D, L_{\alpha}, \varphi_{\alpha,\beta}]$, Clifford semiring $T = \bigcup_{\alpha \in D} T_{\alpha}$ and right normal band semiring $R = [D, R_{\alpha}, \psi_{\alpha,\beta}]$.

Example 1. Let $S = \{e, a_1, a_2\}$. Define + and \bullet on S as below:

+	e	a_1	a_2	•	e	a_1	a_2
e	e	a_1	a_2	e	e	e	e
a_1	a_1	a_1	a_1	a_1	e	a_1	a_1
a_2	a_2	a_2	a_2	a_2	e	a_2	a_2

It is clearly that (S, +) is the semigroup $(\{a_1, a_2\}, +)^1$ with identity e; (S, \bullet) is the semigroup $(\{a_1, a_2\}, \bullet)^0$ with zero e, where $(\{a_1, a_2\}, +) = (\{a_1, a_2\}, \bullet)$ is a left zero band. We can see that the two side distributive laws of "+" over " \bullet " hold. So, $(S, +, \bullet)$ is a semiring and apparently it is a left regular band semiring. Obviously, $S_1 = (S, +, \bullet)$ is a left normal Clifford semiring.

If we define + and \bullet on S as below:

+	e	a_1	a_2	•	e	a_1	a_2
e	e	a_1	a_2	e	e	e	e
a_1	a_1	a_1	a_2	a_1	e	a_1	a_2
a_2	a_2	a_1	a_2	a_2	e	a_1	a_2

It is easy to prove $S_2 = (S, +, \bullet)$ is a right normal Clifford semiring. So the spined product $S_1 \times S_2$ is a normal Clifford semiring.

In the same way, with the help of the research method of theoremII.2, we can get conclusions as follows:

Proposition II.2. The spined product $L \succeq_D T = \bigcup_{\alpha \in D} (L_\alpha \times T_\alpha)$ of left normal band semiring $L = [D, L_\alpha, \varphi_{\alpha,\beta}]$ and Clifford semiring $T = \bigcup_{\alpha \in D} T_\alpha$ with respect to the same distributive skeleton D is a left normal Clifford semiring. Conversely, every left normal Clifford semiring can be expressed by such a spined product.

corollary II.2. [2] For some distributive lattice skeleton D, let $\bigcup_{\alpha \in D} L_{\alpha}$ be the distributive lattice D-decomposition of left regular band semiring L into left zero band semirings L_{α} , $\bigcup_{\alpha \in D} R_{\alpha}$ be the distributive lattice D-decomposition of Clifforg semiring S into rings R_{α} , we have:

The spined product $L \times_D S = \bigcup_{\alpha \in D} (L_\alpha \times R\alpha)$ of left normal band semiring L and Clifford semiring S with respect to the same distributive skeleton D is a left Clifford semiring. On the other hand, every left Clifford semiring can be expressed by such a spined product.

III. A SPECIAL CASE

Definition III.1. Let D be a distributive lattice. For each $\alpha \in D$, we associate α with a semiring S_{α} and assume that

 $S_{\alpha} \cap S_{\beta} = \emptyset$, if $\alpha \neq \beta$. Now for any $\alpha, \beta \in D$ with $\alpha \leq \beta$, *let*

$$\varphi_{\alpha,\beta}: S_{\alpha} \to S_{\beta},$$

be a semiring homomorphism satisfying the following conditions: For any $\alpha, \beta, \gamma \in D$,

$$\varphi_{\alpha,\alpha} = 1_{S_{\alpha}}, \text{ the identity mapping on } S_{\alpha}, \quad \text{(III.1)}$$

$$\varphi_{\alpha,\beta}\varphi_{\beta,\gamma} = \varphi_{\alpha,\gamma}, \ if \ \alpha \leqslant \beta \leqslant \gamma, \tag{III.2}$$

$$\varphi_{\alpha,\beta}$$
 is injective, if $\alpha \leq \beta$, (III.3)

$$S_{\alpha}\varphi_{\alpha,\gamma}S_{\beta}\varphi_{\beta,\gamma} \subseteq S_{\alpha\beta,\gamma}\varphi_{\alpha\beta,\gamma}, \ if \ \alpha+\beta=\gamma.$$
(III.4)

