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Incoming Local Exponent for a Two-cycle
Bicolour Hamiltonian Digraph with a Difference
of 2n + 1

Yogo Dwi Prasetyo, Member, IAENG, Sri Wahyuni, Yeni Susanti, and Diah Junia Eksi Palupi

Abstract—A bicolour digraph D® is a directed graph with
every arc coloured in one of two colours, red or black. Suppose
r and k are nonnegative integers representing the number of
red and black arcs, respectively. The smallest sum of r and &
such that every node on D has a walk to node z is called
the incoming local exponent of node d.. For primitive bicolour
digraphs with a difference of 2n + 1, there will be three or four
red arcs. This article discusses the incoming local exponent for
a primitive bicolour Hamiltonian digraph with a difference of
2n + 1.

Index Terms—primitive-digraph,
incoming-local-exponent.

bicolour-digraph,

I. INTRODUCTION

Directed graph (digraph) D consists of a finite set [V,

which has elements called nodes, and the set A, which
contains all the pairs of nodes in N (each pair is called
an arc). The bicolour digraph D) is a directed graph with
every arc coloured in one of two colours, red or black. Let
r and k be nonnegative integers representing the number
of red and black arcs, respectively. A walk consisting of
positive integers r + k in a bicolour digraph is called an
(r, k)-walk. For a walk W in bicolour digraph D), p(WW)
and ¢(W) denote the number of red arcs and the number of
black arcs contained in walk W, respectively. The column
p(W)
(W)
W) = p(W) + q(W) is the length of the walk W. A
primitive bicolour digraph is a bicolour digraph in which
each pair of nodes has an (r, k)-walk [1]. The smallest sum
of r and k over all pairs of nonnegative integers is called
the exponent of D@ [2]. Whereas, the smallest sum of r
and k such that every node on D(® has a walk to node z is
called the incoming local exponent of node d, and denoted
by inexp (dm, D(Q)).

matrix is the composition of the walk W, and
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Local exponent research was initiated by Gao [3] using the
Wielandt bicolour digraph with cycles of length n and n — 1.
Suwilo [4] found the local exponents for a two-cycle bicolour
digraph with cycles n — 1 and n — 2. Syahmarani and Suwilo
[5] investigated the local exponents of a Hamiltonian digraph
with cycles n and n — 2 for odd n and n > 5. Suwilo and
Syafrianty [6] discussed the local exponents of a two-cycle
bicolour digraph with cycles n—1 and n—3 for even number
vertices. Sahara et al. [7] found the local exponents for a two-
cycle bicolour digraph with cycles n and one loop. Sumardi
and Suwilo [8] determined a local exponent for a bicolour
digraph with cycle lengths of 2s + 1 and s for s > 5 and an
allied node. Mardiningsih et al. [9] conducted research on
incoming local exponents of bicolour digraphs with cycles
of length s + 1 and s. Mardiningsih et al. [10] investigated
the incoming local exponents of primitive two-cycle bicolour
digraph with cycles s and 2s — 1. Mardiningsih et al. [11]
discussed incoming local exponents for a two-cycle bicolour
Hamiltonian digraph with cycles n and n — 3.

This paper discusses the incoming local exponent of a
Hamiltonian digraph with cycle lengths n and 3n + 1. In
other words, the difference between cycle lengths is 2n + 1.
In Chapter 2, the primitivity of the bicolour digraph is
discussed. Chapter 3 discusses how to determine the bounds
of incoming local exponents for a bicolour digraph. Chapter
4 presents the results.

II. PRIMITIVITY

Fornasini and Valcher [1] provide the characteristics for
a primitive bicolour digraph. A bicolour digraph is said to
be primitive iff the content of the cycle matrix is equal 1.
The cycle matrix’s content is the greatest common divisor
of the 2x2 submatrix determinant of the cycle matrix. The
cycle matrix for a two-cycle bicolour digraph is M =
r p(L) (L)

q(L1) q(L2)

], with L; and Lo representing the first
and second cycles.

Corollary IL1. Suppose that D3 is a strongly connected bi-

colour digraph with two cycles of length n and 3n+1. If D()

. . o . ; 1 3
is primitive, then the cycle matrix M = n—1 3n—2
n—1 3n-—2 ]

orjwz{ 1 3

Proof: Note that the shape of the cycle matrix of D(?) is
a strongly connected bicolour digraph with two cycles with
lengths 7 and 3n + 1. If D) has the cycle matrix M =

y z .
<y< <z<
n 3n+1]wnh0y”and023n+1,then,
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because D is primitive, det (M) = +1. If det (M) =
1, then By —2)n+y = 1. Since 0 < z < 3n + 1, we
et 3y —z = 0. Hence, y = 1 and z = 3. So, M =
T PR N } If det (M) = —1, then (z — 3y)n —
y = 1. Since 0 < z < 3n+ 1, we have z — 3y = 1.
Consequently, y = n — 1 and z = 3n — 2. Thus, M =

n—1 3n—-2

1 3

|
Because changing all of the arcs from red to black and vice
versa does not change the incoming local exponent, without
loss of generality, we can assume that the cycle matrix of

D@ is M = 1 3 . Therefore, D(® has three
n—1 3n—2

or four red arcs.

III. BOUNDS FOR THE INCOMING LOCAL EXPONENT

This chapter starts with the results obtained in [4] because
they will help determine the lower and upper bounds of the
incoming local exponent.

Proposition IIL1. [4] Suppose that D3 is a bicolour
digraph with two cycles and d, is any node on D®) found in
both cycles. If for some nonnegative integers r and k, there
is a path Py, q, from d, to d, such that system

p(Pa,.d,) r
MV + u st —
{ q(Pa, .d.) k
has a nonnegative integer  completion, then

inexp(d,, D®) <r + k.

Lemma IIL1. /4] Suppose that D?) is a primitive bicolour
digraph and d,, is any node on D) with the incoming local
exponent inexp(d,,, D®). Then for every x = 1,2,..., 3n+
1, inexp(d,, D®) < inexp(d,, D) + §(d, d,).

Lemma II1.2. [9] Suppose that D®) is a primitive bicolour
digraph with two cycle of lenTth L1 and Lo with cycle

matrix M = [ 5523 ZE£3 and that det(M) = 1. If

inexp(d,, D®) is obtained via the (ry, k,)-walk, then

Te q(L2)p(Pa, d,) — r(L2)q(Py, a,)
[ . }>M [ P(La(Po ot ) — a(La)p(Pa )

for some path Py, 4, and Py, g, .

IV. RESULTS

This article discusses a Hamiltonian two-cycle bicolour
digraph with a difference of 2n+-1 (see Fig. 1). The first cycle
with length nis Ly : dy = dy — -+ = dp—1 — d,, — dy,
and the second cycle with length 3n+11is Ly : dy — do —
o= dp—1 = dp = dpg1 o = dsn = d3pgp1 — di. By
Corollary 1, this primitive bicolour digraph has three or four
red arcs.

First, we will examine the incoming local exponent for
the digraph with four red arcs. The red arcs on D(?) are
dn — dl, db — db+1, dc — dc+1 and d, — da+1 for
n <b<c<a<3n+ 1. The distance from node (a + 1) to
node 1 is denoted by 61 = 6(d,+1,d), whereas the distance
from node (b+ 1) to node 1 is denoted by d2 = §(dpt1,d1).
Finally, the distance from node (¢ + 1) to node 1 is denoted
by 53 = (5(dc+1,d1).

dsn

dn+1

dan+1

d2 dn-1

Fig. 1. Hamiltonian two-cycle digraph with a difference of 2n + 1

Theorem IV.1. Let a primitive bicolour digraph D®) have
two cycles of length n and 3n+ 1. If D®) has four red arcs,
then for every x = 1,2,...,3n + 1,

inexp(d,, D?) =

2 +3n (61 — d2) + 01+ 6 (d1, ds)

forégfdlgn, 52751§n+1
n2—4n+61—|—5(d1,d93),

for 3 — 61 <n, nt+l <y — 6 <2n
(3n+1)52—6n+5(d1,dI),

for 53—51§n, 52—512 2n+1
6n274n+53+5(d1,dr),

forn < d3—01 < 2n
(3n+1)63—3n+5(d1,dx),

for53—61=2n

Proof: Suppose that for every z = 1,2,...,3n + 1,
inexp(d,, D®) is obtained using the (r.,k,)-walk. The
proof is divided into five cases as follows.

Case 1. (for 63 — 61 <n, 0 —36 <n+1)

First, it will be shown that inexp(d,,D®) >
I? + 3n(d —38) + & + d(di,d,). We examine
the  paths Py 4, and Py ., 4, and  define
(1 = q(L2)p(Pay,a,) — p(L2)q(Pay,a,) and

g2 = p(L1)q(Pa, ., ,4,) — 4(L1)p(Pa, . 4, ). Four subcases
must be examined.

The node d, is located on the path d; — dj. Utilizing
path Py, 4., that is, the (3,02 —2+4(dy, d,;))-path, we obtain
g1 = 9n — 302 — 30(dy, d,). Utilizing path Py, 4,, that is,
the (0,91 + 6(d1, d,))-path, we obtain go = &1 + 0(d1,dy).
By Lemma III.2, we have that

IR
[ 9n + 361 — 352 }
9n2 + 3n(d; — 62) — 9In — 281 + 352 + 6(dy, dy)
Hence,
inexp(d,, D®) > 9n? + 3n(6; — &) + 61 + 6(dy, dy) (1)

for every node d, located on the path d; — dp.

The node d, is located on the path dy,1 — d.. Utilizing
path Py, 4., that is, the (1,02 — 3n — 1 + 6(d1, d,))-path,
we obtain g1 = 12n — 362 + 1 — 33(d1, d,). Utilizing path
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Py, .. .a,, that is, the (1,6; — 1+ 0(dy, d;))-path, we obtain
g2 =01 —n+ 0(dy,d,). By Lemma II1.2, we have that

Ty g1
> M =
R
9n + 351 — 362 + 1
9n2 +3TL(51 752) —9n — 261 +3§2 -1 +5(d1,d1)

Hence,
inexp(dy, D) > 9n® + 3n(0y — 63) + 61 + 6(dy, ) (2)

for every node d, located on the path dy; — d..

The node d, is located on the path d. 1 — d,. Utilizing
Py, 4, that is, the (2,02 —3n—243(d1, d,;))-path, we obtain
g1 = 15n — 363 + 2 — 36(dy, d,). Utilizing path Py, 4.,
that is, the (2,01 — 2+ d(d1, d,;))-path, we obtain g = d; —
2n + 6(dy,d,). By Lemma IIL.2, we have that

Ty g1
> M =
i 2]
9n + 361 — 302 + 2
9n2 +3n(51 752) —9n — 261 +3§2 - 2+5(d1,dz)

Hence,
inexp(d,,, D) > 9n® + 3n(61 — 62) + 61+ 6(dr, dx;) (3)

for every node d, located on the path d.y1 — dy.

The node d, is located on the path d,11 — d3ni1.
Utilizing path Py, 4_, that is, the (3,02 —3n—3+0(d1,dy))-
path, we obtain g; = 18n — 302 + 3 — 3d(ds, d,.). Utilizing
path Py, 4., that is, the (0,6; — 3n — 1+ 6(d1, d,))-path,
we obtain go = 1 — 3n — 1+ §(dy,d,). By Lemma II1.2,

we have that
Tz g1
> M =
HEI

9n—|—351 - 352
9n2 + 371(51 - 52) —12n — 261 + 3(52 -1+ 5((11, dz)

Let m; = 9n + 361 — 3d2 and my = In2 + 371((51 - 62) -
12n — 261 + 392 — 1 + 6(dy, d;). We examine the (mq, mo)-
walk from dq41 to d,. Note that the path is Py,_, q4,, that
is, the (0,01 — 3n — 1 + &(dy,d;))-path. Furthermore, the
p(Pda+17da:) _ | :|

q(Pda-H,dm) o ma
is v1 = 9n+39; — 302 and vy = 0. The path Py, , 4, located

entirely in cycle Ly, and there is no (mj, mg)-walk from
dg+1 to d,. Hence, inexp(dy, D(z)) > my + ms. Note that
the shortest walk from d,1 — d, that contains a minimum
of my red arcs and at least mqy black arcs is the (m; +
p(L2), mz + q(Lz))-walk. Since p(L2) + q(L2) = 3n + 1,
we have

completion of the system Mv+

inexp(dz, D) > my + ma + p(La) + q(L2)
=9n® +3n(01 — 62) + 61 + 0(d1,ds) ()

for every node d, located on the path dgy1 — dspnt1-

From (1), (2), (3) and (4), it can be concluded that
inexp(d,, D) > 9n? 4 3n(0; — &) + 61 + 8(dy,d,) for
every x = 1,2, ....,3n + 1.

Next, we will prove that inexp(d,, D) < 9n?+3n(d; —
d2) + 01 + 0(dy,d,) for every z = 1,2, ...,3n + 1. First, we
will show that inexp(d;, D) = 9n?+3n(5, —d2) +6; and
then use Lemma II.1 to guarantee that inexp(d,, D) <

In2+3n(8; — )+, +6(dy, d,) forevery z = 1,2, ...
1.

From (1), we obtain inexp(dy, D)) > 9n2+3n(6;—d2)+
d1. Furthermore, it is enough to show that inexp(dj, D®) <
9n? + 3n(6; — 82) + &y for every dy, u = 1,2,....3n + 1
when the system

p(Pa, d,)
M w1
v [ a(Pa, )
In + 351 — 352
9'fL2 + 3n(51 - 52) —9n — 2(51 + 3(52

has a nonnegative integer completion for some path Py, 4,
from d, to di. The completion of system (5) is v; = 9n —
302 — (3n = 2)p(Pa,,d;) + 3¢(Pu,.a,) and vy = 61 — (1 —
n)p(Pa,.a,) — ¢(Pa,.d,)-

If d, is located on the d; — d, path, then there is a
(3,3n — 2 — §(dy,dy))-path from d,, to dy. Utilizing this
path, we obtain v; = 9n — 3(d2 + d(d1,d,,)) > 0 since g +
d(dy,dy) < 3n and vy = 61 + d(dy,d,,) — 1 > 0 since §; +
0(dy,d,) > 1. If d,, is located on the dp1 — d. path, then
there is a (2,3n—1-4(d1, dy,))-path from d,, to d;. Utilizing
this path, we obtain vy = 12n + 1 — 3(d2 + 0(dy,dy)) > 1
since do+6(d1, dy) < 4nand vo = §1+9(d1,d,)—n—1>0
since 91 + 0(dy,d,) > 2n with n > 1. If d,, is located on
the d.41 — d, path, then there is a (1,3n — 6(d1,d,))-
path from d, to d;. Utilizing this path, we obtain v; =
15n+2—3(82+6(dy,dy)) > 2 since d3+8(dy,dy) < 4n+1
for n > 1 and vo = 61 + 6(dy,dy) — 2n — 1 > 0 since
0140(d1,dy) > 2n+1.1f d,, is located on the dy+1 — d3p41
path, then there is a (0,3n + 1 — d(d1, dy,))-path from d,, to
dy. Utilizing this path, we obtain v; = 18n + 3 — 3(d2 +
d(dy,dy)) > 3 since 02 + §(dy1,dy) < 5n+1forn > 1 and
Vo = 51+(5(d1, du)—3n—1 > () since (51—|—(5(d1,du) > 3n+1.

Therefore, for every u = 1,2,...,3n + 1, the system
of equations (5) has a nonnegative integer completion.
Proposition III.1 guarantees that for every u = 1, 2, ..., 3n+1,

there is dy, (T—J;) dy walk with » = 9n + 36; — 382
and k£ = 9n2 + 371(51 — 52) — 9n — 251 + 352
Consequently, inexp(di, D) < 9n? + 3n(6; — &) + 6;.
So, inexp(di, D®) = 9n? + 3n(6; — &) + 6. By
Lemma IIL1, we can conclude that inexp(d,, D?®) <
9n? + 3n(d, — &) + 61 + (dy,d,) for every
r=1,2,...,3n+ 1.

, In+

&)

Case 2. (for 63—51 <n, n+1 <52—51 < 2n)

First, it will be shown that inexp(d,, D®)) > 6n? — 4n +
01 + 6 (d1,d,). We examine the paths Py, 4, and Py, | 4,
and define g1 = b(L2)r(Py,.a,) — 7(L2)b(Py, q,) and g =
r(L1)b(Pa,,,,d,)—b(L1)r(Py,,, 4, ) Four subcases must be
examined.

The node d, is located on the path d; — d,. Utilizing
path Py_4_, that is, the (2,6; + 0(dy,d,))-path, we obtain
g1 = 6n—4—30; —36(dy, d,). Utilizing path Py, , 4., that
is, the (0, 81 4+d(d1, d,))-path, we obtain go = 01 +8(dy, dy).
By Lemma III.2, we have that

]z

6n —4
6n2—10n+51 +4+5(d1,d9¢) ’
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Hence,
inexp(dy, D) > 6n% — 4n + 0, + 6 (dy,d;)  (6)

for every node d, located on the path d; — dp.

The node d, is located on the path dy4; — d.. Utilizing
path Py,_ 4, that is, the (3,01 —1+4(dy, d;))-path, we obtain
g1 = 9n—3 301 —34(dy, d,). Utilizing path Py, 4,, that
is, the (1,01 — 14 0(dy,d,))-path, we obtain go = 01 —n+
0(dy,d;). By Lemma III.2, we have

MEIHE

6n —3
6n2 —10n + 61 + 3+ 6(d1,dy) |-
Hence,
inexp(dy,, D®) > 6n? —dn+ 06, + 6(d1,d,) (7

for every node d, located on the dy4; — d. path.

The node d,, is located on d.; — d, path. Utilizing path
Py, 4., that is, the (1,1 — 3n + §(dy, dy,))-path, we obtain
g1 = 12n — 2 — 361 — 34(dy, d,). Utilizing path Py, 4,.
that is, the (2,61 — 24 9(dy, d.))-path, we obtain go = §; —
2n + 6(dy,d,). By Lemma IIL.2, we have that

SR

6n — 2
6n2 — 10n + 61 + 2+ 6(dy,d,) |-
Hence,
inexp(dy, D®) > 6n? —4n+ 01 + 6(d1,dy)  (8)

for every node d, located on the d.+; — d, path.

The node d, is located on the path dy11 — d3n41.
Utilizing Pdcydw’ that is, the (2,(51 —3n—-1+ (S(dl,dm))—
path, we obtain g; = 15n — 1 — 3§, — 36(d1, d,.). Utilizing
path Py, a,, thatis, (0,01 —3n — 1+ 0(dy, d,))-path, we
obtain go = 61 — 3n — 1+ 0(dy,d,). By Lemma IIL.2, we

have that
Tz g1
> M =
HEIH

6n —4
6n% — 13n + 6, + 3+ 6(dy, dy) |-

Let mqy = 6n —4 and ms = 6n% — 13n + &; + 3 +
0(dy,dy). We examine the (mq,ms)-walk from d,y1 to d,.
Note that the path is Py, , 4., that is, the (0,6, — 3n —
1+ (dy, dy))-path. Furthermore, the completion of system
p(Pda+17dtz) _ my

q(Pa,ya,) | | me
vy = 0. The path Py, 4, is located entirely in cycle Lo,

and there is no (mi, msy)-walk from d,y; to d,. Hence,
inexp(dI,D(z)) > m1 + mo. Note that the shortest walk
from d,+1 — d, that contains a minimum of m; red arcs
and at least ms black arcs is the (my +p(La), m2+q(L2))-
walk. Since p(Ls) + q(L2) = 3n + 1, we have

Mv + is v1 = 6n — 4 and

inexp(dy, D) > my + ma + p(La) + q(L2)
=6n —4n + 0, +6(d1,d;)  (9)

for every node d, located on the path d,41 — d3n41.

From (6), (7), (8) and (9), it can be concluded that
inexp(d,, D) > 6n? — 4n + 6, + 6(d1,d,) for every
r=1,2,...,3n+ 1.

Next, we will prove that inexp(d,, D(z)) < 6n?2—4n+61+
0(dy,d;) for every x = 1,2,...,3n + 1. First, we will show
that inexp(d;, D®) = 6n? — 4n 4 6; and then use Lemma
III.1 to guarantee that inexp(d,, D(Q)) < 6n% —4n+ 6 +
d(dy,dy) for every x = 1,2,...,3n + 1.

From (6), we obtained inexp(d, D(Q)) > 6n2 — 4n + 6;.
Furthermore, it is enough to show that inexp(d;, D?)) <
6n2 — 4n + &1 for every dy, u = 1,2,...,3n + 1 when the
system

(Pay.a0) | 6n — 4
(Pa,a,) | | 6n* —10n+6; +4

has a nonnegative integer completion for some path Py, 4,
from d,, to d;. The completion of system (10) is v; = 6n —
4 — 361 — (3n — Q)p(Pdu,dl) + 3Q(Pdu,d1) and vy = 01 —
(L =n)p(Pa, a,) — a(Pa,.a,)-

If d, is located on the d; — dp path, then there is a
(3,3n — 2 — 0(dy,d,))-path from d,, to d;. Utilizing this
path, we obtain v; = 6n — 4 — 3(61 + d(d1,d,) > 2 since
01 + (5(d1,du) <2n-—2and vy = &1 + (5(d1,du> —1>0
since 8 + d(d1,d,) > 1. If d,, is located on the dp; — d.
path, then there is a (2,3n — 1 — §(dy, dy,))-path from d,,
to d;. Utilizing this path, we obtain v; = 9n — 3 — 3(d; +
0(dy,dy)) > 0 since 01 + d(d1,dy) < 3n— 1 and ve =
51 +6(d1,dy) —n—1 >0 since 61 +0(dy,dy) >n+ 1. If
d,, is located on the d.1 — d, path, then there is a (1,3n—
d(dy,d,))-path from d,, to d;. Utilizing this path, we obtain
v = 12n—2— 3(51 +5(d1, du)) 2 1 since 51 +5(d1, du) S
3n for n > 1 and vy = 61 + 6(d1,dy) — 2n — 1 > 0 since
01 + 6(d1,dy) > 3n for n > 1. If d,, is located on the
dg+1 — dsny1 path, then there is a (0,3n 4+ 1 — §(dy, dy))-
path from d,, to d;. Utilizing this path, we obtainv; = 15n—
1 —3(61 + 6(d1,dy)) > 5 since §; + 6(dy,dy) < 4n — 1
for n > 1 and vo = 61 + 6(d1,dy) — 3n — 1 > 0 since

Therefore, for every v = 1,2,....,3n + 1, the
system of equations (10) has a nonnegative integer
completion. Proposition III.1 guarantees that for every

w o= 1,230 + 1, there is a dy 5 dy walk
with r = 6n — 4 and k = 6n%2 — 10n + &, + 4.
Consequently, inexp(d;, D®) < 6n? — 4n + 6;. So,
inexp(dy, D)) = 6n? — 4n + §;. By Lemma IIL1, we can
conclude that inexp(d,, D®) < 6n% — 4n + 6, + 6(dy, d,)

for every x =1,2,...,3n + 1.

M p 1
z+[q (10)

Case 3. (for 63 — 61 <n, 63— =2n-+1)

First, it will be shown that inexp(d,, D®)) > (3n + 1) 65 —
6n 4 0 (dy1,d,). We examine the paths Py_ 4, and Py, | 4,
and define g, = q(L2)p(Pi,.a,) — p(L2)a(Py,.q,) and
g2 = p(Ll)q(Ple»hdrn) - q(Ll)p(de+1’dw)' It is necessary
to examine three subcases.

The node d, is located on the path d; — dj. Utilizing
pathPy, 4., that is, (2,9(d1, d;))-path, we obtain g, = 6n —
4 — 30(dy,dy). Utilizing path Py, 4,, that is, the (2,02 —
2+ 0(dy, d,))-path, we obtain g2 = d3 — 2n + §(dy, dy). By

Lemma III.2, we have
Tz g1
> M =
[ Kz ] - [ 92 ]
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300 — 4
—6n + 4 + 3ndy — 205 + (5(d1,d3;)

Hence,

inexp(dy, D®) > (3n 4 1)dy — 6n + d(d1,d,)  (11)

for every node d, located on the path d; — dp.

The node d, is located on the path dp;1 — d.. Utilizing
path Pg;_ 4, that is, the (3, —1 + d(dy, d,))-path, we obtain
g1 = 9n — 3 — 35(dy,d,). Utilizing path Py, 4,. that is,
(0,82 —3n—1+6(dy,d;))-path, we obtain gy = d5 — 3n —
1+ 6(dy,d,). By Lemma IIL.2, we have that

EIFE

38, — 6
—On 4 3ndy — 265 + 5+ 6(dy, dy) |

Let mq = 365—6 and my = —9n—|—3n52—262—|—5—|—5(d1, dw)
We examine the (mi,me)-walk from dpy; to d,. Note
that the path is Py, , 4. that is, the (0,02 — 3n — 1 +
0(dy,d;))-path. Furthermore, the completion of the system

p(R) d ) mi .

Mv + vt = is v; = 362 — 6 and
q(va+ladm) :| |: ma :| ! 2

vy = 0. The path Py, | 4, is located entirely in cycle Lo,

and there is no (mq,meo)-walk from dp,; to d,. Hence,
inexp(dm,D(z)) > m1 + mo. Note that the shortest walk
from dpy1 — d, that contains a minimum of m; red arcs
and at least mg black arcs is the (my +p(La), m2+q(L2))-
walk. Since p(Ls) + q(L2) = 3n + 1, we have

inexp(d,, D@) > my + mg + p(La) + q(La)
= (3n+1)dy — 6n + 6(dy,dy) (12)

for every node d, located on the path dy1 — d..

