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Abstract—A bicolour digraph D(2) is a directed graph with
every arc coloured in one of two colours, red or black. Suppose
r and k are nonnegative integers representing the number of
red and black arcs, respectively. The smallest sum of r and k
such that every node on D(2) has a walk to node x is called
the incoming local exponent of node dx. For primitive bicolour
digraphs with a difference of 2n+1, there will be three or four
red arcs. This article discusses the incoming local exponent for
a primitive bicolour Hamiltonian digraph with a difference of
2n+ 1.

Index Terms—primitive-digraph, bicolour-digraph,
incoming-local-exponent.

I. INTRODUCTION

ADirected graph (digraph) D consists of a finite set N ,
which has elements called nodes, and the set A, which

contains all the pairs of nodes in N (each pair is called
an arc). The bicolour digraph D(2) is a directed graph with
every arc coloured in one of two colours, red or black. Let
r and k be nonnegative integers representing the number
of red and black arcs, respectively. A walk consisting of
positive integers r + k in a bicolour digraph is called an
(r, k)-walk. For a walk W in bicolour digraph D(2), p(W )
and q(W ) denote the number of red arcs and the number of
black arcs contained in walk W , respectively. The column

matrix
[
p(W )
q(W )

]
is the composition of the walk W , and

`(W ) = p(W ) + q(W ) is the length of the walk W . A
primitive bicolour digraph is a bicolour digraph in which
each pair of nodes has an (r, k)-walk [1]. The smallest sum
of r and k over all pairs of nonnegative integers is called
the exponent of D(2) [2]. Whereas, the smallest sum of r
and k such that every node on D(2) has a walk to node x is
called the incoming local exponent of node dx and denoted
by inexp

(
dx, D

(2)
)
.
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Local exponent research was initiated by Gao [3] using the
Wielandt bicolour digraph with cycles of length n and n−1.
Suwilo [4] found the local exponents for a two-cycle bicolour
digraph with cycles n−1 and n−2. Syahmarani and Suwilo
[5] investigated the local exponents of a Hamiltonian digraph
with cycles n and n − 2 for odd n and n ≥ 5. Suwilo and
Syafrianty [6] discussed the local exponents of a two-cycle
bicolour digraph with cycles n−1 and n−3 for even number
vertices. Sahara et al. [7] found the local exponents for a two-
cycle bicolour digraph with cycles n and one loop. Sumardi
and Suwilo [8] determined a local exponent for a bicolour
digraph with cycle lengths of 2s+1 and s for s ≥ 5 and an
allied node. Mardiningsih et al. [9] conducted research on
incoming local exponents of bicolour digraphs with cycles
of length s + 1 and s. Mardiningsih et al. [10] investigated
the incoming local exponents of primitive two-cycle bicolour
digraph with cycles s and 2s − 1. Mardiningsih et al. [11]
discussed incoming local exponents for a two-cycle bicolour
Hamiltonian digraph with cycles n and n− 3.

This paper discusses the incoming local exponent of a
Hamiltonian digraph with cycle lengths n and 3n + 1. In
other words, the difference between cycle lengths is 2n+1.
In Chapter 2, the primitivity of the bicolour digraph is
discussed. Chapter 3 discusses how to determine the bounds
of incoming local exponents for a bicolour digraph. Chapter
4 presents the results.

II. PRIMITIVITY

Fornasini and Valcher [1] provide the characteristics for
a primitive bicolour digraph. A bicolour digraph is said to
be primitive iff the content of the cycle matrix is equal 1.
The cycle matrix’s content is the greatest common divisor
of the 2×2 submatrix determinant of the cycle matrix. The
cycle matrix for a two-cycle bicolour digraph is M =[
p(L1) p(L2)
q(L1) q(L2)

]
, with L1 and L2 representing the first

and second cycles.

Corollary II.1. Suppose that D(2) is a strongly connected bi-
colour digraph with two cycles of length n and 3n+1. If D(2)

is primitive, then the cycle matrix M =

[
1 3

n− 1 3n− 2

]
or M =

[
n− 1 3n− 2
1 3

]
.

