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Abstract—By considering the uncertainties, a new 
mathematical model of the complex networked systems has been 
obtained in this paper. With the appearance of the network 
induced delay, the model has been transformed to a model with 
control input delay. A new Laypunov function has been 
constructed. Then, a finite-time stable sufficient condition has 
been obtained by using linear matrix inequalities. Finally, three 
simulation examples are given to verify the effectiveness of the 
proposed method. 

Index Terms—Finite-time control, induced delay, state 
feedback, networked systems 

 

I. INTRODUCTION 

s we know, the networked control systems have more 

advantages
[1-3]

. But the existence of network often 
induces time delay. And the time delay usually reduces the 
performance of the control systems, or makes the control 
systems instable. Therefore, more and more experts and 

scholars have studied the networked systems
[4-6]

. Dacic and 
Nesic designed the observer of the networked systems by 
using linear matrix inequalities. The state-feedback controller 
has been obtained in [7]. Gao and Chen gave a new delay 
systems approach to obtain a sufficient condition with less 

conservatism
[8]

. Xie et al. studied the design approach of the 
state feedback guaranteed cost controller for uncertain 
networked systems. The sufficient condition for the existence 
of the networked guaranteed quadratic cost controller was 
obtained by using the matrix inequality approach. And then, 

the controller design method was derived
[9]

. In [10], the 
packet loss and network induced delay in sensor to controller 
channel and network induced delay in controller to actuator 
channel were fully considered. A new model of the networked 
control systems was established. Based on this new model, a 
new controller design method was proposed. 

The above research results are mainly concerned with the 
asymptotic stability of the networked control systems. In 
network engineering practice, the transient performance will 
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be the focus of research. Therefore, it is particularly important 
to study the finite-time stability of the networked systems [11 15] . 
Chen et al. studied the finite-time control problem of the 
uncertain switched systems with state and control input delays. 
The sufficient condition of finite-time boundedness for the 
networked switched systems has been obtained by using 
linear matrix inequality. The average dwell time was used to 
design the state feedback controller of the systems [16] . In [17], 
the finite-time control problem of a class of networked control 
systems with short time varying delay and sampling jitter have 
been studied. The closed-loop systems ware described as a 
discrete-time linear systems model, and a robust control 
method was proposed to solve the finite-time stable problem.  
Elahi et al. has studied the finite-time control problem of the 
uncertain discrete-time networked control systems with 
random communication delay. By using the method of cone 
complementary linearization, an iterative algorithm was 
proposed to calculate the parameters of the controller [18] . In 
[19], the finite-time stable conditions and the design strategy 
of state-feedback controller for networked systems were 
obtained by using Lyapunov stability theory and the linear 
matrix inequality method. Elahi et al. proposed a new control 
algorithm for the discrete-time networked systems, and 

designed the finite-time H  controller to overcome the 

adverse effects of the limited channel, delays and packet 
loss [20] . 

However, most of the above studies aim at the traditional 
systems. The research result on finite-time control of the 
networked systems is extremely rare, which motivates this 
paper. In this paper, we will see the network induced delay as 
input delay to model a new mathematical model. The effects 
of the uncertainties and the network induced delay on the 
systems performance are considered. With the aid of the 
linear matrix inequalities, a sufficient condition can be 
obtained to make the networked systems finite-time stable. 

II. MODELLING AND PRELIMINARIES 

Considering the following complex networked systems 
with uncertainty and external disturbance 

1( ) ( ( )) ( ) ( ) ( )x t A A t x t Bu t B t                    (1) 

the constant matrices 1, ,n n n l n mA R B R B R     are 

systems matrices. The systems states are ( ) nx t R , the 

systems input are ( ) mu t R  . The external disturbance 

( ) lt R   satisfies 

( ) ( )T t t d    

where 0d  is a constant. And the structural uncertainty  
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( ) n nA t R   satisfying  

( ) ( )A t DF t E                                  (2) 

where ( )F t is an unknown matrix satisfying 

( ) ( )TF t F t I  

and ,D E are constant matrices. 

Due to the introduction of the network, the network 
induced delay will inevitably appear in the control systems. 
We use  represent the network induced delay. Moreover, in 
the networked systems, the induced delay will affect the 
control effect. Therefore, the induced delay should be 
considered, we can obtained the mathematical model of the 
networked systems such as 

1( ) ( ( )) ( ) ( ) ( )x t A A t x t Bu t B t                  (3) 

Remark1. In the systems (3), the influence of network 
induced delay is considered, especially the influence of the 
delay in the controller. At the same time, the influence of 
external disturbance on the system performance is also 
considered. 

For the above networked system, we will design the 
following state- feedback controller to make the systems 
finite-time stable 

( ) ( )u t Kx t                               (4) 

where K  is a constant matrix to be determined. The 
closed-loop systems can be obtained as follows 

1( ) ( ) ( ) ( )x t Ax t BKx t B t                  (5) 

where 

( )A A A t    

Lemma1
[3]

. For a given n-order symmetric matrix 

11 12

21 22

S S
S

S S

 
  

 
 

where 11S is r-order matrix, then the following three 

conditions are equivalent 

(1) 0S   

(2) 
1

11 22 12 11 120,   0TS S S S S    

(3) 
1

22 11 12 22 120,   0.TS S S S S     

Lemma2
[14]

. For the given constant matrix ,Y D and E  with 

appropriate dimension, where Y is symmetric matrix, then 

0T T TY DFE E F D    for matrix F satisfying 
TF F I , if and only if there is a constant 0  , such that 

1 0.T TY DD E E      

III. RESULTS 

In this section, we aim to explore a sufficient condition for 
the finite-time stability of the systems (5). And then, the 
controller gain matrix K  will be determined. Furthermore, 
the matrix inequalities are equivalent to the linear matrix 
inequalities by using the matrix similarity transformation.  

3.1 The nonlinear sufficient condition of the finite-time 
stability 

Theorem1.  The time delay networked systems (5) can be 
finite-time stabilized with respect to 1 2( , , , , )c c T R d  

with 1 2c c , if there exist positive definite matrices 

, n nP T R   , l lS R  , R , scalar 0  and matrix m nK R   

satisfying the matrix inequality 

1

0 0

PBK PB

T

S

 
   
 
    

                     (6a) 

and 

1 max max max
2

min

( ( ) ( )(1 ) ( ))

( )

T
Tc P d S e T

c e
P


  




  


 


          (6b) 

where 

1/ 2 1/ 2

1/ 2 1/ 2

TPA A P T P

T R TR

P R PR


 

 

    









 

Proof. Using the positive definite matrix ,P T  to construct 

the following Lyapunov function 

-
( ) ( ) ( ) ( ) ( )

t
T T

t
V t x Tx d x t Px t


                 (7) 

With the solution of the equation (5), it is easy to obtain 

1

1

( ) ( ) ( ) ( ) ( ) 2 ( ) ( )

      ( ) ( ) ( ) ( )

         2 ( ) [ ( ) ( ) ( )]

      ( )( ) ( ) ( ) ( )

         2 ( ) ( ) 2 ( ) ( )

   

T T T

T T

T

T T T T

T T

V t x t Tx t x t Tx t x t Px t

x t Tx t x t Tx t

x t P Ax t BKx t B t

x t T PA A P x t x t Tx t

x t PBKx t x t PB t

 

 

 

 

 

    

   

   

     

  

 

   ( ) ( )T t t  

 

where 

1

( )

 ( ) ( )

( )

    0

0

T

x t

t x t

t

PA A P T PBK PB

T

 



 
  
 
  

  
 

    
   

 

Inserting the condition (6a) into the above inequality, we 
obtain 

( ) ( ) ( ) ( )TV t V t t S t                         (8) 

Multiplying the above inequality with te  , we have 

( ( )) ( ) ( )t t Td
e V t e t S t

dt
      

Integrating from 0 to t  on the both sides of the above 
inequality, it follows that 

0
( ) (0) ( ) ( )

t
t Te V t V e S d                    (9) 

Giving some transforms such as 1/ 2 1/ 2P R PR  , 
1/ 2 1/ 2T R TR  , it is obviously 

1 max max max

( ) ( ) ( ( ))

                 [ ( ( ) ( )(1 ) ( ))]

T

T t

x t Px t V x t

e c P d S e T   



    
 

(10) 
therefore 

min

1/ 2 1/ 2

( ) ( ) ( ) ( ) ( )

                             ( ) ( )

T T

T

P x t Rx t x t Px t

x t R PR x t

 






                  (11) 

From (10) and (11), the following inequality can be 
obtained  

1 max max max

min

( ) ( )

[ ( ( ) ( )(1 ) ( ))]
( )

T

T
T

x t Rx t

e
c P d S e T

P


  


    



    (12) 
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Combining (6b) and (12), it implies,  

2( ) ( ) , [0, ]Tx t Rx t c t T    

The networked systems (5) can be finite-time stabilized. 
Remark2. In theorem1, the Lyapunov function (7) with 
integral term is designed to effectively compensate the 
network induced delay. The delay-independence sufficient 
conditions (6a) and (6b) are conservative, but they are easy to 
be solved. 
Remark3. The matrix inequality (6a) in theorem1 is 
nonlinear to the variables P and K , and the condition (6b) is 
an inequality about the eigenvalue of the matrix, which cannot 
be directly solved. Next, with some appropriate matrix 
transformations, we will transform the condition (6a) and (6b) 
into linear matrix inequalities. 

3.2 The linearization of the finite time stable condition 

Theorem2. The controller 1( ) ( )u t KX x t  can make the 

networked systems (5) finite-time stable with respect 
to 1 2( , , , , )c c T R d  ( 1 2c c ), if there exist positive definite 

matrices n nX R  , n nT R  , l lS R  , matrix m nK R  , and 

scalars 1 2 30,  >0, , , 0      satisfying the linear matrix 

inequalities 

1

0 0
0

0

T T TAX XA T X DD BK B XE

T

S

I

 





    
 

   
   
 

    

 

 (13a) 
1 1

1R X R                            (13b) 

2 1T X                            (13c) 

30 S I                           (13d) 

3 2 1

1

2

(1 )

0 0

T Td e c e c  





   
 

   
    

           (13e) 

Proof. Inserting (2) into (6a), we obtain 

1( ( )) ( ( ))

0 0

TP A A t A A t P T P PBK PB

T

S





       
 

   
    

 

i.e. 

11 1

0 0

PBK PB

T

S

 
     
 
    

 

where 

11 ( ( ) ) ( ( ) )TP A DF t E A DF t E P T P        

   The above inequality can be rewritten as  

1

0

( ) ( ( ) ) 0 0

0 0 0

0

T

T

PA A P T P PBK PB

T

S

PDF t E DF t E P





   
 

  
    

 
 

   
   

 

i.e. 

   

1

0

0 ( ) 0 0 0 0 ( ) 0 0

0 0

T

T

T T

PA A P T P PBK PB

T

S

PD PD

F t E E F t





   
 

  
    

   
     
   
      

 

    With lemma2, there exists a constant 0  , such that the 
above inequality is equivalent to 

   

1

1

0

0 0 0 0 0 0 0

0 0

T

T

T

PA A P T P PBK PB

T

S

PD PD

E E





  

   
 

  
    

   
     
   
      

 

    By using the lemma1, it is obvious that the inequality (6a) is 
equivalent to 

1

0 0
0

0

T T TPA A P T P PDD P PBK PB E

T

S

I

 





    
 

   
   
 

    

 

The matrix -1 -1{ , , , }diag P P I I is multiplied at both sides of 

the above inequality, we have 
1 1

11 1

1 1 0 0
0

0

TBKP B P E

P TP

S

I





 

 

 
 

    
   
 

    

 

where 
1 1 1 1 1

11
T TAP P A P TP P DD            

By making some substitutions such as 
1 1 1 -1, ,K KP T P TP X P      

the above inequality is equivalent to (13a). 
In addition, the replacement is as follows 

1/ 2 1/ 2 1/ 2 1/ 2,X R XR P R PR       and 1/ 2 1/ 2T R TR  . From 

the inequalities (13b-13d), we can obtain 

max min

1

1
( ) , ( ) 1P P 


    

 and  

1
max max max 3

2

( ) ( ), ( )T P S


   


                (14) 

Reusing the lemma1, the inequality (13e) and the following 
inequality are equivalent. 

1
3 2

1 2

(1 ) 0T T c
d e c e  


 
                      (15) 

With (15), the condition (6b) follows that 

1 max max max

min

1
3

2 1

1
[ ( ( ) ( )(1 ) ( ))]

( )

(1 )

T

T

c P d S e T
P

c
d e





  





 





  

   

 


 (16) 

Inserting (15) into (16), the inequality (6b) is established. 
The proof is completed. 
Remark4. The nonlinear conditions in theorem1 have been 
transformed successfully into linear conditions in theorem2 
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by some appropriate matrix transformations. Although the 
number of the inequalities increases, but the obtained 
conditions (13a-13e) are linear for the variables 

1 2 3, , , , , , , ,X T S K      , which can be easily solved by using 

the control tool box in MATLAB. 

3.3 The design method of finite-time controller in the 
networked systems with state delay 

Considering the following complex networked systems 
with state delay and external disturbance 

     1( ) ( ) ( ) ( ) ( )hx t Ax t A x t h Bu t B t              (17) 

where hA is a constant matrix, h  is the state time delay. 

With the influence of network induced delay, the 
networked systems (17) can be changed as 

1( ) ( ) ( ) ( ) ( )hx t Ax t A x t h Bu t B t               (18) 

With the controller (4), the closed-loop systems can be 
obtained 

1( ) ( ) ( ) ( ) ( )hx t Ax t A x t h BKx t B t             (19) 

Theorem3.  The time delay networked systems (17) can be 
finite-time stabilized with respect to 1 2( , , , , )c c T R d  

with 1 2c c , if there exist positive definite matrices 

, n nP Q R   , n nT R  , l lS R   , and matrix m nK R   

satisfying the matrix inequalities 

1

0 0
0

0

hPA PBK PB

Q

T

S

 
    
   
 
    

           (20a) 

1 max max max max
2

min

( ( ) ( ) ( )) ( )(1 )

( )

T
Tc P h Q T d S e

c e
P


   




   


 


                             

(20b) 
where 

TPA A P Q T P       

Proof. Using the positive definite matrix ,Q,P T  to construct 

the Lyapunov function 

 
- -

( ( )) ( ) ( ) ( ) ( ) ( ) ( )
t t

T T T

t h t
V x t x t Px t x Qx d x Tx d


                                       

(21) 
With the solution of the systems (19), it is easy to obtain 

1

 ( ( )) ( )( ) ( ) 2 ( ) ( )

               2 ( ) ( ) 2 ( ) ( )

               ( ) ( ) ( ) ( )

               ( ) ( ) ( ) ( )

             = ( )(

T T T
h

T T

T T

T T

T T

V x t x t PA A P x t x t PA x t h

x t PBKx t x t PB t

x t Qx t x t h Qx t h

x t Tx t x t Tx t

x t PA A P Q T

 

 

   

  

   

   

  



1

) ( )

               2 ( ) ( ) 2 ( ) ( )

               2 ( ) ( ) ( ) ( ) 

T T
h

T T

x t

x t PA x t h x t PBKx t

x t PB t x t h Qx t h





   

   

 

               ( ) ( )

( ) ( )

( ) ( )
            

( ) ( )

( ) ( )

T

T

x t Tx t

x t x t

x t h x t h

x t x t

t t

 

 

 

  

   
        
    
   
   

 

where 

1

0 0

0

0

T
hPA A P Q T PA PBK PB

Q

T

   
 

   
   
 

    

 

Inserting the condition (20a) into the above inequality, we 
obtain 

( ( )) ( ) ( ) ( ) ( )

           ( ( )) ( ) ( )

T T

T

V x t x t Px t t S t

V x t t S t

  

  

 

 


                       (22) 

Multiplying the upper formula with te  , we have 

( ( )) ( ( )) ( ) ( )t t t Te V x t e V x t e t S t          

therefore 

( ( ( ))) ( ) ( )t t Td
e V x t e t S t

dt
      

Integrating from 0 to t  on both sides of the above 
inequality, it follows that 

0
( ( )) ( (0)) ( ) ( )

t
t Te V x t V x e S d             (23) 

Giving some transforms such as 1/ 2 1/ 2P R PR  , 
1/ 2 1/ 2T R TR  , it is obviously  

max 0

0

0

max

1/ 2 1/ 2

0
1/ 2 1/ 2

0
1/ 2 1/2

max

( ) ( ) ( ( ))

( (0)) ( )

[ (0) (0) ( ) ( )

( ) ( ) ( )(1 )]

[ (0) (0)

( ) ( )

( ) ( )

T

t
t t

t T T

h

T t

t T

T

h

T

x t Px t V x t

e V x d S e e d

e x Px x Qx d

x Tx d d S e

e x R PR x

x R QR x d

x R TR x d d

  











  

  

   

  

   















 

 

  





 

















max

0

max

0

max max-

1 max max

max max

( )(1 )]

[ ( ) (0) (0)

( ) ( ) ( )

( ) ( ) ( ) ( )(1 )]

[ ( ( ) ( )

( )) ( )(1 )]

t

t T

T

h

T t

T

t

S e

e P x Rx

Q x Rx d

T x Rx d d S e

e c P h Q

T d S e















   

    

 

 















  

 

  















 

(24) 
Obviously 

1/ 2 1/ 2
min( ) ( ) ( ) ( ) ( ) ( ) ( )T T Tx t Px t x t R PR x t P x t Rx t    (25) 

therefore 

1 max max max max

min

( ) ( )

[ ( ( ) ( ) ( )) ( )(1 )]

( )

T

T T

x t Rx t

e c P h Q T d S e

P

    



   


 



                  (26) 
From (20b) and (26), the following inequality can be 

obtained  

2( ) ( ) , [0, ]Tx t Rx t c t T   . 

The time delay networked systems (17) can be finite-time 
stabilized. 

By using the proof method in theorem 2, it is easy to get the 
following conclusion. 

Theorem4. The controller 1( ) ( )u t KX x t  can make the 

delay networked systems (17) finite-time stable with respect 
to 1 2( , , , , )c c T R d  ( 1 2c c ), if there exist positive definite 
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matrices , n nX Q R  , n nT R  , l lS R  ,matrix m nK R  , 

and scalars 1 2 30,  , , 0     satisfying the linear matrix 

inequalities 

1

0 0
0

0

hA X BK B

Q

T

S

 
 
   

   
 
     

             (27a) 

1 1
1R X R                                (27b)  

2 1Q X                                    (27c) 

3 1T X                                    (27d) 

40 S I                                  (27e) 

 

4 2 1

1

2

3

(1 )

0 0
0

0

T Td e c e c h  







   
 

   
   
 

     

   (27f) 

where 
TAX XA Q T X       

(The proof is omitted.) 

IV. SIMULATION 

Example 1 

In order to illustrate the convenience of calculation of the 
proposed method, the networked systems in the form of (3) 
will be considered, where 

1

1 2 1 0.6
, , ,

0 3 0.5 0.3
A B B

     
            

 

 
1

, ( ) 0.5cos , 0.5 0.2
0.7

D F t t E
 

   
 

 

1.   
By solving the linear matrix inequality (13), we obtain 

 

1 2

3

1.4650 0.6548 0.6937 4.4542
, ,

0.6548 0.4670 4.4542 3.6730

2.6735 0.3435
, 1.5408 2.4068 ,

0.3435 1.6358

0.4359, 1.3176, 0.4531, 1.3551,

0.1392.

X T

S K

   



   
    

   

 
   

 

   



 

The state-feedback controller can be obtained 

 1( ) ( ) 8.9882 17.7565u t KX x t    

Example 2 

In order to verify the effectiveness of the control design 
method proposed in this paper, the networked systems (3) is 
considered, where 

1

6 1 1 0.5 0.1

0 2 0 , 0 , 1 ,

0 2 3 1 0.2

A B B

     
              
           

 

   0.1 0.2 0.3 , 0.1 0.03 0.1
T

D E      

( ) cos , 0.5.F t t    

By solving the linear matrix inequality (13), we obtain 

 1( ) ( ) 2.5783 3.7851 1.5546 ( )u t KX x t x t    

If we select the initial states 

3

(0) 1

6

x

 
  
 
  

 

the response curves of the systems states 1 2 3( ), ( ), ( )x t x t x t  

are obtained in Fig.1-3. 

 
Fig.1 The response curve of the systems state 1( )x t  

 
Fig.2 The response curve of the systems state 2 ( )x t  

 
Fig.3 The response curve of the systems state 3( )x t  

It can be seen from Fig.1-3 that the three systems states can 
converge to 0 in 10 seconds. Therefore, the control design 
method proposed in this paper is feasible and effective. 
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Example 3 

To examine our proposed controller and compare with 
reference [14], for simplicity, we consider the uncertain 
networked control systems (3), where 

 

1

5 1 0.1 0.1 0.01
, , , ,

2 2 0.5 0.1 0.2

( ) sin , 1 1 , 0.1.

A B B D

F t t E 

       
                 

  

 

By using the algorithm in [14], the state feedback controller 
can be obtained as 

( ) [1.3445  2.4457] ( )u t x t   

On the other, we solve the linear matrix inequality (13), the 
state feedback controller can be obtained by using the 
proposed approach in this paper 

( ) ( ) [0.2478  0.1458] ( )u t Kx t x t    

(1) Comparison of the simulation results of the systems 
states 

By selecting the initial states as 

3
(0)

2
x

 
  

 
 

the response curves of the systems states 1 2( ), ( )x t x t  are 

obtained in Fig.4 and Fig.5. 

 
Fig.4 The response curves of the systems state 1( )x t  

 
Fig.5 The response curves of the systems state 2 ( )x t  

In the Fig.4, the solid line is the response curve of the 
systems states with algorithm in theorem2. The dot-dashed 
line presents the response with algorithm in reference [14]. 
The convergence speed of the solid line is obviously faster 
than that of the dot-dashed line. The smoothness of the solid 
line is slightly better than that of the dot-dashed line. But the 

overshoot of the solid line is slightly larger than that of the 
dot-dashed line.  

In the Fig.5, the solid line is the response curve of the 
systems states with algorithm in theorem2. The dot-dashed 
line presents the response with algorithm in reference [14]. 
The convergence speed and smoothness of solid line are 
especially good. The convergence speed of the dot-dashed line 
is slow, and there is a large frequency oscillation. The solid 
line has no overshoot, while the dot-dashed line has larger 
overshoot. The control effect of theorem 2 is obviously better 
than the algorithm in reference [14]. 

 (2) Verification of the systems performance 
In order to compare the systems performance, the dispersed 

IAE function will be used as performance indicators to 
evaluate the system performance 

0
| ( ) |IAE e t dt



   

The curves of IAE function that use algorithm in theorem2 
and the algorithm in reference [14] are shown in the Fig.6. 

 
Fig.6 The curves of IAE of the two algorithms 

The curve of IAE function obtained by the algorithm in 
theorem2 is represented by solid line, and the curve of IAE 
function obtained by the algorithm in reference [14] is 
represented by dot-dashed line. It can be seen from the figure 
that over time, the change of algorithm used in theorem 2 is 
significantly smaller than that used in reference [14]. 
Therefore, the algorithm in theorem2 can improve the systems 
performance more effectively than that in reference [14]. 

V. CONCLUSION 

In order to study the finite-time stabilization problem of the 
networked systems, we see the network induced delay as the 
input time delay to model a new mathematical model. With 
the network induced delay, a new Laypunov function has been 
explored to reduce conservatism of the sufficient condition. 
Therefore, the results of this paper are more practical. 

On the other hand, it should be pointed out that the results 
based on linear matrix inequality are still conservative. With 
the development of research, it will be more interesting to 
explore some more effective conditions by using some 
recently developed technologies dealing with delay and 
uncertainty. In addition, it is worth mentioning that the results 
of this paper can be extended to other networked control 
systems, such as distributed delay, fast varying delay, random 
delay, etc., which will be our next research work. For the 
nonlinear time-delay network system, the corresponding 
finite-time control problem can be solved by using T-S fuzzy 
method. 
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