The node d, is located on the path d.y1 — dg=3n+1-
Utilizing path Py, 4, that is, the (1, —3n + §(d1, d;))-path,
we obtain g, = 12n — 2 — 34(dy,d,). Utilizing Py, 4,.
that is, the (1,02 —3n —2+6(d1, d,.))-path, we obtain g5 =
do —4n — 1+ 6(dy,d,). By Lemma III.2, we have that

FEIHE

362 —5
—9n+3n52—252+4+5(d1,dm) ’

Let m; = 302 — 5 and mo = —9n + 3ndy — 205 + 4 +
0(dy,dy). We examine the (mq, mo)-walk from dpyq to d.
Note that the path is Py, 4,, that is, the (1,62 — 3n —
2 4 6(dy, d;))-path. Furthermore, the completion of system
Mv + |:p(PUy+17dm) :| — |: my :|
ma

q(R)y+1,dm) . . .
vy = 0. The path Py, , 4, is located entirely in cycle Lo,

and there is no (mq, mg)-walk from dpy; to d,. Hence,
inexp(dI,D(z)) > m1 + mo. Note that the shortest walk
from dp1 — d, that contains a minimum of m; red arcs
and at least my black arcs is the (mj +p(L2), m2 +q(L2))-
walk. Since p(Lz2) 4+ g(L2) = 3n + 1, we have

is v1 = 302 — 6 and

inexp(d,, D@) > my + mg + p(La) + q(Lo)
— (3n+ 1)6s — 6n + 6(d1,dy) (13)

for every node d, located on the path d.y1 — dg=3n+41.

From (11), (12) and (13), it can be concluded that
inexp(d,, D®) > (3n 4+ 1)d; — 6n + §(dy, d,) for every
r=1,2,...,3n+ 1.

Next, we will prove that inexp(d,, D®) < (3n + 1)ds —
6n + 6(dy,d,) for every x = 1,2,...,3n + 1. First, we
will show that inexp(d;, D®) = (3n + 1)d, — 6n and
then use Lemma III.1 to guarantee that inexp(d,, D(?) <
(3n+1)d2 — 6n + 6(dy,d;) for every x =1,2,...,3n + 1.

From (11), we obtain inexp(d;, D) > (3n+1)d, — 6n.
Furthermore, it is enough to show that inexp(ds, D(Q)) <
(3n 4+ 1)d3 — 6n for every d,,, u =1,2,...,3n 4+ 1 when the
system

P(Pa,.di) | _ 302 — 4

Mv + [ q(Pd'Ludl) :| o [ 37’7/(52 — 2(52 —6n+4
has a nonnegative integer completion for some path Py, 4,
from d,, to d;. The completion of system (14) is v; = 6n —
4—(3n— 2)p(Pdu,d1) +3q(Pdu,d1) and vo = do —2n— (1 —
n)q(Pa,,a,) = p(Pa,.a,)-

If d, is located on the path d; — dj, then there is a
(3,3n—2—0(dy, dy))-path from d,, to d;. Utilizing this path,
we obtain v; = 6n —4 —3(5(dy, dy)) > 2 since §(dy, dy,) <
n—1forn >1and vo = 6 + §(dy,dy) — 2n — 1 >
0 since d2 + 6(dy,dy) > 2n + 1. If d,, is located on the
path dyy1 — d., then there is a (2,3n — 1 — §(d1,dy))-
path from d, to d;. Utilizing this path, we obtain v; =
9n — 3 — 36(dy1,d,) > 0 since 0(dy,dy) < 3n — 1 and
Vg = (52+(5(d1, du)—Sn—l > 0 since (52+(5(d1,du) > 3n—+1.
If d,, is located on the path d.1 — dy=3,+1, then there is a
(1,3n—94(dy, dy,))-path from d,, to d. Utilizing this path, we
obtain v; = 12n — 2 — 36(dy, dy) > 1 since §(d1,d,) < 3n
forn > 1 and vy = 3 + 6(dy,d,) —4n — 1 > 1 since
ds + 6(d1,dy) > dn + 1 with n > 1.

Therefore, for every u = 1,2,...,3n + 1, the
system of equations (14) has a nonnegative integer
completion. Proposition III.1 guarantees that for every

w = 1,2,..3n + 1, there is a dy % dy walk
with + = 36, — 4 and &k = 3nds — 202 — 6n + 4.
Consequently, inexp(d;, D®®) < (3n 4 1)d;, — 6n. So,
inexp(dy, D?) = (3n+41)d, — 6n. By Lemma III.1, we can
conclude that inexp(d,, D®) < (3n+1)dy — 6n+0(dy,dy)

for every x =1,2,...,3n + 1.

(14)

Case 4. (for n < 3 — d1 < 2n)

First, we will show that inexp(dx,D(z)) > 6n2 — 4dn +
03 + 0 (d1,dy). We examine the paths Py, q, and Py, 4,
and define g1 = q(L2)p(Pu,d,) — p(L2)q(Pa,,a,) and
g2 = p(L1)q(Pa..,.d4,) — q¢(L1)p(Pa,.., a,)- Four subcases
must be considered.

The node d, is located on path d; — dp. Utilizing path
Py, a,,thatis, the (3, 63—1+0d(dy, d;))-path, we obtain g1 =
9n—3—363—3d(dy,d,). Utilizing path Py_,, q,, that is, the
(1,03—146(d1, d,.))-path, we obtain go = 03—n+4d(dy, d,.).
By Lemma III.2, we have that

HEIE

6n —3
6n® —10n + 65 + 3+ 6(d1,dy) |-
Hence,

inexp(d,, D®) > 6n? — 4n + 83 + 6(dy, dy) 15)
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for every node d, located on the path d; — dp.

The node d,, is located on path dy 1 — d.. Utilizing path
Py, a,, that is, the (1,03 — 3n + (d1, d))-path, we obtain
g1 = 12n — 2 — 303 — 30(d,,d, ). Utilizing path Py ., 4.,
that is, the (2,03 — 2+ d(d1, dz))-path, we obtain g, = d3 —
2n + 6(dy,dy). By Lemma IIL2, we have that

Ty g1
> M =
eI
6n — 2
6n2 — 10n + 63 + 2 + 6(dy,d,)

Hence,

inexp(d,, D®) > 6n% — 4n + 03 4 6(dy,d,)  (16)

for every node d, located on the path dy; — d..

The node d, is located on path d.;1 — d,. Utilizing path
Py, 4, that is, (2,03 — 3n — 1 + d(dy, d;))-path, we obtain
g1 = 1om —1— 303 — 36(d1,dx) Utlhzmg path Pdc+1,d1,
that is, the (0,03 —3n —1+6(d1, d,))-path, we obtain g5 =
03 —3n — 1+ 6(dy,d,). By Lemma IIL.2, we have that

EIFE

6n —4
6n2—13n+53+3—|—5(d1,d£) ’

Let mqy = 6n —4 and mes = 6n% — 13n + d3 + 3 +
0(dy,dy). We examine the (mq, mo)-walk from d.y1 to d,.
Note that the path is Py, 4,, that is, the (0,03 — 3n —
1+ (dy, dy;))-path. Furthermore, the completion of system

P(Pa..y.d,) my } .
Mv + et G = is v7 = 6n — 4 and
q(Pa.yy,d,) '

mao
vy = 0. The path Py _,, 4, is located entirely in cycle Lo,
and there is no (mq,mo)-walk from d.,; to d,. Hence,
inexp(dm,D(z)) > m1 + mo. Note that the shortest walk
from d.y; — d, that contains a minimum of m; red arcs
and at least ms black arcs is the (mj +p(La), ma+q(L2))-

walk. Since p(Ls) + q(L2) = 3n + 1, we have
inexp(dy, D®) > my +my + p(Ls) + q(L2)

=6n% —4n + 03 + 6(dy,d,)  (17)

for every node d, located on the path d.y1 — dy.

The node d, is located on path d,11 — ds,41. Utilizing
path Py, 4., that is, the (3,03 —3n —2+3(d1, d;))-path, we
obtain g; = 18n — 383 — 30(d1, d;). Utilizing path Py, 4, .
that is, the (1,03 —3n —2+0(dy, d;))-path, we obtain g, =
03 —4n — 1+ 6(dy,d,). By Lemma II1.2, we have that

MEIHE

6n — 3
6n? — 13n+ 05 + 2+ 6(d1,dy) |-

Let m; = 6n —3 and my = 6n% — 13n + §5 + 2 +
0(dy,d;). We examine the (mq, mo)-walk from d.41 to d,.
Note that the path is Py ., 4, that is, the (1,03 — 3n —
2 + §(dy,d;))-path. Furthermore, the completion of system

Mv + p(Pdc+17d:L-) my = 6n — 4 and

= is v
q(Pdu+1)dw) m2
vy = 0. The path Py, 4, is located entirely in cycle Lo,

and there is no (mjp,meo)-walk from d.,; to d,. Hence,

inexp(d,, D) > m; + msy. Note that the shortest walk
from d.y1 — d, that contains a minimum of m; red arcs
and at least mq black arcs is the (mq + p(La), mo +q(L2))-
walk. Since p(L2) 4+ g(L2) = 3n + 1, we have

inexp(d,, D(2)) > my +ma + p(La) + q(L2)

=6n2 —4n + 03 + 6(dy,d,)  (18)

for every node d, located on the path d,41 — d3n41.

From (15), (16), (17) and (18), it can be concluded that
inexp(d,, D) > 6n% — 4n + 63 + §(dy, d,) for every x =
1,2,....3n + 1.

Next, we will prove that inexp(d,, D®) < 6n?—4n+63+
0(dy,dy) for every x = 1,2,...,3n + 1. First, we will show
that inexp(dy, D)) = 6n? — 4n + 63 and then use Lemma
M1 to guarantee that inexp(d,, D®) < 6n? — 4n + 63 +
0(dy,d;) for every x = 1,2,...,3n + 1.

From (15), we obtain inexp(d;, D)) > 6n? — 4n + ds.
Furthermore, it is enough to show that inexp(dl,D(Q)) <
6n% — 4n + J3 for every d,, u = 1,2,...,3n + 1 when the
system

6n —3

p(Pa,.a) | _
6n% — 10n + 63 + 3

q(Pa,.d,)

has a nonnegative integer completion for some path Py, 4,
from d,, to dy. The completion of system (19) is v; = 9n —
3—303 — (3n—2)p(Pu,.dy) +39(Pa,.a,) and vy = 03 —n—
(L =n)p(Pa,a.) = 4(FPa,,a,)-

If d, is located on the path d; — dj, then there is a
(3,3n — 2 — 0(dy,dy))-path from d,, to d;. Utilizing this
path, we obtain v; = 9n — 3 — 3(d3 + §(d1,d,,)) > 0 since
53+5(d1,du) <3n—1and vy = 53+5(d1,du)—n—1 >0
since 03 4 0(d1,d,) > 2n for n > 1. If d,, is located on the
path dp11 — d, then there is a (2,3n — 1 — §(d1,d,,))-path
from d,, to d;. Utilizing this path, we obtain v; = 12n—2—
3(d3+46(d1,dy)) > 1since d3+6(dq,d,,) < 3nforn > 1and
Vo = 53+5(d1, du)—2n—1 > () since 53+5(d1, du) > 3n for
n > 1. If d,, is located on the path d.11 — d,, then there
is a (1,3n — §(dy, dy))-path from d, to d;. Utilizing this
path, we obtain v; = 15n — 1 — 3(d5 + 6(d1, dy)) > 2 since
53+(5(d1, du) <bn—1and vy = 53—}—(5((11, du)—?m—l >0
since 03 + 6(dy,d,) > 3n + 1. If d,, is located on the path
dg+1 — dspt1, then there is a (0,3n + 1 — §(dy,d,,))-path
from d, to d;. Utilizing this path, we obtain v; = 18n —
3(d3+6(d1,dy)) > 3 since d3+6(dq,d,,) < 5nforn > 1 and
= (53+(5(d1, du)—4n—1 > 1 since 53+5(d1,du) > 4n—+2.

Therefore, for every v = 1,2,...,3n + 1, the
system of equations (19) has a nonnegative integer
completion. Proposition IIl.1 guarantees that for every

v = 1,2,..,3n + 1, there is a d, (r%k) dy walk
with r = 6n — 3 and £ = 6n%> — 10n + 63 + 3.
Consequently, inexp(d;, D®) < 6n? — 4n + d5. So,
inexp(dy, D®®) = 6n? — 4n + 3. By Lemma IIL.1, we can
conclude that inexp(d,, D) < 6n? — 4n + 83 + 6(d1, d,)
forevery x =1,2,...,3n + 1.

Mv + { (19)

Case 5. (for 65 — 61 = 2n)

First, we will show that inexp(d,, D®) > (3n + 1)d3 —
3n + 6(dy,d,). We examine the paths Py, 4, and Py_, | 4,
and define g1 = q(L2)p(Pu,,d,) —P(L2)q(P4, q,) and g2 =
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p(L1)q(Pa. 1 a,) — ¢(L1)p(Pa,. ,,4,). Three subcases must
be examined.

The node d, is located on path d; — dp. Utiliz-
ing path P, g4, that is, the (1,d(dy,d,))-path, we obtain
g1 = 3n — 2 — 30(dy,d,). Utilizing path P;_, q4,, that is,
(1,83—146(dy,d;))-path, we obtain go = d3—n+4(dy,d,).
By Lemma III.2, we have that

MEIE

303 — 2
Hence,

inexp(d,, D®) > (3n +1)d3 — 3n + 6(dy,d,)  (20)

for every node d, located on the path d; — dj.

The node d,, is located on path dy 1 — d.. Utilizing path
Py, a4, that is, the (2, —1+ d(dy,d;))-path, we obtain g1 =
6n — 1 —39(dy,d,). Utilizing Py ., q4,, that is, the (2,63 —
2+ 0(dy,d))-path, we obtain go = d3 — 2n+ (d;, d,). By
Lemma III.2, we have that

[l )-

303 — 1
—3n+3n63—253+1+5(d1,d$) ’
Hence,

inexp(d,, D®) > (3n + 1)03 — 3n 4 0(dy,d,) (21

for every node d, located on the path dy; — d..

The node d, is located on path d.+1 — dy—3,+1 path.
Utilizing Py, 4,. that is, the (3,—2 + d(d1,d,))-path, we
obtain g; = 9n — 30(dy,d,). Utilizing path Py_,, 4., that
is, the (0,03 — 3n — 1 + 0(dy,d,))-path, we obtain g5 =
d3 —3n — 14 6(dy,d,). By Lemma II1.2, we have that

EIHE

365 — 3
—6n 4 3nds — 265 + 2+ 6(dr, dy) |

Let m; = 303 — 3 and my = —6n + 3nds — 203 + 2 +
0(dy,d,). We examine the (m1, mg)-walk from d.41 to d,.
Note that the path is Py_,, 4., that is, the (0,63 — 3n —
1+ 6(dy, dy))-path. Furthermore, the completion of system
My 4+ [P(Pdc+1,dm) ] _ { mi

q(Pdc+ladz) ma2
vy = 0. The path Py, 4, is located entirely in cycle Lo,

and there is no (mj,meo)-walk from d.,; to d,. Hence,
inexp(d,, D®) > my + my. Note that the shortest walk
from d.y; — d, that contains a minimum of m; red arcs
and at least ms black arcs is the (my +p(La), m2 +q(L2))-
walk. Since p(L2) 4+ ¢(L2) = 3n + 1, we have

is v1 = 303 — 3 and

inexp(dy, D) > m1 +ma + p(L2) + q(L2)

for every node d, located on the path d.y1 — dg—3n+1-

From (20), (21) and (22), we can conclude that
inexp(d,, D®) > (3n + 1)d3 — 3n + d(dy, d,) for every
r=12,..3n+1.

Next, we will prove that inexp(d,, D®) < (3n +1)d5 —
3n + 6(dy,d,) for every x = 1,2,...,3n + 1. First, we
will show that inexp(d;, D®) = (3n + 1)d3 — 3n and
then use Lemma III.1 to guarantee that inexp(d,, D)) <
(3n + 1)03 — 3n + 0(d1,d,) for every x = 1,2,...,3n + 1.

From (20), we obtain inexp(d;, D) > (3n+1)d5 — 3n.
Furthermore, it is enough to show that inexp(d;, D?)) <
(3n+ 1)d3 — 3n for every d,,, u = 1,2, ...,3n 4+ 1 when the

system

has a nonnegative integer completion for some path Py, 4,
from d,, to dy. The completion of system (23) is v; = 3n —
2— (377, — 2)p(Pdu,d1) + ?’Q(Pdu,@l) and vo = 03 —n — (1 —
n)p(Pa,.a,) — ¢(Pa,.d,)-

If d, is located on the path d; — dj, then there is a
(3,3n—2—0(dy, dy))-path from d,, to d;. Utilizing this path,
we obtain v; = 3n—2-39(d1,d,,) > 1since §(d1,d,) < n—
1 and vy = 03+ 6(d1,d,)—n—1 > 0 since d3+0(d1,dy) >
2n with n > 1. If d,, is located on the path dyy; — d.,
then there is a (2,3n — 1 — §(d1, dy,))-path from d,, to dj.
Utilizing this path, we obtain v; = 6n — 1 — 35(dy,d,) > 2
since §(dy,d,) < n for n > 1 and vy = 03 + §(dy1,dy) —
2n — 1 > 0 since 63 + 6(d1,dy) > 3n for n > 1. If d,
is located on the path d.4; — dg=3n+1, then there is a
(1,3n—94(dy, d,,))-path from d,, to d;. Utilizing this path, we
obtain v; = 9n — 3(dy, dy) > 0 since §(dy,d,) < 3n and
vy = 03+06(d1, dy)—3n—1 > 0since d3+0(d1,dy) > 3n+1.