Proof: Note that the shape of the cycle matrix of D(2) is
a strongly connected bicolour digraph with two cycles with
lengths n and 3n + 1. If D(2) has the cycle matrix M =[
y z
n 3n+ 1

]
with 0 ≤ y ≤ n and 0 ≤ z ≤ 3n+ 1, then,

IAENG International Journal of Applied Mathematics, 51:3, IJAM_51_3_10

Volume 51, Issue 3: September 2021

 
______________________________________________________________________________________ 



because D(2) is primitive, det (M) = ±1. If det (M) =
1, then (3y − z)n + y = 1. Since 0 ≤ z ≤ 3n + 1, we
get 3y − z = 0. Hence, y = 1 and z = 3. So, M =[

1 3
n− 1 3n− 2

]
. If det (M) = −1, then (z − 3y)n −

y = 1. Since 0 ≤ z ≤ 3n + 1, we have z − 3y = 1.
Consequently, y = n − 1 and z = 3n − 2. Thus, M =[
n− 1 3n− 2
1 3

]
.

Because changing all of the arcs from red to black and vice
versa does not change the incoming local exponent, without
loss of generality, we can assume that the cycle matrix of

D(2) is M =

[
1 3

n− 1 3n− 2

]
. Therefore, D(2) has three

or four red arcs.

III. BOUNDS FOR THE INCOMING LOCAL EXPONENT

This chapter starts with the results obtained in [4] because
they will help determine the lower and upper bounds of the
incoming local exponent.

Proposition III.1. [4] Suppose that D(2) is a bicolour
digraph with two cycles and dx is any node on D(2) found in
both cycles. If for some nonnegative integers r and k, there
is a path Pdu,dx

from du to dx such that system

Mv +

[
p(Pdu,dx

)
q(Pdu,dx

)

]
=

[
r
k

]
has a nonnegative integer completion, then
inexp(dx, D

(2)) ≤ r + k.

Lemma III.1. [4] Suppose that D(2) is a primitive bicolour
digraph and du is any node on D(2) with the incoming local
exponent inexp(du, D(2)). Then for every x = 1, 2, . . . , 3n+
1, inexp(dx, D(2)) ≤ inexp(du, D

(2)) + δ(du, dx).

Lemma III.2. [9] Suppose that D(2) is a primitive bicolour
digraph with two cycle of length L1 and L2 with cycle

matrix M =

[
p(L1) p(L2)
q(L1) q(L2)

]
and that det(M) = 1. If

inexp(dx, D
(2)) is obtained via the (rx, kx)-walk, then[

rx
kx

]
≥M

[
q(L2)p(Pdu,dx

)− p(L2)q(Pdu,dx
)

p(L1)q(Pdw,dx
)− q(L1)p(Pdw,dx

)

]
for some path Pdu,dx

and Pdw,dx
.

IV. RESULTS

This article discusses a Hamiltonian two-cycle bicolour
digraph with a difference of 2n+1 (see Fig. 1). The first cycle
with length n is L1 : d1 → d2 → · · · → dn−1 → dn → d1,
and the second cycle with length 3n+1 is L2 : d1 → d2 →
· · · → dn−1 → dn → dn+1 · · · → d3n → d3n+1 → d1. By
Corollary 1, this primitive bicolour digraph has three or four
red arcs.

First, we will examine the incoming local exponent for
the digraph with four red arcs. The red arcs on D(2) are
dn → d1, db → db+1, dc → dc+1 and da → da+1 for
n ≤ b < c < a ≤ 3n+1. The distance from node (a+1) to
node 1 is denoted by δ1 = δ(da+1, d1), whereas the distance
from node (b+1) to node 1 is denoted by δ2 = δ(db+1, d1).
Finally, the distance from node (c+ 1) to node 1 is denoted
by δ3 = δ(dc+1, d1).

