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Abstract—In this paper, we define normal Clifford semirings,
which are generalizations of rectangular Clifford semirings.
We also give the necessary and sufficient conditions for a
semiring to be normal Clifford semiring and the spined product
decomposition of normal Clifford semirings. We also discuss a
special case of this kind of semirings, that is strong distributive
lattices of rectangular rings.

Index Terms—rectangular rings, normal Clifford semirings,
Distributive lattice congruence, normal band.

I. INTRODUCTION

A semiring S = (S,+, •) is an algebra with two binary
operation ”+”, ”•” such that the additive reduct (S.+) and
the multiplicative reduct (S, •) are semigroups connected
by ring-like distributive laws. A semiring S = (S,+, •) is
called idempotent semiring, if (∀s ∈ S)s+ s = s = s • s.
[2] and [5] discussed left Clifford semirings and rectangular
Clifford semirings respectively. In this paper we will
generalize the rectangular Clifford semirings to the normal
Clifford semirings. A semiring S is called a normal Clifford
semiring if S is the distributive lattices of rectangular band
semirings and the set of all additive idempotents of S is
a normal band. Some structure and characterizations of
normal Clifford semirings and a special case of this kind of
semirings will be introduced by us.

II. CHARACTERIZATIONS AND STRUCTURE

Definition II.1. A semiring S is called a normal Clifford
semiring if S is a distributive lattice of a rectangular ring
and E+(S) is a normal band.

Similarly, we can get the definition of left normal Clifford
semirings.

Theorem II.1. A semiring S is a normal Clifford semiring
if and only if the additive reduct (S,+) of S is a normal
orthogroup in which each maximal subgroup is abelian,
E+(S) ⊆ E·(S) and S satisfies the following conditions.
(1) ∀s ∈ S, V +(s) + s ⊇ s(s+ V +(s));
(2) ∀s, t ∈ S, V +(st) + st ⊇ (t+ V +(t))s;
(3) ∀s, t ∈ S, V +(s) + s ⊇ s+ st+ V +(st)) + V +(s).

Proof: Necessity, if S is a normal Clifford semiring,
then S is a distributive lattice D of rectangular rings Sα, α ∈
D, so E+(S) ⊆ E•(S) and the additive reduct (S,+) of S
is an upper semilattice D of rectangular commutative groups

Jiao Han is a Master candidate of the school of Mathematics and
Statistics, Shandong Normal University, Jinan, 250014, P. R. China (e-mail:
992641445@qq.com).

Gang Li is a Professor of the school of Mathematics and Statistics,
Shandong Normal University, Jinan, 250014, P. R. China(corresponding
author to provide e-mail: 1318152976@qq.com).

(Rα,+), α ∈ D, since E•(S) is a normal band, the (S,+)
is a normal orthogroup in which each maximal subgroup is

abelian. So S/
+

D is the distributive lattice D. It is clear that

s
+

D t⇐⇒ V +(s) + s = t+ V +(t)

⇐⇒ (V +(s) + s) ∩ (t+ V +(t)) 6= ∅.

Due to
+

D is the distributive lattice congruence on semiring

S, we get s
+

D s2, st
+

D ts, s(s+ t)
+

D s. Foy any c ∈ sV +(s),
there exists x ∈ V +(s) such that c = sx, from the law of
distribution, we have

s2 + sx+ s2 = s(s+ x+ s) = ss = s2;

sx+ s2 + sx = s(x+ s+ x) = sx,

then sV +(s) ⊆ V +(s2). Hence from

V +(s) + s = s2 + V +(s2) ⊇ s2 + sV +(s) = s(s+ V +(s)),

we can see

V +(s) + s ⊇ s(s+ V +(s)) (∀s ∈ S). (II.1)

Also, by

V +(st)+ st = ts+V +(ts) ⊇ ts+V +(t)s = (t+V +(t))s,

we have

V +(st) + st ⊇ (t+ V +(t))s (∀s, t ∈ S). (II.2)