Therefore, for every u = 1,2,...,3n + 1, the system of
equations (23) has a nonnegative integer completion. Propo-
sition III.1 guarantees that for every u = 1, 2, ..., 3n+1, there

isad, (T—J;) dy walk with r = 363 —2 and k = —3n+3nds —
205+2. Consequently, inexp(dy, D)) < (3n+1)d3—3n. So,
inexp(dy, D) = (3n+41)d3 — 3n. By Lemma IIL1, we can
conclude that inexp(d,, D®) < (3n+1)d3 —3n+0(dy, dy)
for every x = 1,2,...,3n + 1.

p(Pa,,d,)
q(Pa,.d,)

363 — 2

30+ 306 — 205 +2 | P

Mv+[

Next, we will examine the incoming local exponent for
the digraph with three red arcs. The three red arcs in D(?)
are the first arc d, — dg4+1 where 1 < a < n — 1. The
second and third arcs are d, — dp41 and arcs d. — dei1,
respectively, where n < b < ¢ < 3n + 1. §;1; represents the
distance from node d,;; to node d; in L;i. d12 represents
the distance from node d, ;1 to node d; in Lo. 65 represents
the distance from node dp41 to node dj. d3 represents the
distance from node d.41 to node d;.

Theorem IV.2. Let a primitive bicolour digraph D®) have
two cycles of length n and 3n + 1. If D® has three red
arcs with two consecutive red arcs at Lo, then for every
r=1,2,...,3n+1,

inexp(d,, D?)) =

9n? + 3n (63 — 612) + 03 + 6 (d1,dz) ,
for 512 — 52 S n
6n2—4n—|—53+5(d1,dm),
forn < d12 — 62 < 2n
6n2 —4n + 371((511 —03) + 011+ (d1,dy),
for 10 — do > 2n
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Proof: Suppose that for every x = 1,2,...,3n + 1,
inexp(d,, D(®)) is obtained using the (r,k,)-walk. The
proof is divided into three cases as follows.

Case 1. (for d15 — 6o < n)

First, it will be shown that inexp(d,, D®) >
9712 + 3n (53 — 512) + 63 + 0 (dl, dT) We
examine the paths Py, 4, and Py, 4, and define
9 = q(L2)p(Pa,.a,) — p(L2)q(Pa,.a,) and

g2 = p(L1)q(Pa..,.4,) — q¢(L1)p(Pa,., a,). Four subcases
must be examined.

The node d,, is located on the path d; — d,. Utilizing path
Py, 4., that is, the (3,912 — 2 + 0(dy, dy))-path, we obtain
g1 = 9n—6— 303 —39(dy, d,). Utilizing path Py_, 4,, that
is, the (0, d54+4d(d1, d,.))-path, we obtain go = d3+9(d1, dy).
By Lemma III.2, we have that

=]

In — 3512 + 353
9712 + 371(53 - 512) —9n — 253 + 3512 + 6(d1, dz)

Hence,

inexp(dy, D) > 9n2 +3n(65— 612) + 03+ 0(dy, dy) (24)

g1
g2

for every node d, located on the path d; — d,.

The node d, is located on the path d,; — dp. Utilizing
path Py, 4, that is, the (1,12 —3n — 1 + 6(d1, d;))-path,
we obtain g; = 12n — 3612 + 1 — 36(dy, d,.). Utilizing path
Py..\.d,- that is, the (1,03 — 1+ d(d1, d;))-path, we obtain
g2 = 03 —n+ 0(dq,d,). By Lemma II1.2, we have that

Ty g1
>M
MR
In + 363 — 3012 + 1
9n2 + 371(53 - 512) —9n — 253 + 3512 -1 + 5(d1, dy)

Hence,

inexp(dy, D) > 9n? +3n(65— 612) + 03+ 0(dy, dy) (25)

for every node d, located on the path dgy1 — dp.

The node d, is located on the path dy4; — d.. Utilizing
Py, 4, that is, the (2,012 — 3n — 2 + §(d1, ds))-path, we
obtain ¢; 15n — 3612 + 2 — 36(dy, d,). Utilizing path
Py..\.d,- that is, the (2,03 — 2+ d(d1, d;))-path, we obtain
g2 = 03 — 2n + 6(dy, d,). By Lemma II1.2, we have that

k=5 ]-

In + 303 — 3812 + 2
9n? + 371(53 — 512) —9n — 203 + 3010 — 2+ 5(d1, dx)

Hence,

inexp(dy, D) > 9n® +3n(83 —612) + 83 +8(d1, ds) (26)

g1
g2

for every node d, located on the path dy1 — d..

The node d, is located on the path d.y1 — d3pi1-
Utilizing path Py, 4_, thatis, the (3,012 —3n—3+0(d1,dy))-
path, we obtain g; = 18n — 3612 + 3 — 36(dy, d;). Utilizing
path Py, 4., that is, the (0,03 — 3n — 1+ 6(d1,d,))-path,
we obtain go = 03 — 3n — 1+ §(dy,d,). By Lemma II1.2,

we have that
Tz g1
> M
HEI

In + 3(53 - 3(512
9n? + 371(53 — 512) —12n — 203 + 3612 — 1 + (S(dl, dx)

Let m1 = 9n + 303 — 3012 and my = 9In? + 3%(53 — (512) —
12n — 283+ 3012 — 1+ 6(d1, d,.). We examine the (mq, mo)-
walk from d.y; to d,. Note that the path is Py, q4,, that
is, the (0,03 — 3n — 1 + &(dy,d;))-path. Furthermore, the
P(Paoiy.d.) } _ { my ]
ma

Q(Pdc+1,dm)
is vy = 9n+393—3612 and v = 0. The path P;__ | g, located

entirely in cycle Ly, and there is no (mj, mg)-walk from
dey1 to d. Hence, inexp(d,, D(2)) > my + mo. Note that
the shortest walk from d..1 — d, that contains a minimum
of my red arcs and at least mgy black arcs is the (m; +
p(L2), mz + q(Lz))-walk. Since p(L2) + q(L2) = 3n + 1,
we have

completion of the system Mv+

inexp(d,, D@) > my + mg + p(La) + q(Lo)

= 9n? + 371((53 - 512) + 83 + 6(d17 dw) (27)

for every node d, located on the path d.y1 — dspy1.

From (24), (25), (26) and (27), it can be concluded that
inexp(dy,, D) > 9n? + 3n(d3 — 612) + 03 + 6(dy, d,) for
every x = 1,2, ....,3n + 1.

Next, we will prove that inexp(d,,, D) < 9n?+3n(d3 —
d12) + 61+ 6(d3, d,) for every x = 1,2, ...,3n+ 1. First, we
will show that inexp(dy, D®) = 9n?+3n(83 —d12) +03 and
then use Lemma IIL1 to guarantee that inexp(d,, D(?) <
9n2+3n(03—0612)+03+0(d1,d,) forevery z = 1,2, ..., 3n+
1.

From (24), we obtain inexp(d;, D®) > 9n? +
3n(ds — d12) + J3. Furthermore, it is enough to show that
inexp(dy, D?) < 9n? + 3n(d3 — d12) + d3 for every d,,
u=1,2,...,3n + 1 when the system

p(Pa,,d,)
q(Pa,.d,)
In + 363 — 3912
[ 9n2 + 371(53 — 512) —9n — 253 + 3512 ]
has a nonnegative integer completion for some path Py, 4,
from d,, to dy. The completion of system (28) is v; = 9n —
3012 — (3n — 2)p(Pu,, a,) + 3q(Pa,,a,) and v2 = 63 — (1 —
n)p(Pa,,,di) — ¢(Pa,.dy )-

If d, is located on the di — d, path, then there is a
(3,3n — 2 — §(dy,dy))-path from d,, to dy. Utilizing this
path, we obtain v; = 9n — 3(d12 + 6(d1,dy,)) > 0 since
012 +9(d1,dy) < 3n and v = 95 + 6(d1,d,) — 1 > 2 since
03 + d(dy,dy,) > n+ 1 with n > 2. If d,, is located on the
detr1 — dsni1 path, then there is a (0,3n+ 1 — §(dy,dy))-

Mer{

(28)

* path from d,, to d;. Utilizing this path, we obtain v; = 18n+

3— 3(512 + 5(d1,du)) Z 3 since 512 + §(d1,du) S 6n and
vy = d3+0(dy,dy)—3n—1 > 0since d3+5(d1, dy,) > 3n+1
with n > 2.

Therefore, for every u = 1,2,...,3n + 1, the system
of equations (28) has a nonnegative integer completion.
Proposition III.1 guarantees that for every u = 1, 2, ..., 3n+1,

there is dy =3 dy walk with 7 = On + 305 — 361
and & 9n?2 + 3”((53 — 512) — 9n — 203 + 3012.
Consequently, inexp(dy, D)) < 9n? + 3n(d3 — d12) + ds.
So, inexp(d;, D?®) = 9n? + 3n(d3 — d12) + 3. By
Lemma III.1, we can conclude that inexp(dz,D(Q)) <
In? + 377/((53 — (512) + 03 + (5(d1,dm) for every
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r=12,..3n+1.

Case 2. (for n < 612 — 93 < 2n)

First, it will be shown that inexp(d,, D®)) > 6n? — 4n +
03 + 0 (dy,dy). We examine the paths Py, 4, and Py_,, 4,
and define g1 = b(L2)r(Pa,.a,) — 7(L2)b(Py, a,) and g =
r(L1)b(Py.,,.4,) —b(L1)r(Py.,, 4,). Four subcases must be
examined.

The node d, is located on the path dy — d,. Utilizing
path Py, 4., that is, the (2,03 4+ 6(dy,d,))-path, we obtain
g1 = 6n—4—303 —30(dy, d,). Utilizing path Py_, 4,, that
is, the (0, d5+0d(d1, d,))-path, we obtain g = d3+9(d1, dy).
By Lemma III.2, we have that

Ty g1
>M -
eI
6n —4
6n% — 10n + 05 + 4 + 0(dy, dy)

Hence,

inexp(d,, D(z)) > 6n% —4n + 03 + 6 (dy, dy) (29)

for every node d, located on the path d; — d,.

The node d, is located on the path d,1 — dp. Utilizing
path Py, 4., that is, the (3,03 —1+0(d1, d;;))-path, we obtain
g1 = 9In—3—303 —39(dy, d,). Utilizing path Py_, 4, , that
is, the (1,03 — 1+ 6(dy,d;))-path, we obtain g5 = d5 —n+
d(dy,dy). By Lemma II1.2, we have

]z

6n —3
6n® — 10n + 65 + 3+ 6(d1,dy) |-
Hence,

inexp(dy, D) > 6n? — 4n + 83 + 6(dy, dy) (30)

for every node d, located on the d, 1 — dp path.

The node d, is located on dy41 — d. path. Utilizing path
Py, a,, that is, the (1,83 — 3n + 6(d1, d;))-path, we obtain
g1 = 12n — 2 — 363 — 30(dy, d,). Utilizing path Py, 4,.
that is, the (2,03 — 2+ d(d1, d,;))-path, we obtain g; = d5 —
2n + 6(dy,d,). By Lemma III.2, we have that

&)=

6n —2
6n2 — 10n + 63 + 2+ 6(dy,d,) |-
Hence,

inexp(d,, D®) > 6n% — 4n + 83 4+ 6(dy,d,)  (31)

for every node d, located on the dp;1 — d. path.

The node d, is located on the path d.y1 — d3pi1.
Utilizing de)da:’ that is, the (2,(53 —3n -1+ 5(d1,daj))—
path, we obtain g; = 15n — 1 — 3d3 — 36(dy, d,.). Utilizing
path Py, 4., that is, (0,03 — 3n — 1+ 0(dy, d,))-path, we
obtain go = 03 — 3n — 1+ 0(dy,d,). By Lemma IIL.2, we

have that
Tz g1
> M =
HEI

6n —4
6n% — 13n + 03+ 3+ 5(d1,d£)

Let mqy = 6n —4 and mes = 6n%2 — 13n + d3 + 3 +
d(dy,d,). We examine the (mq, mg)-walk from d.11 to d,.
Note that the path is Py ,, 4,, that is, the (0,3 — 3n —
1+ §(dy, d,;))-path. Furthermore, the completion of system

Mv + N I is vy = 6n — 4 and
Q(Pdc+1,dz) m2

vy = 0. The path Py _,, 4, is located entirely in cycle Lo,
and there is no (mq, mg)-walk from d.,; to d,. Hence,
inexp(d,, D®) > m; + my. Note that the shortest walk
from d.y; — d, that contains a minimum of m; red arcs
and at least mq black arcs is the (mq +p(La), ma +q(L2))-

walk. Since p(Lz2) 4+ g(L2) = 3n + 1, we have
inexp(dy, D®) > my +my + p(Ls) + q(L2)

=6n° —4n + 03 +6(d1,d,)  (32)

for every node d, located on the path d.y1 — dsn+1.

From (29), (30), (31) and (32), it can be concluded that
inexp(d,, D) > 6n? — 4n + 65 + 6(dy, d,) for every x =
1,2,...,3n+ 1.

Next, we will prove that inexp(d,, D®) < 6n?—4n+63+
d(dy,dy) for every x = 1,2,...,3n + 1. First, we will show
that inexp(dy, D®) = 6n? — 4n + J3 and then use Lemma
IL1 to guarantee that inexp(d,, D®) < 6n? — 4n + 63 +
0(dy,d,) for every x = 1,2,...,3n + 1.

From (29), we obtained inexp(d;, D®) > 6n? — 4n + ds.
Furthermore, it is enough to show that inexp(d;, D?)) <
6n% — 4n + d3 for every dy, u = 1,2,...,3n + 1 when the
system

p(Pa,.a,) | 6n —4
Mzt [ q(Pa,a,) | | 60 —10n+ 65 +4

has a nonnegative integer completion for some path Py, 4,
from d,, to dy. The completion of system (10) is v; = 6n —
4 — 363 — (3n — 2)p(Py,.4,) + 3¢(P4, q4,) and vg = J3 —
(1 - n)p<Pdu,d1) - q(Pdu,dl)'

If d, is located on the di — d, path, then there is a
(3,3n — 2 — 0(dy,dy))-path from d,, to d;. Utilizing this
path, we obtain v; = 6n — 4 — 3(d3 + §(dy1,d,) > 2 since
d3+0(dy,dy) <2n—2and vo = d35+0(dy,d,)—1 > 0 since
03 + 0(dq,d,) > 1. If d,, is located on the d.y1 — dspi1
path, then there is a (0,3n + 1 — d(d1, dy,))-path from d,, to
dy. Utilizing this path, we obtain v; = 15n — 1 — 3(d3 +
d(di,dy)) > 5 since 93 + 6(dy,dy) < bn — 2 and vy =
03 4+ 6(dy,dy) —3n—1 >0 since 03 + §(dy,d,) > 3n+ 1.

Therefore, for every v = 1,2,...,3n + 1, the
system of equations (33) has a nonnegative integer
completion. Proposition IIl.1 guarantees that for every

v = 1,2,..,3n + 1, there is a d, (T’Hk) dy walk
with + = 6n — 4 and £ = 6n%2 — 10n + 63 + 4.
Consequently, inexp(d;, D®) < 6n? — 4n + &5. So,
inexp(dy, D) = 6n? — 4n + 3. By Lemma IIL1, we can
conclude that inexp(d,, D) < 6n? — 4n + 83 + 6(d1, d,)
for every x = 1,2,....,3n + 1.

(33)

Case 3. (for 012 — 09 > 2n)

First, it will be shown that inexp(d,,D®) >
6n2 — 4n + 3TL(511 - (53) + (511 + ) (dl, dm)
We examine the paths Py 4, and Py, 4, and
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define g1 = b(L2)r(Pu,4,) — r(L2)b(Pa,q,) and
g2 = r(L1)b(Pa,.,.d,) — b(L1)r(Pa,., .4,)- Four subcases
must be examined.

The node d, is located on the path d; — d,,. Utilizing path
Py, a4, that is, the (2,03 + d(d1, d,))-path, we obtain g; =
6n — 4 — 303 — 30(dy, d,). Utilizing path Py, 4., that is,
the (0,811 +6(dy, d,))-path, we obtain go = d11 +(d1, dz)-
By Lemma III.2, we have that

IR
[ 6n — 4 + 361, — 303 }
6n% + 3n(611 — d3) — 10n + 4 + 363 — 2011 + 6(dy, dy)
Hence,
inexp(dy, D) > 6n? —4n+3n(611 — 63) + 611 +0 (dy, dy)

(34)
for every node d, located on the path d; — d,.

The node d, is located on the path d,1 — dp. Utilizing
path Py, 4., that is, the (3,03 —1+0(d1, d;;))-path, we obtain
g1 = 9n — 3 — 303 — 36(dy,d,). Utilizing path Py, 4.,
that is, the (0,611 — n + §(d1, d,))-path, we obtain g, =
011 — n+6(dy,d,). By Lemma III.2, we have

Tx g1
> M =
e
6n — 3+ 3611 — 303
6n2 + 3’/1(511 — 53) —10n + 3 + 363 — 2611 + (S(dl, d.l,)

Hence,

inexp(dy, D®) > 6n2 —4n+3n(811 — d3) + 611 +6(dy, dy)
(35)
for every node d, located on the d, 1 — dp path.