Fig. 1. Hamiltonian two-cycle digraph with a difference of 2n+ 1

Theorem IV.1. Let a primitive bicolour digraph D(2) have
two cycles of length n and 3n+1. If D(2) has four red arcs,
then for every x = 1, 2, ..., 3n+ 1,
inexp(dx, D

(2)) =

9n2 + 3n (δ1 − δ2) + δ1 + δ (d1, dx) ,
for δ3 − δ1 ≤ n, δ2 − δ1 ≤ n+1

n2 − 4n+ δ1 + δ (d1, dx) ,
for δ3 − δ1 ≤ n, n+1 < δ2 − δ1 ≤ 2n

(3n+ 1) δ2 − 6n+ δ (d1, dx) ,
for δ3 − δ1 ≤ n, δ2 − δ1= 2n+1

6n2 − 4n+ δ3 + δ (d1, dx) ,
for n < δ3 − δ1 < 2n

(3n+ 1) δ3 − 3n+ δ (d1, dx) ,
for δ3 − δ1= 2n

Proof: Suppose that for every x = 1, 2, ..., 3n + 1,
inexp(dx, D(2)) is obtained using the (rx, kx)-walk. The
proof is divided into five cases as follows.
Case 1. (for δ3 − δ1 ≤ n, δ2 − δ1 ≤ n+ 1)
First, it will be shown that inexp(dx, D(2)) ≥
9n2 + 3n (δ1 − δ2) + δ1 + δ (d1, dx). We examine
the paths Pdb,dx

and Pda+1,dx
and define

g1 = q(L2)p(Pdb,dx) − p(L2)q(Pdb,dx) and
g2 = p(L1)q(Pda+1,dx) − q(L1)p(Pda+1,dx). Four subcases
must be examined.

The node dx is located on the path d1 → db. Utilizing
path Pdb,dx , that is, the (3, δ2−2+δ(d1, dx))-path, we obtain
g1 = 9n− 3δ2 − 3δ(d1, dx). Utilizing path Pda+1,dx , that is,
the (0, δ1 + δ(d1, dx))-path, we obtain g2 = δ1 + δ(d1, dx).
By Lemma III.2, we have that[

rx
kx

]
≥M

[
g1
g2

]
=

[
9n+ 3δ1 − 3δ2

9n2 + 3n(δ1 − δ2)− 9n− 2δ1 + 3δ2 + δ(d1, dx)

]
.

Hence,

inexp(dx, D
(2)) ≥ 9n2 + 3n(δ1 − δ2) + δ1 + δ(d1, dx) (1)

for every node dx located on the path d1 → db.
The node dx is located on the path db+1 → dc. Utilizing

path Pdb,dx
, that is, the (1, δ2 − 3n − 1 + δ(d1, dx))-path,

we obtain g1 = 12n − 3δ2 + 1 − 3δ(d1, dx). Utilizing path

IAENG International Journal of Applied Mathematics, 51:3, IJAM_51_3_10

Volume 51, Issue 3: September 2021

 
______________________________________________________________________________________ 



Pda+1,dx , that is, the (1, δ1 − 1 + δ(d1, dx))-path, we obtain
g2 = δ1 − n+ δ(d1, dx). By Lemma III.2, we have that[

rx
kx

]
≥M

[
g1
g2

]
=[

9n+ 3δ1 − 3δ2 + 1
9n2 + 3n(δ1 − δ2)− 9n− 2δ1 + 3δ2 − 1 + δ(d1, dx)

]
.

Hence,

inexp(dx, D
(2)) ≥ 9n2 + 3n(δ1 − δ2) + δ1 + δ(d1, dx) (2)

for every node dx located on the path db+1 → dc.
The node dx is located on the path dc+1 → da. Utilizing

Pdb,dx , that is, the (2, δ2−3n−2+δ(d1, dx))-path, we obtain
g1 = 15n − 3δ2 + 2 − 3δ(d1, dx). Utilizing path Pda+1,dx

,
that is, the (2, δ1− 2+ δ(d1, dx))-path, we obtain g2 = δ1−
2n+ δ(d1, dx). By Lemma III.2, we have that[

rx
kx

]
≥M

[
g1
g2

]
=[

9n+ 3δ1 − 3δ2 + 2
9n2 + 3n(δ1 − δ2)− 9n− 2δ1 + 3δ2 − 2 + δ(d1, dx)

]
.

Hence,

inexp(dx, D
(2)) ≥ 9n2 + 3n(δ1 − δ2) + δ1 + δ(d1, dx) (3)

for every node dx located on the path dc+1 → da.
The node dx is located on the path da+1 → d3n+1.

Utilizing path Pdb,dx
, that is, the (3, δ2−3n−3+δ(d1, dx))-

path, we obtain g1 = 18n− 3δ2 + 3− 3δ(d1, dx). Utilizing
path Pda+1,dx , that is, the (0, δ1 − 3n− 1 + δ(d1, dx))-path,
we obtain g2 = δ1 − 3n − 1 + δ(d1, dx). By Lemma III.2,
we have that [

rx
kx

]
≥M

[
g1
g2

]
=[

9n+ 3δ1 − 3δ2
9n2 + 3n(δ1 − δ2)− 12n− 2δ1 + 3δ2 − 1 + δ(d1, dx)

]
.

Let m1 = 9n + 3δ1 − 3δ2 and m2 = 9n2 + 3n(δ1 − δ2) −
12n− 2δ1 +3δ2− 1+ δ(d1, dx). We examine the (m1,m2)-
walk from da+1 to dx. Note that the path is Pda+1,dx

, that
is, the (0, δ1 − 3n − 1 + δ(d1, dx))-path. Furthermore, the

completion of the system Mv+

[
p(Pda+1,dx

)
q(Pda+1,dx

)

]
=

[
m1

m2

]
is v1 = 9n+3δ1−3δ2 and v2 = 0. The path Pda+1,dx

located
entirely in cycle L2, and there is no (m1,m2)-walk from
da+1 to dx. Hence, inexp(dx, D(2)) > m1 +m2. Note that
the shortest walk from da+1 → dx that contains a minimum
of m1 red arcs and at least m2 black arcs is the (m1 +
p(L2),m2 + q(L2))-walk. Since p(L2) + q(L2) = 3n + 1,
we have

inexp(dx, D
(2)) ≥ m1 +m2 + p(L2) + q(L2)

= 9n2 + 3n(δ1 − δ2) + δ1 + δ(d1, dx) (4)

for every node dx located on the path da+1 → d3n+1.
From (1), (2), (3) and (4), it can be concluded that

inexp(dx, D
(2)) ≥ 9n2 + 3n(δ1 − δ2) + δ1 + δ(d1, dx) for

every x = 1, 2, ..., 3n+ 1.
Next, we will prove that inexp(dx, D(2)) ≤ 9n2+3n(δ1−

δ2) + δ1 + δ(d1, dx) for every x = 1, 2, ..., 3n+ 1. First, we
will show that inexp(d1, D(2)) = 9n2+3n(δ1−δ2)+δ1 and
then use Lemma III.1 to guarantee that inexp(dx, D

(2)) ≤

9n2+3n(δ1−δ2)+δ1+δ(d1, dx) for every x = 1, 2, ..., 3n+
1.

From (1), we obtain inexp(d1, D
(2)) ≥ 9n2+3n(δ1−δ2)+

δ1. Furthermore, it is enough to show that inexp(d1, D(2)) ≤
9n2 + 3n(δ1 − δ2) + δ1 for every du, u = 1, 2, ..., 3n + 1
when the system

Mv +

[
p(Pdu,d1

)
q(Pdu,d1

)

]
=[

9n+ 3δ1 − 3δ2
9n2 + 3n(δ1 − δ2)− 9n− 2δ1 + 3δ2

]
(5)

has a nonnegative integer completion for some path Pdu,d1

from du to d1. The completion of system (5) is v1 = 9n −
3δ2 − (3n − 2)p(Pdu,d1) + 3q(Pdu,d1) and v2 = δ1 − (1 −
n)p(Pdu,d1

)− q(Pdu,d1
).

If du is located on the d1 → db path, then there is a
(3, 3n − 2 − δ(d1, du))-path from du to d1. Utilizing this
path, we obtain v1 = 9n− 3(δ2 + δ(d1, du)) ