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Abstract—Recently, many deterministic mathematical model
have been extended to fractional model, using some fractional
differential equation. Numerous studies had shown that these
fractional models are more realistic to represent the daily life
phenomena. This paper focused on extending the model of a
SIR epidemic to fractional model. More specifically, the study
discussed the fractional SIR epidemic model with sub-optimal
immunity, nonlinear incidence and saturated recovery rate.
The fractional ordinary differential equations were defined in
the sense of the Caputo derivative. Stability analysis of the
equilibrium points of the models for the fractional models were
presented. Furthermore, we investigated the Hopf bifurcation
analysis. The result obtained showed that the model undergo
Hopf bifurcation for some values, and further confirmed that
choosing an appropriate figure of the fractional α ∈ (0, 1]
increase the stability region of the equilibrium points.

Index Terms—Saturated recovery rate, fractional-order, sta-
bility, Hopf bifurcation.

I. INTRODUCTION

THE study of epidemiology, which involves the transmis-
sion of diseases within a population, has recently gained

more attention from researchers in various fields. The severe
active respiratory syndrome (SARS) outbreak in 2003 and
Ebola outbreak in 2014 had further lead to numerous research
and publications most of which have advanced the topic
in many areas. Furthermore, numerous infectious diseases
models have been developed in order to study the dynamical
process of epidemics. These models are able to integrate the
realistic aspects of how the diseases is been spread.

One of the classical deterministic models was introduced
in 1927 by Kermack and McKendrick. This is a very simple
but powerful model. It simplicity has led other researchers
to advanced the model in many areas. The researchers
established a simple susceptible-infected-recovered model
known as SIR Model. Susceptible individuals are those
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that are liable to be infected with transmission rate that is
proportional to the infected persons within the population.
The infected individuals recover or get delivered at a constant
rate.

In this research directions, mathematicians are among
the prominent scholars who have been contributing to the
skills of epidemiology by modeling various outbreak of
diseases. One of the major areas of epidemiological research
is focus on the rate based differential equations models.
Numerous researches have been carried out in mathematics
and epidemiology with the aim of introducing more realistic
epidemic models, including works by [1], [2], [3]. In recent
years, the research on ordinary differential equations (ODEs)
epidemic modelling had been shifted to fractional differential
equations (FDEs) model. Several fractional epidemic models
have been studied [4], [5], [6], [7], [8].

Fractional calculus, which is an important branch of
mathematics has been in existence since 1695. Numerous
investigation has shown that the fractional calculus has the
superiority accuracy when describing several non-classical
phenomena in engineering applications and basic science,
such as biological system [9], finance system [10], than the
integer-order. On the other hand, the well-known Caputo
fractional derivative defined by Michele Caputo in 1967 and
famous Riemann-Liouville fractional integral are the main
subjects of many studies in fractional calculus [11], [12],
[13]. The research work in this area is has been gaining
a lot of attention. These include the study of theory of
fractional calculus [14], [15], efficient numerical schemes
[16], [6], [17] and application on physical problem [18].
Furthermore, the stability region of the system is increased
using the fractional derivative, which is more suitable than
integer order [19].

Recently, [19] studied the fractional-order of epidemic
models with constant recruitment rate, mass action incidence
and variable population size, and discussed the reasons
for considering fractional order to include that fractional
differential equations used to obtain errors arising from
the neglected parameters in modelling real phenomena to
a bearing minimum. Their research concluded that fractional
epidemic models are good in modelling biology, economic
and social system than integer order.

A fractional derivative SIR model was recently studied
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by [20]. The research focused on a stochastic process of
an infected individual with a time-since-infection. The re-
searchers built more on what was established by Kermack
and McKendrick. The model was extended to fractional
order and solved. The obtain result indicate that the system
parameters allow the disease-free and endemic. However, the
authors failed to identify any kind of disease that would give
rise to the epidemic model in fractional order.

A SIS model with vaccination was developed and the
report obtained show that the model exhibits a backward
bifurcation [21]. Also, a stochastic SIR model with vac-
cination [22] and stoichiometric [38] was introduced and
the result confirmed that the model has multiple endemic
equilibria. Many of these SIR and SIS models are yet
to be studied under the fractional order equation (FODs),
rather, researchers only focused on models based on ordinary
differential equations (ODEs). Thus, this paper extend a SIR
to a fractional-order and obtained it Hopf bifurcation analysis
.