From

V +(s)+s = s+st+V +(s+st) ⊇ (s+st)+V +(st)+V +(s),

we have

V +(s)+s ⊇ s+st+V +(st)+V +(s) (∀s, t ∈ S). (II.3)

On the other hand, if the additive reduct (S,+) of
semiring S is a normal orthogroup in which each maximal

subgroup is abelian, then (S,+) is a semilattices S/
+

D of
rectangular commutative-groups (Sα,+). From the left and
right distributive laws of multiplication over addition, we

obtain that
+

D is a congruence on (S, •). If (1) holds, through

s2 + V +(s2) ⊇ s2 + sV +(s) = s(s+ V +(s))

we have

(s2 + V +(s2)) ∩ (V +(s) + s) 6= ∅.

in other words for all s ∈ S,s
+

D s2. If (2) holds, then, by

ts+ V +(ts) ⊇ ts+ V +(t)s = (t+ V +(t))s,

we have

(ts+ V +(ts)) ∩ (V +(st) + st) 6= ∅,
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in other words, for s, t ∈ S,st
+

D ts. If (3) holds, then, by

s+ st+ V +(s+ st) ⊇ s+ st+ V +(ts) + V +(s),

we have

(s+ st+ V +(s+ st) ∩ (V +(s) + s 6= ∅,

in other words for all s, t ∈ S, (s + st)
+

D s. So
+

D is
a distributive lattice congruence on semiring S. Because

E+(S) ⊆ E•(S), each
+

D-class is a rectangular semiring.
This indicates that S is a distributive lattice of rectangular
semiring Sα. Since E+(S) is a normal band, the semiring
S is a normal Clifford semiring.

corollary II.1. A semiring S is a normal Clifford semiring if

and only if
+

D is a distributive lattice congruence on S, every
+

D-class is a rectangular semiring and E+(S) is a normal
band.

With the help of the research method of theoremII.1, we
can get the following proposition:

Proposition II.1. A semiring S is a left normal Clifford
semiring if and only if the additive reduct (S,+) of S is
a left normal orthogroup in which each maximal subgroup
is abelian, E+(S) ⊆ E·(S) and S satisfies the following
conditions.
(1) ∀s ∈ S, V +(s) + s ⊇ s(s+ V +(s));
(2) ∀s, t ∈ S, V +(st) + st ⊇ (t+ V +(t))s;
(3) ∀s, t ∈ S, V +(s) + s ⊇ s+ st+ V +(st)) + V +(s).

Next, for some distributive lattice skeleton D, let
[D,Lα, ϕα,β ] be the strong distributive lattice D decompo-
sition of left normal band semiring L into left zero band
semirings Lα,

⋃
α∈D Tα be the distributive lattice D decom-

position of Clifforg semiring T into rings Tα, [D,Rα, ψα,β ]
be the strong distributive lattice D decomposition of right
normal band semiring R into right zero band semirings Rα,
we have:

Theorem II.2. The spined product L×DT×DR =⋃
α∈D(Lα × Tα × Rα) of left normal band semiring L =

[D,Lα, ϕα,β ], Clifford semiring T =
⋃
α∈D Tα and right

normal band semiring R = [D,Rα, ψα,β ] with respect to the
same distributive skeleton D is a normal Clifford semiring.
On the other hand, every normal Clifford semiring can be
expressed by such a spined product.

Proof: The spined product L×DT×DR is clear a dis-
tributive lattice D of rectangular semiring Lα×Tα×Rα and
E+(S) = E+(L)×DE

+(T )×DE
+(R), where E+(L) is a

left normal band, E+(T ) = {0α|α ∈ D} and E+(R) is a
right normal band, in fact E+(S) is isomorphic to the spined
product of E+(L)×DE

+(R), so E+(S) is a normal band,
we can see L×DT×DR is a normal Clifford semiring.
Conversely, let S is a normal Clifford semiring, so (S,+)
is a normal orthogroup and (S,+) is the spined product
of left normal band (L,+) = [D, (Lα,+), ϕα,β ], Clifford
semigroup (T,+) = [D, (Tα,+), φα,β ] and right normal
band (R,+) = [D, (Rα,+), ψα,β ], where (Lα,+) is a left
zero band, (Tα,+) is a commutative group and (Rα,+) is
a right zero band, and hence, in S, if (i, x, λ) ∈ Lα × Tα ×

Tα, (j, y, µ) ∈ Lβ × Tβ ×Rβ , then we have

(i, x, λ) + (j, y, µ) = (i+ j, x+ y, λ+ µ)

where i + j(x + y, λ + µ) is the sum of i and j (x and
y, λ and µ ) in (L,+)((T,+), (R,+)). Next, we will study
the product of (i, x, λ) ∈ Lα × Tα × Rα and (j, y, µ) ∈
Lβ × Tβ ×Rβ . Let

(i, x, λ)(j, y, µ) = (k, z, c).

we will get that k(z, c) only depends i and j (x and y,
λ and µ). Let (i, x, λ) ∈ Lα × Tα × Rα and (i, x

′
, λ) ∈

Lα × Tα × Rα, then (i, x, λ)
+

H(i, x
′
, λ). Actually,

+

H is a

congruence on (S, •), so (i, x, λ)(j, y, µ)
+

H(i, x
′
, λ)(j, y, µ).

Let

(i, x, λ)(j, y, µ) = (k, z, c),

(i, x
′
, λ)(j, y, µ) = (k

′
, z

′
, c

′
).

we have (k, z, c)
+

H(k
′
, z

′
, c

′
). It is clear that k = k

′
, c = c

′
,

so we can see k and c are not related to x. Similarly, we can
prove k and c is not related to y. Also, in fact, E+(S) is an
ideal of (S, •). So, for (i, x, λ), (i

′
, x, λ) ∈ Lα × Tα × Rα,

(j, y, µ) ∈ Lβ × Tβ ×Rβ , if

(i, x, λ)(j, y, µ) = (k, z, c),

(i
′
, x, λ)(j, y, µ) = (k

′
, z

′
, c

′
)

through the distributive laws of S, we have

(k, z, c) = (i, x, λ)(j, y, µ)

= ((i, 0, λ) + (i
′
, x, λ))(j, y, µ)

= (i, 0, λ)(j, y, µ) + (i
′
, x, λ)(j, y, µ)

= (k, 0, c) + (k
′
, z

′
, c

′
)

= (k, z
′
, c

′
)

and hence z = z
′
,c = c

′
, that is z and c are not related to i.

In the same way, through the distributive laws of S, we will
get that z and c are not related to j. For (i, x, λ), (i, x, λ

′
) ∈

Lα × Tα ×Rα, (j, y, µ) ∈ Lβ × Tβ ×Rβ , if

(i, x, λ)(j, y, µ) = (k, z, c),

(i, x, λ
′
)(j, y, µ) = (k

′
, z

′
, c

′
)

in view of the distributive laws of S, we have

(k, z, c) = (i, x, λ)(j, y, µ)

= ((i, x, λ
′
) + (i, 0, λ))(j, y, µ)

= (i, x, λ
′
)(j, y, µ) + (i, 0, λ)(j, y, µ)

= (k
′
, z

′
, c

′
) + (k, 0, c)

= (k
′
, z

′
, c)

and hence k = k
′
, z = z

′
, that is k and z is not related to

λ. In the same way, through the distributive laws of S, we
can show that k and z are not related to µ. In summary, we
can see k(z,c) only depends on i and j (x and y,λ and µ ).
Next, we can define a multiplication on L (T , R) as follows:
for any i ∈ Lα, j ∈ Lβ[ x ∈ Tα, y ∈ Tβ and λ ∈ Rα, µ ∈
Rβ),

ij = k ⇔ (i, 0, λ)(j, 0, µ) = (k, 0, λµ);

[λµ = c⇔ (i, 0, λ)(j, 0, µ) = (ij, 0, c)];
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[xy = z ⇔ (i, x, λ)(j, y, µ) = (ij, z, λµ)].

It is obvious that (L,+, •)[(T,+, •), (R,+, •) is a semir-
ing and by the result in [1], we know (L,+, •) [(T,+, •),
(R,+, •)] is a left normal band semiring [clifford semiring,
right normal band semiring].
This illustrates that semiring S is a spined product of
left normal band semiring L = [D,Lα, ϕα,β ], Clifford
semiring T =

⋃
α∈D Tα and right normal band semiring

R = [D,Rα, ψα,β ].

Example 1. Let S = {e, a1, a2}. Define + and • on S as
below:

+ e a1 a2

e e a1 a2

a1 a1 a1 a1

a2 a2 a2 a2

• e a1 a2

e e e e

a1 e a1 a1

a2 e a2 a2

It is clearly that (S,+) is the semigroup ({a1, a2},+)1

with identity e; (S, •) is the semigroup ({a1, a2}, •)0 with
zero e, where ({a1, a2},+) = ({a1, a2}, •) is a left zero
band . We can see that the two side distributive laws of ”+”
over ”•” hold. So, (S,+, •) is a semiring and apparently it
is a left regular band semiring. Obviously, S1 = (S,+, •) is
a left normal Clifford semiring.

If we define + and • on S as below:

+ e a1 a2

e e a1 a2

a1 a1 a1 a2

a2 a2 a1 a2

• e a1 a2

e e e e

a1 e a1 a2

a2 e a1 a2

It is easy to prove S2 = (S,+, •) is a right normal Clifford
semiring. So the spined product S1×S2 is a normal Clifford
semiring.

In the same way, with the help of the research method of
theoremII.2, we can get conclusions as follows:

Proposition II.2. The spined product L×DT =
⋃
α∈D(Lα×

Tα) of left normal band semiring L = [D,Lα, ϕα,β ] and
Clifford semiring T =

⋃
α∈D Tα with respect to the same

distributive skeleton D is a left normal Clliford semiring.
Conversely, every left normal Clifford semiring can be ex-
pressed by such a spined product.

corollary II.2. [2] For some distributive lattice skeleton D,
let

⋃
α∈D Lα be the distributive lattice D−decomposition of

left regular band semiring L into left zero band semirings
Lα,

⋃
α∈D Rα be the distributive lattice D−decomposition

of Clifforg semiring S into rings Rα, we have:
The spined product L×DS =

⋃
α∈D(Lα×Rα) of left normal

band semiring L and Clifford semiring S with respect to the
same distributive skeleton D is a left Clliford semiring. On
the other hand, every left Clifford semiring can be expressed
by such a spined product.

III. A SPECIAL CASE

Definition III.1. Let D be a distributive lattice. For each
α ∈ D, we associate α with a semiring Sα and assume that

Sα ∩ Sβ = ∅, if α 6= β. Now for any α, β ∈ D with α 6 β,
let

ϕα,β : Sα → Sβ ,

be a semiring homomorphism satisfying the following con-
ditions: For any α, β, γ ∈ D,

ϕα,α = 1Sα , the identity mapping on Sα, (III.1)

ϕα,βϕβ,γ = ϕα,γ , if α 6 β 6 γ, (III.2)

ϕα,β is injective, if α 6 β, (III.3)

Sαϕα,γSβϕβ,γ ⊆ Sαβ,γϕαβ,γ , if α+ β = γ. (III.4)

On S =
⋃
α∈D Sα, ”+” and ”•” are defined as follows:

For any s ∈ Sα and t ∈ Sβ

s+ t = sϕα,α+β + tϕβ,α+β (III.5)

and
st = (sϕα,α+βtϕβ,α+β)ϕ

−1
αβ,α+β . (III.6)

With the above operations S is a semiring and each Sα is a
subsemiring of S. Denote the system using S = [D,Sα, ϕα,β ]
and call it the strong distributive lattice D of semirings Sα

Theorem III.1. Every strong distributive lattice S =
[D,Sα, ϕα,β ] of rectangular semirings Sα is a normal Clif-
ford semiring if and only if E+(S) is left unitary in (S,+).

Proof: Necessity, obviously, a strong distributive lattice
S = [D,Sα, ϕα,β ] of rectangular semirings Sα is a normal
Clifford semiring. Let Sα = Iα × Tα, where Iα(Tα) is a
rectangular band semiring (ring), α ∈ D. ∀α, β ∈ D, if
(λ, s) ∈ Sα, (µ, 0) ∈ E+(Sα), (k, 0) ∈ E+(Sα+β) such that
(λ, s) + (µ, 0) = (k, 0), so

(λ, s)ϕα,α+β + (µ, 0)ϕβ,α+β = (k, 0)

Denote
(λ, s)ϕα,α+β = (k

′
, s

′
) ∈ Sα+β ,

(µ, 0)ϕβ,α+β = (k
′′
, 0) ∈ Sα+β .

We have

(k
′
, s

′
) + (k

′′
, 0) = (k

′
+ k

′′
, s

′
) = (k, 0),

and so s
′
= 0, that is, (λ, s)ϕα,α+β = (k

′
, 0) ∈ E+(Sα+β).

Because ϕα,α+β is injective, we get s = 0, that is,
(λ, s) ∈ E+(Sα). We can see E+(S) is left unitary in
(S,+).

On the other hand, if S is a normal Clifford semiring,
then S is a distributive lattice D of the rectangular semirings
Sα = Iα×Tα, where Iα(Tα) is a rectangular band semiring
(ring), α ∈ D, and E+(S) is a normal band. For any α, β ∈
D with α 6 β and a fixed (µ, 0) ∈ E+(Sβ), ∀(λ, s) ∈ Sα,

ϕα,β : Sα → Sβ

by

(λ, s)ϕα,β = (λ, s) + (µ, 0) + (λ, 0) (∀(λ, s) ∈ Sα)
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If (µ
′
, 0) ∈ Sα, then because E+(Sβ) is a rectangular band

and E+(S) is a normal band, we have

(λ, s) + (µ, 0) + (λ, 0)

=(λ, s) + (λ, 0) + (µ, 0) + (µ
′
, 0) + (µ, 0) + (λ, 0)

=(λ, s) + (λ, 0) + (µ
′
, 0) + (µ, 0) + (µ, 0) + (λ, 0)

=(λ, s) + (λ, 0) + (µ
′
, 0) + (µ, 0) + (λ, 0)

=(λ, s) + (µ
′
, 0) + (µ

′
, 0) + (µ, 0) + (λ, 0)

=(λ, s) + (µ
′
, 0) + (µ, 0) + (µ

′
, 0) + (λ, 0)

=(λ, s) + (µ
′
, 0) + (λ, 0).

So we can see that the definition of ϕα,β is not depen-
dent on choice of the element in E+(Sβ). Next,, for any
(λ, s), (λ

′
, s

′
) ∈ Sα, we have

((λ, s)+(λ
′
, s

′
))ϕα,β = (λ, s)+(λ

′
, s

′
)+(µ, 0)+(λ, 0)+(λ

′
, 0)

If (λ
′
, s

′
) + (µ, 0) = (µ

′
, t

′
), then

((λ, s) + (λ
′
, s

′
))ϕα,β

=(λ, s) + (µ
′
, 0) + (λ

′
, s

′
) + (µ, 0) + (λ, 0) + (λ

′
, 0)

=(λ, s) + (λ, 0) + (λ, 0) + (µ
′
, 0) + (λ

′
, 0) + (λ

′
, s

′
)

+ (λ
′
, 0) + (λ

′
, 0) + (µ, 0) + (λ, 0) + (λ

′
, 0)

=(λ, s) + (λ, 0) + (µ
′
, 0) + (λ, 0) + (λ

′
, 0) + (λ

′
, s

′
)

+ (λ
′
, 0) + (λ

′
, 0) + (λ, 0) + (µ, 0) + (λ

′
, 0)

=(λ, s) + (µ
′
, 0) + (λ, 0) + (λ

′
, s

′
) + (λ

′
, 0) + (λ, 0)

+ (λ
′
, 0) + (µ, 0) + (λ

′
, 0)

=(λ, s) + (µ
′
, 0) + (λ, 0) + (λ

′
, s

′
) + (λ

′
, 0) + (µ, 0)

+ (λ
′
, 0)

=(λ, s) + (µ
′
, 0) + (λ, 0) + (λ

′
, s

′
) + (µ, 0) + (λ

′
, 0)

=(λ, s)ϕα,β + (λ
′
, s

′
)ϕα,β .

Alao, because E+(S) is an ideal of (S, •), we have

((λ, s)(λ
′
, s

′
))ϕα,β

=(λ, s)(λ
′
, s

′
) + (µ, 0) + (λλ

′
, 0)

=(λ, s)(λ
′
, s

′
) + (λ, s)(µ, 0) + (λ, s)(λ

′
, 0) + (µ, 0)(λ

′
, s

′
)

+ (µ, 0) + (µ, 0)(λ
′
, 0) + (λ, 0)(λ

′
, s

′
) + (λ, 0)(µ, 0)

+ (λ, 0)(λ
′
, 0)

=[(λ, s) + (µ, 0) + (λ, 0)][(λ
′
, s

′
) + (µ, 0) + (λ

′
, 0)]

=(λ, s)ϕα,β(λ
′
, s

′
)ϕα,β .

This indicates that ϕα,β is a semiring homomorphism. Obvi-
ously ϕα,β satisfies(III.1)(III.2). If (λ, s), (λ

′
, s

′
) ∈ Sα, we

have (λ, s)ϕα,β = (λ
′
, s

′
)ϕα,β , that is

(λ, s) + (µ, 0) + (λ, 0) = (λ
′
, s

′
) + (µ, 0) + (λ

′
, 0).

Through left-adding (λ,−s′) on both sides of the above
formula, we get

(λ, s− s
′
) + (µ, 0) + (λ, 0) = (λ+ λ

′
, 0) + (µ, 0) + (λ

′
, 0).

Because E+(S) is left unitary in (S,+) and (µ, 0) +
(λ, 0), (λ+ λ

′
, 0) + (µ, 0) + (λ

′
, 0) ∈ E+(S), (λ, s− s′) ∈

E+(S), that is s = s
′
, and so

(λ, s) + (µ, 0) + (λ, 0) = (λ
′
, s) + (µ, 0) + (λ

′
, 0)

Now, by right-adding (λ,−s)+ (µ, 0)+ (λ, 0) on both sides
of the above formula, we get

(λ, s) + (µ, 0) + (λ, 0) + (λ,−s) + (µ, 0) + (λ, 0)

=(λ
′
, s) + (µ, 0) + (λ

′
, 0) + (λ,−s) + (µ, 0) + (λ, 0)

And hence

(λ, s)ϕα,β + (λ,−s)ϕα,β = (λ
′
, s)ϕα,β + (λ,−s)ϕα,β .

Since ϕα,β is a homomorphism, we can see

[(λ, s) + (λ,−s)]ϕ
α,β

= [(λ
′
, s) + (λ,−s)]ϕα,β ,

that is

(λ, 0) + (µ, 0) + (λ, 0) = (λ
′
+ λ, 0) + (µ, 0) + (λ

′
+ λ, 0)

Then because E+(S) is a normal band, we get

(λ, 0) + (µ, 0) + (λ, 0) = (λ
′
, 0) + (µ, 0) + (λ, 0).

Through left-multiplying (λ, 0) on both sides of the above
formula, we get

(λ, 0) + (k, 0) + (λ, 0) = (λλ
′
, 0) + (k, 0) + (λ, 0),

where (k, 0) = (λ, 0)(µ, 0) ∈ E+(Sαβ) = E+(Sα), and
hence (λ, 0) = (λλ

′
, 0). So λ = λλ

′
. Similary, we can show

λ
′
= λλ

′
, so we obtain λ = λ

′
. This indicates that ϕα,β

satisfies (III.3). Let (λ, s) ∈ Sα, (µ, t) ∈ Sβ , (k, 0) ∈ Sγ ,
where α+ β 6 γ. Then

(λ, s)ϕα,β(µ, t)ϕβ,γ

=[(λ, s) + (k, 0) + (λ, 0)][(µ, t) + (k, 0) + (µ, 0)]

=(λ, s)(µ, t) + (λ, s)(k, 0) + (λ, s)(µ, 0) + (k, 0)(µ, t) + (k, 0)

+ (k, 0)(µ, 0) + (λ, 0)(µ, t) + (λ, 0)(k, 0) + (λ, 0)(µ, 0)

=[(λ, s)(µ, t)]ϕαβ,γ

This is because (λ, s)(k, 0) + (λ, s)(µ, 0) + (k, 0)(µ, t) +
(k, 0) + (k, 0)(µ, 0) + (λ, 0)(µ, t) + (λ, 0)(k, 0) ∈ E+(Sγ),
and hence(III.4) holds. For (λ, s) ∈ Sα, (µ, t) ∈ Sβ , if

(λ, s) + (µ, t) = (k, c) ∈ Sα+β ,

then
(λ, s) + (µ, t) = (λ, s) + (µ, t) + (µ, 0)

= (λ, s) + (µ, t) + (k, 0) + (µ, 0)

= (λ, s) + (λ, 0) + (µ, t) + (k, 0) + (µ, 0).

We now let

(λ, 0) + (µ, t) = (l, d) ∈ Sα+β ,

then we have
(λ, s) + (µ, t) = (λ, s) + (l, 0) + (λ, 0) + (µ, t) + (k, 0) + (µ, 0)

= (λ, s)ϕα,α+β + (µ, t)ϕβ,α+β .

This indicates that (III.5) holds. Also, for (λ, s) ∈
Sα, (µ, t) ∈ Sβ , (k, 0) ∈ E+(Sα+β), we have

[(λ, s)(µ, t)]ϕαβ,α+β

=(λ, s)(µ, t) + (k, 0) + (λ, 0)(µ, 0)

=(λ, s)(µ, t) + (λ, s)(k, 0) + (λ, s)(µ, 0) + (k, 0)(µ, t)

+ (k, 0) + (k, 0)(µ, 0) + (λ, 0)(µ, t) + (λ, 0)(k, 0)

+ (λ, 0)(µ, 0)

=[(λ, s) + (k, 0) + (λ, 0)][(µ, t) + (k, 0) + (µ, 0)]

=(λ, s)ϕα,α+β(µ, t)ϕβ,α+β .
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Since ϕαβ,α+β is injective, we obtain

(λ, s)(µ, t) = [(λ, s)ϕα,α+β(µ, t)ϕβ,α+β ]ϕ
−1
αβ,α+β

Hence, (III.6) holds and the prove is completed.
Similarly, we can verify the following conclusion by the

research method of theoremIII.1:

Proposition III.1. Every strong distributive lattice S =
[D,Sα, ϕα,β ] of left semiring Sα is a left normal Clifford
semiring if and only if E+(S) is left unitary in (S,+).
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