The node d,, is located on dp41 — d. path. Utilizing path
Py, a,, that is, the (1,03 — 3n + §(d1, d,))-path, we obtain
g1 = 12n — 2 — 363 — 34(dy, d,). Utilizing path Py, 4,.
that is, the (0,011 — 2n — 2 + d(dy,d;))-path, we obtain
g2 = 011 — 2n — 2 + 0(dq,d,). By Lemma IIL.2, we have

that
T g1
> M =
R
6n — 8 + 3(511 - 363
6n2 + 371((511 — (53) —16n 4+ 6 4+ 363 — 2611 + (S(dl, dw)

Let my = 6n — 843611 — 303 and mo =
6n2 + 3n(611 — (53) —16n +6 + 353 — 2(511 + (5(d1, dm)

We examine the (mj,me)-walk from d,y; to
d.. Note that the path is Py, q,, that is, the
(0,611 — 2n — 2 + 6(d1,dy))-path. Furthermore, the

completion of system Mwv —I—l P(Pay,a.) } :‘L m ] is

q(Pa,1.d.) ma
vy = 6n — 8 + 3411 — 303 and vy = 0. The path Py, 4, is
located entirely in cycle Lo, and there is no (m;, mg)-walk
from d,.1 to d,. Hence, inexp(d,, D) > m; + ma.
Note that the shortest walk from d,+; — d, that
contains a minimum of m; red arcs and at least mo
black arcs is the (m1 + p(La), ma + g(L2))-walk. Since
p(L2) + q(L2) = 3n + 1, we have

inexp(d, D®) > my + my + p(La) + q(La)
= 6n2 — 4n + 3n(611 — 63) + 011 + 0(d1,dy) (36)

for every node d, located on the path dy; — d..

The node d, is located on the path d.y1 — dspi1-
Utilizing Py, q,, that is, the (2, 3 —3n—143(d1, d;))-path,
we obtain g1 = 15n — 1 — 395 — 35(dy, d,). Utilizing path
Py, .d, that is, (0,617, — 3n + 6(d1,d,))-path, we obtain
g2 = 011 — 3n + 6(dq, d,;). By Lemma II1.2, we have that

Tz g1
> M =
e
6n — 14 3011 — 303
6n? + 371(511 — 53) —10n + 1+ 363 — 2611 + (S(dl, dx)

*Hence,

inexp(dm, D(z)) Z 6n2 f4n+3n(511 - 53) +511 +5(d1, dm)
(37
for every node d, located on the d.+; — ds3,41 path.

From (34), (35), (36) and (37), it can be concluded that
inexp(dz, D(2)) > 6n2 — 4n+3n(511 — (53) + 011 +5(d1, dI)
for every x = 1,2,...,3n + 1.

Next, we will prove that inexp(d,, D®) < 6n? — 4n +
3n(d11 — 03) + 611 + 6(dy,dy) for every x = 1,2,...,3n +
1. First, we will show that inexp(d;, D) = 6n? — 4n +
3n(d11 —03)+011 and then use Lemma III.1 to guarantee that
inexp(dy, D(2)) < 6n%—4n+3n(011 —03) + 611 +9(d1, dy)
for every x = 1,2,...,3n + 1.

From (34), we obtained inexp(d;, D) > 6n? — 4n +

.3n(011 — 03) + 011. Furthermore, it is enough to show that

inexp(dy, D®)) < 6n% — 4n + 3n(d1; — 03) + 611 for every
dy, u=1,2,...,3n + 1 when the system

Mz 4+ { P(P,.d,) } _
q
6n — 4+ 3611 — 303

(Pa,.d,)
[ 6n2 + 3n(d11 — 63) — 10n + 4 — 2617 + 353 ] %)

has a nonnegative integer completion for some path Py, 4,
from d,, to dy. The completion of system (38) is v; = 6n —
4 —3335 — (3n — 2)p(Py, 4,) + 3q(Pa,.q4,) and vy = 011 —
(L =n)p(FPa,.a,) — a(Fa,.a,)-

If d, is located on the di — d, path, then there is a
(I,n—1-46(dy, dy))-path from d,, to d;. Utilizing this path,
we obtain v, = 6n — 5 — 3(d3 + d(dy,dy,) > 7 since 03 +

"0(dy,dy) <n—2withn > 2 and v = 11 +(d1,dy) > 1

since d11 + 0(dq,d,) > 1. If d,, is located on the d.41 —
d3n+1 path, then there is a (0,3n+1—0(dy, dy,))-path from
dy, to dy. Utilizing this path, we obtain v; = 15n—1-3(d3+
d(dy,dy)) > 5 since 03+ 0(dy,dy) < 3n—2 withn > 2 and
vy = 011 + 5(d1,du) —3n—1>1 since d11 + 5(d1,du) >
3n + 2 with n > 2.

Therefore, for every v = 1,2,...,3n 4+ 1, the system
of equations (38) has a nonnegative integer completion.
Proposition III.1 guarantees that for every u = 1, 2, ..., 3n+1,

there is a dy =3 d; walk with r = 6n — 4 — 385 + 361, and
k = 6n2+3n(8;1 —d3) —10n+4+393 —26,;. Consequently,
inexp(dl,D(Q)) < 6n2 — 4n + 371(511 — 53) + d11. So,
inexp(dy, D) = 6n? —4n+3n(81, —d3) +611. By Lemma
IL.1, we can conclude that inexp(d,, D(Q)) < 6n2 —4n +
3n(d11 — 63) + 011 +d(d1,d,) for every x = 1,2, ....3n+ 1.

| ]
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Theorem IV.3. Let a primitive bicolour digraph D® have
two cycles of length n and 3n+ 1. If D) has three red arcs
with two arcs alternating with a difference of one at Lo, then
forevery x =1,2,...,3n+1,

inexp(d,, D?)) =

9n2+3n(53 7512)+53+6(d1,d1),
for (512 — 52 S n

612 —n + 3n(d3 — 82) + 63 + 6 (dy, d,.),
forn < d12 — dg < 2n

6n2 —n + 371(511 - 52) + 011 + 6(d1adx)7
for 512 — 52 Z 2n

Proof: Proof of Theorem IV.3 given in the form of a
proof sketch and uses the same arguments as Theorem IV.1
and Theorem IV.2.

Case 1. (for 12 — 02 < n)

We  will show that inexp(d,, D®) =
9? + 3n(é3 — d12) + 83 + 6(d1,d,) for every
1,2,...,3n + 1. The lower bound obtained by
constructing g1 = q(L2)p(Pa,.q,) — p(L2)q(F4,,q,) and
92 = p(L1)q(Pa.y,.4,)—a(L1)p(Pa,,, 4, ) The upper bound
found by showing that for every d,, u = 1,2,...,3n + 1
when the system

(P, i) ] _
a(Pa, )

In — 312 + 303
In% —9In + 371(53 — (512) — 203 + 3012

x =

Mv-i-{

(39)

has a nonnegative integer completion for some path Py, 4,
from d, to dy. This implies that inexp(d,, D®) =
9n? + 3n(d3 — 612) + 03. By Lemma IIL.1, we can conclude
that inexp(dr, D(z)) < 9In? + 377,(53 — 512) + 53 + 5(d1, dr)
for every x = 1,2,....,3n+ 1 for every x = 1,2,...,3n + 1.

Case 2. (for n < 612 — 93 < 2n)

We will show that inexp(d,,D®) = 6n> —
n + 3n(ds — d2) + 03 + O(d1,d,) for every =z =
1,2,...,3n + 1. The lower bound obtained by construct-
ing g1 = q(L2)p(Pa,a,) — p(L2)q(Pa,a,) and g2 =
p(L1)q(Pa.iya,) — q(L1)p(Pa,.,.4,)- The upper bound
found by showing that for every d,, v = 1,2,...,3n + 1
when the system

v [ ) | =

6%7173524’363

61 — T+ 3n (05 — 02) + 305 — 20 + 1 ] (“40)

has a nonnegative integer completion for some path
Py, .4, from d, to dy. This implies that inexp(d;, D?) =
612 —n+3n(d3—d2)+03. By Lemma IIL.1, we can conclude
that il’leXp(dw D(Q)) < 6n2 —n+3n((53 —(52)+(53+(5(d1, d$)
for every x = 1,2,...,3n+ 1 for every x = 1,2,...,3n + 1.

Case 3. (fOI' 612 — 52 > 2’[’L)

We will show that inexp(d,,D®) = 6n? — n +
371(611 - 52) + 511 + (S(dl,dx) for every «x =
1,2,...,3n + 1. The lower bound obtained by construct-
ing g1 = q(L2)p(Pay.a,) — p(L2)q(Pa,.q,) and g2 =
p(L1)q(Pa,ir.a.) — q(L1)p(Pd,.,,d,)- The upper bound

found by showing that for every d,, v = 1,2,...,3n + 1
p(Pa,.d,)
a(Fa,.a,)

when the system
6n —1 — 362 + 3611

6n2 —Tn+1+ 3’[7,(511 — (52) + 309 — 2011

Mv—l—{

} (41)

has a nonnegative integer completion for some path Py, 4,
from d, to d;. This implies that inexp(d;, D®)) = 6n? —
n+3n(d11—9d2)+011. By Lemma IIL.1, we can conclude that
inexp(d,, D) < 6n2 —n+3n(01; — 62) + 611 + 0(dy, dy)
for every x =1,2,...,3n+ 1 for every x = 1,2,...,3n + 1.

|

V. CONCLUSION

In general, the incoming local exponent of a two-cycle
bicolour Hamiltonian digraph with a difference of 2n + 1
and four red arcs is inexp(d,, D®) = inexp(d;, D®) +
d(dy,d;). Research in this class can be continued for differ-
ence kn + 1 with k > 2.
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