A. Model Description

Ruan and Wang [53] in [24] proposed a model on SIR
epidemic, that describe a specific nonlinear incidence rate
(βSI2)/(1 + aI2), with

dS

dt
= A− βSI21 + aI2 − µS + wR, (1)

dI

dt
= βSI21 + aI2 − (µ+ γ)I,

dR

dt
= γI − (µ+ w)R.

The susceptible recruitment and the disease transmission
rate are A and β, respectively. The nature death is represented
as µ, while the individual rate of recovery of infective and
the individual rate of removed are represented as γ and w,
respectively.

An attempt was done for the dynamic simulation of the
disease transmission in [25]. The authors introduced r as the
constant remove as a result of the infectious treatment as
given bellow;

dS

dt
= −ISβ − µS +A,

dI

dt
= ISβ − I (γ + µ)− hI, (2)

dR

dt
= γ I + hI −Rµ

where I > 0 for r = h(I) and with I = 0, I(h) = 0.
However, a wider epidemic model that is more specific

with sub-optimal immunity, incidence nonlinear rate with
rate of saturated recovery/treatment was further introduced
by [27] as follow;

dS

dt
= A−βSI2+σT (I)−µS, dI

dt
= βSI2−T (I)−µI, (3)

dR

dt
= (1− σ)T (I)− µR

This paper aim to extend the above model (3) to fractional
model
We present the definitions of fractional integral-order and the
Caputo fraction derivative-order as follow:

B. Definition 1

The fractional integral with fractional order β ∈ ℜt of
function x (t) , t > 0 is defined as:

Iβx (t) =

∫ t

0

(t− s)
β−1

x (s)

Γ (β)
ds (4)

where t = t0 refers to initial time and Γ (β) is the function
of Euler’s gamma.

C. Definition 2

The Caputo fractional derivative with order α ∈ n − 1, n
of function x (t) , t > 0 is described as:

cD t
αx (t) = In−αDnx (t) , Dt =

d

dt
. (5)

II. STABILITY ANALYSIS OF FRACTIONAL ORDER
SYSTEM

In this section, we examine the local stability analysis,
established on stability theory of fractional-order system.
It is worthy to understand that the point of equilibrium of
fractional order is the same with the corresponding integer,
but their conditions are quite different. For integer order,
the equilibrium point is not stable when the eigenvalue is
non-negative, while that of the fractional order can still be
stable even when the eigenvalue is non-negative.

Theorem .1: The necessary and sufficient condition for
Caputo fractional derivative to be asymptotically stable
locally, with system (7) where α ∈ (0, 1] is if and only if
λi of the Jacobian, ∂

∂yf (t, y) , computed at the points of
equilibrium is contented by

∣∣arg λi| > απ
2 , i = 1, 2, 3.

Proof: Consider the commensurate fraction-order sys-
tem given below:

cD t
αyi (t) = f (t, yi (t)) , yi (to) = y0 (6)

where cD t
α is the Caputo fractional derivative of order α ∈

(0, 1].
In order to evaluate the equilibrium points, let put

cD t
αyi (t) = 0 ⇒ fi (f1

eqn , f2
eqn , f3

eqn) = 0. (7)

for which we can get the equilibrium points
f1

eqn , f2
eqn , f3

eqn .

Now, to obtain the asymptotic stability, we consider the
system cD t

αf (x) = f (x, y) in the sense of Caputo and
to find the asymptotic stability, let yi (t) = yi

eqnϵi (t). The
equilibrium point (f1eqn , f2eqn , f3eqn) is locally asymptoti-
cally stable when the Jacobian eigenvalues

m1,1 m1,2 m1,3

m2,1 m2,2 m2,3

m3,1 m3,2 m3,3


evaluated at the equilibrium point is satisfied by
|arg λ1,2,3| > απ

2 [19], [39], [40], [41].

IAENG International Journal of Applied Mathematics, 51:3, IJAM_51_3_09

Volume 51, Issue 3: September 2021

 
______________________________________________________________________________________ 



III. EXISTENCE OF EQUILIBRIA

System (3) was reduced to two equations as given in
system (2) after summation. i.e. from N(t) = S(t) + I(t) +
R(t) where dN

dt = −µ t + A was got and resulted into
N (t) = A

µ (1−e−µt)+N0e−µt . As t → ∞. We arrive N(t)

as a constant value, A
µ = S + I +R.

dI

dt
= β(Aµ− I −R)I2 − vI − cI

1 + aI
− µI, (8)

dR

dt
= k(vI +

cI

1 + aI
)− µR.

The conditions below are for the non-negative initial:

I (0) = I0, R (0) = R0 (9)

The above integer-order derivatives of system (8) is re-
placed in the sense of Caputo with the fractional derivatives
of order 0 < α ≤ 1 as follows:

cD t
αI (t) = β(Aµ− I −R)I2 − vI − cI

1 + aI
− µI, (10)

cD t
αR (t) = k(vI +

cI

1 + aI
)− µR.

where 0 < α ≤ 1. All parameters used represents positive
constants.

We shall use R0 to establish the stability and existence con-
ditions of both endemic and disease-free for the equilibrium
points, which is the number of people that one sick person
will infect on average.

There are two equilibria in the system (10) when equating
them to zero, namely, the active of endemic equilibrium,
Ee points and the disease-free equilibrium, E0 point. To
establish the stability of the equilibrium points for both E0

and Ee of system (10), we apply the lemma defined below.
Lemma 3.1: Let K = β(kv+kc+µ−Aa)

βa(kv+µ) , M =
−βA+vµa+µ2a

βa(kv+µ) ,N = cµ+µ2+vµ
βa(kv+µ) and q = M − 1

3K
2,

p = 2
27K

3− 1
3KM+N ,= p2

4 + q3

27 . Assuming α < ck+vc+µ
A

or α < Aβ
µ2+vµ , then,

(a) If < 0 , model (10) possesses two non-negative equi-
libria, Ej

(
Ii,

kIi(c+avIi+v)
(aIi+1)µ

)
for i = 1, 2.

(b) If = 0 , model (10) possesses a unique non-negative
equilibrium, E∗

(
I∗, kI

∗(c+avI∗+v)
(1+aI∗)µ

)
.

(c) If > 0, model (10) possesses no non-negative equilib-
rium..
Proof: Assume equilibrium occurs at te , then

cDα
t I (t)e = 0 , cDα

t R (t)e = 0 with N(te) = A/µ(1 −
e−µte)+N0e

−µte := Ae. Thus from the second equation of
(10), we obtain R = kI(v(1+aI)+c)

µ(1+aI) . We arrive that

[(vk + µ)β a]I3 + [(−Aa− ck + vk + µ)β]I2

+[µ2a+ vµ a+Aβ]I + µ2 + cµ+ ν µ = 0

which is simplify as

I3 +KI2 +MI +N = 0 (11)

where K = β(kv+kc+µ−Aa)
βa(kv+µ) , M = −βA+vµa+µ2a

βa(kv+µ) ,and N =
cµ+µ2+vµ
βa(kv+µ) . where

a > 1A(kv+kc+µ) or a < βAvµ+ µ2 (12)

Further from (11), suppose I = x− K
3 , we have that

x3 + dx+ p = 0

where d =M − 1
3K

2,and p = 2
27K

3 − 1
3KM +N . Let

= p24 + q327. (13)

then we have
(a) suppose > 0, there exist one real root.
(b) suppose = 0, there exist two real distinct roots. ( or two

equal, and all roots are real)
(c) suppose < 0, there exist three real distinct roots.

The outcome below is shown after combining (12) and
(13), which is from Descartes rule of sign. Assuming that
< 0, then model (10) possesses two non-negative equi-
libria, Ej

(
Ii,

kIi(c+avIi+v)
(aIi+1)µ

)
for i = 1, 2. Suppose = 0

, system (8) possesses a unique non-negative equilibrium,
E∗
(
I∗, kI

∗(c+avI∗+v)
(1+aI∗)µ

)
. Assumig > 0, model (8) possesses

no positive equilibrium.
Remark 3.1: Graphically, the surface = p2/4 + q3/27 =

0 or 1/108(4K3N − K2M2 − 18KMN + 27N2 + 4M3)
displays a saddle node bifurcation surface. i.e. it gives a two
non-negative equilibria on the one side of the surface.