On $S = \bigcup_{\alpha \in D} S_{\alpha}$, "+" and "•" are defined as follows: For any $s \in S_{\alpha}$ and $t \in S_{\beta}$

$$s + t = s\varphi_{\alpha,\alpha+\beta} + t\varphi_{\beta,\alpha+\beta} \tag{III.5}$$

and

$$st = (s\varphi_{\alpha,\alpha+\beta}t\varphi_{\beta,\alpha+\beta})\varphi_{\alpha\beta,\alpha+\beta}^{-1}.$$
 (III.6)

With the above operations S is a semiring and each S_{α} is a subsemiring of S. Denote the system using $S = [D, S_{\alpha}, \varphi_{\alpha,\beta}]$ and call it the strong distributive lattice D of semirings S_{α}

Theorem III.1. Every strong distributive lattice $S = [D, S_{\alpha}, \varphi_{\alpha,\beta}]$ of rectangular semirings S_{α} is a normal Clifford semiring if and only if $E^+(S)$ is left unitary in (S, +).

Proof: Necessity, obviously, a strong distributive lattice $S = [D, S_{\alpha}, \varphi_{\alpha,\beta}]$ of rectangular semirings S_{α} is a normal Clifford semiring. Let $S_{\alpha} = I_{\alpha} \times T_{\alpha}$, where $I_{\alpha}(T_{\alpha})$ is a rectangular band semiring (ring), $\alpha \in D$. $\forall \alpha, \beta \in D$, if $(\lambda, s) \in S_{\alpha}, (\mu, 0) \in E^+(S_{\alpha}), (k, 0) \in E^+(S_{\alpha+\beta})$ such that $(\lambda, s) + (\mu, 0) = (k, 0)$, so

$$(\lambda, s)\varphi_{\alpha,\alpha+\beta} + (\mu, 0)\varphi_{\beta,\alpha+\beta} = (k, 0)$$

Denote

$$(\lambda, s)\varphi_{\alpha,\alpha+\beta} = (k', s') \in S_{\alpha+\beta},$$
$$(\mu, 0)\varphi_{\beta,\alpha+\beta} = (k'', 0) \in S_{\alpha+\beta}.$$

We have

$$(k^{'},s^{'})+(k^{''},0)=(k^{'}+k^{''},s^{'})=(k,0),$$

and so s' = 0, that is, $(\lambda, s)\varphi_{\alpha,\alpha+\beta} = (k', 0) \in E^+(S_{\alpha+\beta})$. Because $\varphi_{\alpha,\alpha+\beta}$ is injective, we get s = 0, that is, $(\lambda, s) \in E^+(S_{\alpha})$. We can see $E^+(S)$ is left unitary in (S, +).

On the other hand, if S is a normal Clifford semiring, then S is a distributive lattice D of the rectangular semirings $S_{\alpha} = I_{\alpha} \times T_{\alpha}$, where $I_{\alpha}(T_{\alpha})$ is a rectangular band semiring (ring), $\alpha \in D$, and $E^+(S)$ is a normal band. For any $\alpha, \beta \in$ D with $\alpha \leq \beta$ and a fixed $(\mu, 0) \in E^+(S_{\beta}), \forall (\lambda, s) \in S_{\alpha}$,

$$\varphi_{\alpha,\beta}: S_{\alpha} \to S_{\beta}$$

by

$$(\lambda, s)\varphi_{\alpha,\beta} = (\lambda, s) + (\mu, 0) + (\lambda, 0) \quad (\forall (\lambda, s) \in S_{\alpha})$$

Volume 51, Issue 3: September 2021

and $E^+(S)$ is a normal band, we have

$$\begin{split} &(\lambda,s) + (\mu,0) + (\lambda,0) \\ =&(\lambda,s) + (\lambda,0) + (\mu,0) + (\mu^{'},0) + (\mu,0) + (\lambda,0) \\ =&(\lambda,s) + (\lambda,0) + (\mu^{'},0) + (\mu,0) + (\mu,0) + (\lambda,0) \\ =&(\lambda,s) + (\lambda,0) + (\mu^{'},0) + (\mu,0) + (\lambda,0) \\ =&(\lambda,s) + (\mu^{'},0) + (\mu^{'},0) + (\mu^{'},0) + (\lambda,0) \\ =&(\lambda,s) + (\mu^{'},0) + (\mu,0) + (\mu^{'},0) + (\lambda,0) \\ =&(\lambda,s) + (\mu^{'},0) + (\lambda,0). \end{split}$$

So we can see that the definition of $\varphi_{lpha,eta}$ is not dependent on choice of the element in $E^+(S_\beta)$. Next,, for any $(\lambda, s), (\lambda', s') \in S_{\alpha}$, we have

$$\begin{aligned} &((\lambda, s) + (\lambda', s'))\varphi_{\alpha,\beta} = (\lambda, s) + (\lambda', s') + (\mu, 0) + (\lambda, 0) + (\lambda', 0) \\ &\text{If } (\lambda', s') + (\mu, 0) = (\mu', t'), \text{ then} \end{aligned}$$

$$\begin{aligned} &((\lambda, s) + (\lambda^{'}, s^{'}))\varphi_{\alpha,\beta} \\ =&(\lambda, s) + (\mu^{'}, 0) + (\lambda^{'}, s^{'}) + (\mu, 0) + (\lambda, 0) + (\lambda^{'}, 0) \\ =&(\lambda, s) + (\lambda, 0) + (\lambda, 0) + (\mu^{'}, 0) + (\lambda^{'}, 0) + (\lambda^{'}, s^{'}) \\ &+ (\lambda^{'}, 0) + (\lambda^{'}, 0) + (\mu, 0) + (\lambda, 0) + (\lambda^{'}, 0) \\ =&(\lambda, s) + (\lambda, 0) + (\mu^{'}, 0) + (\lambda, 0) + (\mu, 0) + (\lambda^{'}, 0) \\ &+ (\lambda^{'}, 0) + (\lambda^{'}, 0) + (\lambda, 0) + (\lambda^{'}, s^{'}) + (\lambda^{'}, 0) + (\lambda, 0) \\ &+ (\lambda^{'}, 0) + (\mu, 0) + (\lambda^{'}, 0) \\ =&(\lambda, s) + (\mu^{'}, 0) + (\lambda, 0) + (\lambda^{'}, s^{'}) + (\lambda^{'}, 0) + (\mu, 0) \\ &+ (\lambda^{'}, 0) \\ =&(\lambda, s) + (\mu^{'}, 0) + (\lambda, 0) + (\lambda^{'}, s^{'}) + (\mu, 0) + (\lambda^{'}, 0) \\ =&(\lambda, s) + (\mu^{'}, 0) + (\lambda, 0) + (\lambda^{'}, s^{'}) + (\mu, 0) + (\lambda^{'}, 0) \\ =&(\lambda, s) \varphi_{\alpha,\beta} + (\lambda^{'}, s^{'}) \varphi_{\alpha,\beta}. \end{aligned}$$

Alao, because $E^+(S)$ is an ideal of (S, \bullet) , we have

$$\begin{aligned} &((\lambda, s)(\lambda', s'))\varphi_{\alpha,\beta} \\ =&(\lambda, s)(\lambda', s') + (\mu, 0) + (\lambda\lambda', 0) \\ =&(\lambda, s)(\lambda', s') + (\lambda, s)(\mu, 0) + (\lambda, s)(\lambda', 0) + (\mu, 0)(\lambda', s') \\ &+ (\mu, 0) + (\mu, 0)(\lambda', 0) + (\lambda, 0)(\lambda', s') + (\lambda, 0)(\mu, 0) \\ &+ (\lambda, 0)(\lambda', 0) \\ =&[(\lambda, s) + (\mu, 0) + (\lambda, 0)][(\lambda', s') + (\mu, 0) + (\lambda', 0)] \\ =&(\lambda, s)\varphi_{\alpha,\beta}(\lambda', s')\varphi_{\alpha,\beta}. \end{aligned}$$

This indicates that $\varphi_{\alpha,\beta}$ is a semiring homomorphism. Obviously $\varphi_{\alpha,\beta}$ satisfies(III.1)(III.2). If $(\lambda, s), (\lambda', s') \in S_{\alpha}$, we have $(\lambda, s)\varphi_{\alpha,\beta} = (\lambda', s')\varphi_{\alpha,\beta}$, that is

$$(\lambda, s) + (\mu, 0) + (\lambda, 0) = (\lambda', s') + (\mu, 0) + (\lambda', 0).$$

Through left-adding $(\lambda, -s^{'})$ on both sides of the above formula, we get

$$(\lambda, s - s^{'}) + (\mu, 0) + (\lambda, 0) = (\lambda + \lambda^{'}, 0) + (\mu, 0) + (\lambda^{'}, 0)$$

Because $E^+(S)$ is left unitary in (S, +) and $(\mu, 0) +$ $(\lambda, 0), (\lambda + \lambda', 0) + (\mu, 0) + (\lambda', 0) \in E^+(S), (\lambda, s - s') \in E^+(S)$ $E^+(S)$, that is s = s', and so

$$(\lambda, s) + (\mu, 0) + (\lambda, 0) = (\lambda', s) + (\mu, 0) + (\lambda', 0)$$

If $(\mu^{'}, 0) \in S_{\alpha}$, then because $E^{+}(S_{\beta})$ is a rectangular band Now, by right-adding $(\lambda, -s) + (\mu, 0) + (\lambda, 0)$ on both sides of the above formula, we get

$$\begin{aligned} &(\lambda,s) + (\mu,0) + (\lambda,0) + (\lambda,-s) + (\mu,0) + (\lambda,0) \\ = &(\lambda^{'},s) + (\mu,0) + (\lambda^{'},0) + (\lambda,-s) + (\mu,0) + (\lambda,0) \end{aligned}$$

And hence

$$(\lambda, s)\varphi_{\alpha,\beta} + (\lambda, -s)\varphi_{\alpha,\beta} = (\lambda, s)\varphi_{\alpha,\beta} + (\lambda, -s)\varphi_{\alpha,\beta}.$$

Since $\varphi_{\alpha,\beta}$ is a homomorphism, we can see

$$[(\lambda, s) + (\lambda, -s)]\varphi_{\alpha,\beta} = [(\lambda', s) + (\lambda, -s)]\varphi_{\alpha,\beta},$$

that is

$$(\lambda, 0) + (\mu, 0) + (\lambda, 0) = (\lambda' + \lambda, 0) + (\mu, 0) + (\lambda' + \lambda, 0)$$

Then because $E^+(S)$ is a normal band, we get

$$(\lambda, 0) + (\mu, 0) + (\lambda, 0) = (\lambda', 0) + (\mu, 0) + (\lambda, 0).$$

Through left-multiplying $(\lambda, 0)$ on both sides of the above formula, we get

$$(\lambda, 0) + (k, 0) + (\lambda, 0) = (\lambda \lambda', 0) + (k, 0) + (\lambda, 0),$$

where $(k,0) = (\lambda,0)(\mu,0) \in E^+(S_{\alpha\beta}) = E^+(S_{\alpha})$, and hence $(\lambda, 0) = (\lambda \lambda', 0)$. So $\lambda = \lambda \lambda'$. Similarly, we can show $\lambda' = \lambda \lambda'$, so we obtain $\lambda = \lambda'$. This indicates that $\varphi_{\alpha,\beta}$ satisfies (III.3). Let $(\lambda, s) \in S_{\alpha}, (\mu, t) \in S_{\beta}, (k, 0) \in S_{\gamma},$ where $\alpha + \beta \leqslant \gamma$. Then

$$\begin{aligned} &(\lambda, s)\varphi_{\alpha,\beta}(\mu, t)\varphi_{\beta,\gamma} \\ =&[(\lambda, s) + (k, 0) + (\lambda, 0)][(\mu, t) + (k, 0) + (\mu, 0)] \\ =&(\lambda, s)(\mu, t) + (\lambda, s)(k, 0) + (\lambda, s)(\mu, 0) + (k, 0)(\mu, t) + (k, 0) \\ &+ (k, 0)(\mu, 0) + (\lambda, 0)(\mu, t) + (\lambda, 0)(k, 0) + (\lambda, 0)(\mu, 0) \\ =&[(\lambda, s)(\mu, t)]\varphi_{\alpha\beta,\gamma} \end{aligned}$$

This is because $(\lambda, s)(k, 0) + (\lambda, s)(\mu, 0) + (k, 0)(\mu, t) +$ $(k,0) + (k,0)(\mu,0) + (\lambda,0)(\mu,t) + (\lambda,0)(k,0) \in E^+(S_{\gamma}),$ and hence(III.4) holds. For $(\lambda, s) \in S_{\alpha}, (\mu, t) \in S_{\beta}$, if

$$(\lambda, s) + (\mu, t) = (k, c) \in S_{\alpha + \beta},$$

then

$$\begin{aligned} (\lambda, s) + (\mu, t) &= (\lambda, s) + (\mu, t) + (\mu, 0) \\ &= (\lambda, s) + (\mu, t) + (k, 0) + (\mu, 0) \\ &= (\lambda, s) + (\lambda, 0) + (\mu, t) + (k, 0) + (\mu, 0). \end{aligned}$$

We now let

$$(\lambda, 0) + (\mu, t) = (l, d) \in S_{\alpha + \beta},$$

then we have

$$\begin{aligned} (\lambda, s) + (\mu, t) &= (\lambda, s) + (l, 0) + (\lambda, 0) + (\mu, t) + (k, 0) + (\mu, 0) \\ &= (\lambda, s)\varphi_{\alpha, \alpha+\beta} + (\mu, t)\varphi_{\beta, \alpha+\beta}. \end{aligned}$$

This indicates that (III.5) holds. Also, for $(\lambda, s) \in$ $S_{\alpha}, (\mu, t) \in S_{\beta}, (k, 0) \in E^+(S_{\alpha+\beta})$, we have

$$\begin{split} & [(\lambda, s)(\mu, t)]\varphi_{\alpha\beta,\alpha+\beta} \\ = & (\lambda, s)(\mu, t) + (k, 0) + (\lambda, 0)(\mu, 0) \\ = & (\lambda, s)(\mu, t) + (\lambda, s)(k, 0) + (\lambda, s)(\mu, 0) + (k, 0)(\mu, t) \\ & + (k, 0) + (k, 0)(\mu, 0) + (\lambda, 0)(\mu, t) + (\lambda, 0)(k, 0) \\ & + (\lambda, 0)(\mu, 0) \\ = & [(\lambda, s) + (k, 0) + (\lambda, 0)][(\mu, t) + (k, 0) + (\mu, 0)] \\ = & (\lambda, s)\varphi_{\alpha,\alpha+\beta}(\mu, t)\varphi_{\beta,\alpha+\beta}. \end{split}$$

Volume 51, Issue 3: September 2021

Since $\varphi_{\alpha\beta,\alpha+\beta}$ is injective, we obtain

 $(\lambda, s)(\mu, t) = [(\lambda, s)\varphi_{\alpha, \alpha+\beta}(\mu, t)\varphi_{\beta, \alpha+\beta}]\varphi_{\alpha\beta, \alpha+\beta}^{-1}$

Hence, (III.6) holds and the prove is completed.

Similarly, we can verify the following conclusion by the research method of theoremIII.1:

Proposition III.1. Every strong distributive lattice $S = [D, S_{\alpha}, \varphi_{\alpha,\beta}]$ of left semiring S_{α} is a left normal Clifford semiring if and only if $E^+(S)$ is left unitary in (S, +).

REFERENCES

- [1] Sen, M. K., Guo, Y. Q., Shum, K. P.: A class of idempotent semirings. *Semigroup Forum*, **60**, 351-367(2000).
- [2] Guo, Y. Q., Shum, K. P., Sen, M. K.: The Semigroup Structure of Left Clifford Semirings. Acta Mathematica Sinica, English Senies Oct., 19(4), 783-792(2003).
- [3] Zhu, P. Y., Guo, Y.Q., Shum, K. P.: Structure and characteristics of left Clifford semigroups. *Science in China (Ser.A)*, 35(7), 791-805(1992).
- [4] Petrich, M., Reilly, N. R.: Completely Regular Semigroups. A Wiley-Interscience Publication (1999).
- [5] Zhang, J. J., Li, Y. H., Zhao, X. Z.: Structure and Characterizations of rectangular Clifford semirings. *Journal of Yunnan University*(*Natural Sciences Edition*), **30**(4), 338-343(2008).
- [6] APABhuniya, A.K.: Structure and some characterizations of left kclifford semirings. Asian-European Journal of Mathematics, 06(04), 1350056(2013).
- [7] Yang, L., Shao, Y.: Semirings for which multiplicative reducts are left normal orthogroups[J]. Pure & Applied Mathematics, 26(26), 146-150(2010).
- [8] Petrich, M.: A lattice of varieties of completely regular semigroups. Communications in Algebra, 42(4), 1397-1413(2014).
- [9] Zhao M.: Normal subsemigroup lattices of Clifford semigroup. Master's thesis of Lanzhou University of Technology[D], 2019.