1) Disease-free equilibrium, E0: In this subsection, we
demonstrate the asymptotic stability of the disease-free equi-
librium, E0. when R0 < 1. The basic number for reproduc-
tion, R0, of the model (10) is obtain as:

R0 =
β A

µ (c+ µ+ v)
,

The disease-free equilibrium is:

E0 = (I∗ = 0, R∗ = 0) (14)

System (10) at E0 is asymptotically stable if after obtain-
ing the Jacobian matrix, it’s two eigenvalues are satisfied by
using

|arg λ1| >
απ

2
, |arg λ2| >

απ

2
, (15)

which was described in Section 3.2. This ensures that the
E0 is locally asymptotically stable if R0 < 1 , or otherwise
unstable when R0 > 1.

However, condition in system (15) is satisfied for the
disease-free equilibrium, EE0 , as given in the Theorem
(III-1)

[disease-free equilibrium] A sufficient condition for the
system (10) to be locally asymptotically stable at E0 is if
and only if

R0 =
β A

µ (c+ µ+ v)
< 1. (16)

Proof: To prove Theorem (III-1), it is sufficient to
illustrate that all eigenvalues of Jacobian of (10) at E0 have
a negative real part. Hence, the Jacobian is
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 ψ − v − c
Ia+1 + cIa

(Ia+1)2
− µ −I2β

k
(
v + c

Ia+1 − cIa
(Ia+1)2

)
−µ


where

ψ = −I2β + 2β

(
A

µ
− I −R

)
I

Then for Ieqn , Reqn = (I∗ = 0, R∗ = 0) we find that

A =

[
−v − c− µ 0

k (v + c) −µ

]
,

and its eigenvalues are

λ1 = −µ, λ2 = −v − c− µ. (17)

It follows that Equation λ1 and λ2 are less than zero,
which implies that R0 < 0 and satisfy the condition in
Equation (15). Hence, the eigenvalues of the system (10)
is always negative (due to all the parameters are positive).
So O is locally asymptotically stable. Then, the disease-free
equilibrium, E0, is locally asymptotically stable. Conversely,
it becomes unstable when

R0 =
β A

µ (c+ µ+ v)
> 1. (18)

2) Endemic equilibrium, Ee: According to the system
(10), the endemic equilibrium points are obtained via solving
the following quadratic equation , λ2 +Aλ+B = 0, where

A=-2βI(Aµ − I − R) + v + βI2 + c
(1+aI)2 +

2µ, B=
(
−2βI(Aµ − I −R) + βI2 + v + c

(1+aI)2 + µ
)
µ+

βI2k
(
v + c

(1+aI)2

)
Now, if B < 0, then the eigenvalue becomes

1/2
(
B ±

√
B2 − 4A

)
.

If I∗ is a non-negative real root of the above equation,
then the Ee = (I∗, R∗) is the point of endemic equilibrium
of our equation (10). However, if β ≤ µ+v, then (10) posses
no point of endemic equilibrium.

Also, if B > 0, we obtain that the eigen-
values are the negative real part if 1c+µ +
v
(
Rβ + 3βI2 + 2µ+ v2I + c2I(1 + aI)2

)
> R0

Thus, E(I,R) , is locally asymptotically stable, if
1c+µ + v

(
Rβ + 3βI2 + v + 2µ2I + c2I(1 + aI)2

)
> R0

and P2 > 0.

A. Experimental Simulation Calculation

In this subsection, we employ the Adams-type predictor-
corrector (ATPC) implicit numerical method. This method
was investigated in [31], and further studied in [32]. The
ATPC method gives the error-free means of solving a prob-
lem with a sensible and logical choice of the time step [7].
To illustrate the fractional epidemic model stability as in
Equation (10), we choose the following parameters β = 1

2 ,
v = 1.27, c = 2, a = 4, µ = 1, k = 1

2 and A = 6
with the following initial values (I,R) = (2, 1). By direct
solving and using Maple 18 software, we obtain the model
(10) equilibrium points as follow,

E1(I1, R1) = (1.615353698, 1.242243888)

and
E2(I2, R2) = (2.046474276, 1.522295468)

.
Hence, the Jacobian matrix for the corresponding equilib-

rium point (R1, I1) is given as

J =

[
ξ∗ −1/2 J2

ξ∗∗ −1

]
where,

ξ∗ = −1/2 J2 + (6− J −R) J − 2.27− 2 (4 J + 1)
−1

+8
J

(4 J + 1)
2

ξ∗∗ = 0.6350000000 + (4 J + 1)
−1 − 4

J

(4 J + 1)
2

and its eigenvalues for disease-free, E0 are

λ1 = −1 + 0. I,

λ2 = −4.27000000000000 + 0. I,

that of the endemic, Ee are

λ1 = −0.206140119950000 + 0.851064558561176 I,

λ2 = −0.206140119950000− 0.851064558561176 I,

and
while the characteristic equation of the fractional epidemic
model as in Equation (10) is:

P (λ) = −0.4106172840− 0.7053086420λ+ λ2

Therefore, the argument |arg λ1,2,3| of matrix J at α =
0.8 fall with the range of values, 3.141592654. The values
of |arg λ1| of the E1(I1, R1) points is said to be stable and
the system asymptotically stable because all the eigenvalues
satisfy |arg λ1| > απ

2 . That is, |arg λ1| = 3.141592654 >
1.256800000 = απ

2 .
Also, by direct calculation, it is obvious to show that

R0 =
β A

µ (c+ µ+ v)
= 0.7025761124,

whose obtained result are in agreement and compatible with
Theorem (III-1), (disease-free equilibrium).

where R0 < 0.7025761124. The active and stability reality
of the model equilibrium points were established via R0

parameter. This indicates that whenever R0 > 1, there
would be average increases in confirmed case, leading to an
epidemic or pandemic. It would be a reverse case whenever
R0 < 1, which indicate that the new confirm case cannot
increase. Therefore, R0 is a parameter that indicate the
threshold.

[61] stated that the condition R0 < 1 is a necessary
and sufficient condition for the eradication when disease
for the forward bifurcation occurs. However, it is no
more a sufficient criterion for the occurrence of backward
bifurcation. Whenever there is an existence of backward
bifurcation, this condition is no longer sufficient because the
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backward bifurcation involves the active of a R0 = 1 and
R0 = Rc

0 < 1 for subcritical transcritical and saddle-node
bifurcation, respectively. There would be possibility of
appearance of endemic equilibria Ee whenever R0 < 1 and
an appearance of backward bifurcation at R 0 = 1. This is in
accordance of what was earlier discussed for the existence
and asymptotically stable

Fig. 1 displays the stable endemic equilibrium with the
following fixed parameters β = 1/2, v = 1.27, c = 2, a =
4, µ = 1, k = 1/2 and A = 6.

For E2(I2, R2) , we have P2 = 0.766804631 > 0 and
1c+µ + v

(
Rβ + 3βI2 + v + 2µ2I + c2I(1 + aI)2

)
=

0.7261661363 > R0 where R0 = 0.7025761124. It satisfies
the existence and asymptotically stability as discussed.

Fig. 1 displays the phase portrait plot of the infected,
recovered and both individual, respectively, in a particular
time, t in a stable endemic equilibrium with coefficients fixed
as β = 1

2 , v = 1.27, c = 2, a = 4, µ = 1, k = 1
2 , A = 6. The

values of equilibrium are (2.046474276, 1.522295468)

IV. HOPF BIFURCATION

This section studied how the model in (10) perform
Hopf bifurcation for several defined values. For simplic-
ity, suppose µ = 1, where the Jacobian of (10) is

M=

 ψ − v − c
Ia+1 + cIa

(Ia+1)2
− µ −I2β

k
(
v + c

Ia+1 − cIa
(Ia+1)2

)
−µ

 where

ψ = −I2β + 2β

(
A

µ
− I −R

)
I

Theorem .2: Suppose that the criteria of (12) are justified
and given µ = 1 . If there exist a limit cycle for (10), it must
contain a positive equilibrium, E+(I+, R+) .

Proof: If there exist a limit cycle, it implies tr(M) = 0,
then we get 2 iβ (−R− i+A) − c

ia+1 − v + ica
(ia+1)2

+

β − 2 = 0 At equilibrium,R = Ik[v(Ia+1)+c]
[µ (Ia+1)] . So we get

A=pe [2 Iβ (Ia+1)2]
where P3 = a2β(2kv + 3)I4 + βa(6 +

4kv + 2kc)I3

+ (β(2kc + 2kv + 3) + a2(v + 2))I2 + 2a(v +
2)I + 2 + c + v Substitute the above into (10), after
some simplification, we get 12(aI+1)

(
−a2βI4 − 2βaI3+

12(aI+1)
(
(va2 − β)I2 + 2a(v + c)I + c+ v

)
) = 0 By

Descarteso rule of sign, the case of getting any complex
root with a non-negative part is ruled out. This is due to
the fact that the entire parameters are both real and non-
nagative and in addition the quadratic possess real coefficient.
Thus, for a limit cycle in (10), it must contain a positive
equilibrium,E+(I+, R+), if (12) is satisfied.

By Theorem (Analysis .2) and avoid the condition in
(12), consider (β = 1/2, v = 8, c = 8, a = 3, µ =
1, k = 1/2), the positive real root is approximated to
4.270040762 or 12571

2944 . Thus, we obtain the positive en-
demic equilibrium E+(I+, R+) is ( 125712944 ,

548108171
29923552 ). With

the values as mentioned, we obtain A = 3312503940005049139
122351215219281152 ,

or ≈ 27.07373142.

Fig. 1. Phase portrait plot of the model (10) with α = 1 (Infected,
Recovered and both Stable endemic equilibrium.

Write I and R in term of x and y, hence (I+, R+) =
(x+, y+) = ( 125712944 ,

548108171
29923552 ) , we have

cD t
αx (t) = 12 (33125039401223512152− x− y)x2 −

9x− 8x1 + 3x,
cD t

αy (t) = 4x+ 4x1 + 3x− y.

Next, we set, X = x− 12571
2944 and Y = y− 548108171

29923552 rename
X ,Y as x,y respectively, to translate (x+, y+) to the origin.
Then

cDα
t x (t) = 12

(
3312503940
1223512152 − (x+ 12571

2944 ) -
(y+548108171

29923552)(x+ 12571
2944 )2−9(x+ 12571

2944 )
-

8(x+12571
2944)1+3(x+ 12571

2944 ),

cDα
t y (t) = 4(x+ 12571

2944 )
+ 4(x+ 12571

2944 )1 + 3(x+ 12571
2944 )− (y + 548108171

29923552 ).

Using the Taylor expansion for the above equation,
we have cDα

t x (t) = − 2331843754
1687112596 − 158030041

17334272 y
+(1-12571

2944y)x−( 2007241309
9948866714+

1
2y)x

2− 2743198563
5464762783x

3
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+4776862929 1110904302x4+O(|x,y|5), cDα
t y (t) =

−y + 6646635140
1652991649x − 306192580608

6720568147 x2+
2704292872

2732381392x3− 2388431464
1110904302x

4+O(|x,y|5).
The Jacobian for the above equation at points

(x, y) = (0, 0) is M=
(
m11 m12

m21 m22

)
=(

1 − 158030041
17334272

6646635140
1652991649 −1

)
and hence, tr(M) = 0 with

det(M) ≈ 35.658 > 0 . In this instance, the eigenvalues
are ±

√
71075066462383315864674

44645939584 i (or ±5.971406960i ), which
illustrates the occurrence of Hopf bifurcation.
With the transformation X = x , Y = m11x + m12y,
where Y = x− 158030041

17334272 y, and then renaming X ,Y as x,y
respectively. Then by approximation it becomes

cDα
t x (t) = −2331843816871126 + y −

2473226099488667x2

+ 588812571xy − 4808716286359669x3 +
8667136158030041x2y
+ 4776862911109043x4 +O(|x, y|5),
cD t

αy (t) = −2331843816871126− 2554286571633517x
− 2431902599488667x2 + 588812571xy
− 4886637886359669x3 + 8667136158030041x2y
+ 2655129511109043x4 +O(|x, y|5).

Let k1 = 255428654207186553
7163351714373632 . Changing the variables u =

−x, v = 1√
k1
y , we get

cD t
αu (t) = −

√
k1v+F1(u, v), cD t

αv (t) =
√
k1u+F2(u, v).

(19)
where F1(u, v) = 23318437541687112596 +
24732259349948866714u2

+ 588812571
√
k1uv − 48087162378635966867u3

− 8667136158030041
√
k1u

2v −
47768629291110904302u4 +O(|x, y|5),
F2(u, v) = −23318437541687112596

√
k1 −

24319025079948866714
√
k1u

2

− 588812571uv + 48866377578635966867
√
k1u

3

− 8667136158030041u2v + 26551294661110904302u4 +
O(|x, y|5).

The first Liapunov constant, σ can be obtained as σ =
−0.01781784460.

Fig. 2 displays a periodic orbit that is stable with
A increasing from 3312503940

1223512152 ( ≈ 27.07373142) . It
shows both phase patriot are stable orbit for (10) when
β = 1

2 , v = 8, c = 8, a = 3, µ = 1, k = 1
2 while

(I+, R+) = ( 125712944 ,
548108171
29923552 ) and A = 27.1 [24].

Suppose A is chosen as the parameter bifurcation. Let
A = A0+ ϵ , where A0 = 3312503940005049139

122351215219281152 . From system
(10), we get,

cD t
αI (t) = β(

A0 + ϵ

µ
−I−R)I2−vI− cI

1 + aI
−µI, (20)

cD t
αR (t) = k(vI +

cI

1 + aI
)− µR.

Let µ = 1 , similar to (10), we obtain [βa(kv + 1)]I3 +
[β(kv+ kc+1− (A0 + ϵ)a)]I2 + [−β(A0 + ϵ)+ va+ a]I +
[c+ 1 + v] = 0

[−β(A0 + ϵ) + va+ a]I + [c+ 1 + v] = 0

Fig. 2. Infected, Recovered and stable waveform plot of the fractional-order
model for the system (10).

Rewriting I and R as x and y, and (β, v, c, a, µ, k) =
(1/2, 8, 8, 3, 1, 1/2), then by (10), we obtain,

cD t
αx (t) = 12(A0 + ϵ− x− y)x2 − 9x− 8x1 + 3x, (21)

cD t
αy (t) = 4x+ 4x1 + 3x− y.

Suppose the non-negativity equilibrium of the (21) (x+, y+),
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the Jacobian matrix is M=

(
m11 − (x+)2

2
m21 −1

)
where

m11 = x+(A0+ϵ−x+−y+)−9− (x+)2

2 − 8
1+3x+ + 24x+

(1+3x+)2 ,

m21 = 4 + 4
1+3x+ − 12x+

(1+3x+)2 The characteristic equation
is λ2 + (1 − m11)λ − m11 + (x+)22m21 = 0 and
λ = 1

2 (m11 − 1)±
√
m2

11 + 2m11 + 1− 2m21(x+)2

So, we have
(a) Reλ(ϵ) = 0 when ϵ = 0.
(b) Imλ(ϵ) = 5.971406945 ̸= 0 when ϵ = 0.
(c) Reddϵλ(ϵ) = −0.3575405923 ̸= 0 when ϵ = 0.

Theorem .3: There exist a σ1 > 0 and a function ϵ =
ϵ(x1) defined on 0 < x1− 12571

2944 ≤ σ1 , satisfying ϵ( 125712944 ) =
0 and when ϵ = ϵ(x1) < 0, (21) has a unique stable limit
cycle that goes through (x1,

548108171
29923552 ) .

It is interesting to note that there exist periodic orbit
which is unstable when A = 27.0 with the initial condition
(I,R) = (5, 18). For instance, Fig. 3 show phase patriot and
stable waveform as an unstable periodic orbit for system
(10) when β = 1

2 , v = 8, c = 8, a = 3, µ = 1, k = 1
2 . With

the eigenvalue λ1,2 = 81
64 ±

I
64

√
205311. When this also pass

through a critical value, α∗ then, (10) gains its stability.

However, at A = 27.0, the system undergo Hopf bifurca-
tion with α increasing past α∗ = 0.887385139. These are
displayed in Fig. 4. Similarly, we fixed A = 27.07 and the
model also undergo Hopf birfurcation, which is show in Fig.
5.

So, the equilibrium of the endemic E
e

confirmed loses
its stability at the stable limit cycle bifurcation from it at
the value of Hopf bifurcation

V. SOME EFFECTS OF THE FRACTIONAL-ORDER α ON THE
BEHAVIOR OF DYNAMICAL SYSTEMS OF THE EPIDEMIC

MODEL

In this section, we show clearly the effect that α has
on system (10) by taking the value which is appropriate
for the fractional order of the α. However, the fractional-
order system is achieved in the steady state when parameters
affecting the value of α are appropriately controlled [9]

Theorem .4: [Some effects of the fractional-order α on
the dynamical behavior] Suppose I∗ is the quadratic equation
positive real root, then E∗ is the point of endemic equilibrium
of (10) as introduced in Lemma (3.1):
(a) The endemic equilibrium point E∗ is unstable.
(b) If α ≤ 2

3 , the point of endemic equilibrium E∗ are
locally asymptotically α stable.

(c) If α > 2
3 and v ≤ k, the endemic equilibrium point E∗

are locally asymptotically.
Proof: To prove Theorem (Analysis .4), it is sufficient

to illustrate that all eigenvalues of Jacobian of (10) at E∗

satisfy the condition (15). Hence, the Jacobian matrix is −I2β + 2β
(

A
µ − I −R

)
I − v − T − µ −I2β

k
(
v + c

Ia+1 − cIa
(Ia+1)2

)
−µ

 .
where,

T =
c

Ia+ 1
+

cIa

(Ia+ 1)
2

Fig. 3. Infected and recovered unstable waveform plot of the fractional-
order model for the system (10) at A = 27.0 and α = 1.

From the second equation (10), the characteristic of P (I) =
I3 +KI2 +MI +N = 0 where

K =
β(kv + kc+ µ−Aa)

βa(kv + µ)
,

M =
−βA+ vµa+ µ2a

βa(kv + µ)
,
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Fig. 4. Infected and recovered stable waveform plot of the fractional-order
model for the system (10) at A = 27.0 and α = 0.887385139.

and

N =
cµ+ µ2 + vµ

βa(kv + µ)
.

We basically follow the fundamental fractional order
Routh-Hurwitz conditions in [45]. For every point of the
endemic equilibrium, E∗, it is clear that the condition for
(15) is 0 ≤ K, 0 ≤M, 0 ≤ N and α < 2

3 . As earlier stated,

Fig. 5. Infected and recovered stable waveform plot of the fractional-order
model for the system (10) at A = 27.07.

by Descartes’ rule of sign, we now assume that P (I) = 0
posses one non-positive real root says, λ1 = −t and a pair
of complex value roots says λ2,3 = 0± bi as thus;

P (I) = I3 + I2(−2a+ t) + I(a2 + b2 − 2at) + t(a2 + b2)

It implies that
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K = −2a+ t,M = a2 + b2 − 2at,N = t(a2 + b2)

We know that 0 ≤ K, 0 ≤M . It implies that 2at ≤ a2 + b2

and 2a ≤ t, from which we obtain

4 a2 ≤ 2 at ≤ a2
(
1 +

a2

b2

)
(22)

It then show from equation (22) that 4 ≤ sec2 (Argλ2,3)
and π

3 ≤ (Argλ2,3) ≤ 2π
3 . Therefore, if α ≤ 2

3 , then
condition (15) is satisfied and E∗ are considered stable.
Likewise, if KM − N > 0, then 0 < −2 a(a−t)2+b2 . In
the same manner, if KM − N > 0, then λ2,3 must have
non-positive real parts. It can be shown that if v ≤ k, then
KM −N > 0 and the root of the equation P (I) = 0 have
a non-positive real parts.

In order to make comparison with the uncontrolled
fractional-order for the system (10), we discus the control
model with different value. Fig. 6-8 show that at A = 27.0
and for lowering the parameter of α namely, α = 0.95,
α = 0.9, α = 0.85 it has effect on the stability, and as
a result can stabilize the stable fixed point. Fig. 9 − 10
established our (Analysis .4), where they display the
some effects of the fractional-order α on the behavior
of dynamical systems of the epidemic model. From the
epidemiological point of view, this feature is very important
because the meaning gives a longer periodic, which infected
persons can effect the health system.

Fig. 6. Size of the stable point of infected and recovered classes over time
in system (10) with α = 0.90.

VI. CONCLUSION

In this paper, we extended an epidemic model in the
sense of Caputo derivative of order α ∈ (0, 1]. The model
indicates that the spread of a disease depends on the contact
rates with infected individual within the population. Basic
reproduction number, R0, affects the model behaviour. We
used R0 to establish the stability and existence conditions at
the points of equilibrium. For simple epidemic processes, this
parameter determines a threshold whenever R0 > 1, a typical
infective on average, gives rise to more than one secondary

Fig. 7. Size of the stable point of infected and recovered classes over time
in system (10) with α = 0.95.

Fig. 8. Size of the stable point of infected and recovered classes over time
in system (10) with α = 0.85.

infection, and thus, lead to an epidemic. The system in
(10) admits Hopf bifurcations using varying fractional order
and parameters. We applied Adams-type predictor-corrector
method to the numerical solutions of the models. We also
show that the disease will be extinct when the bifurcation
parameters are within certain regions.
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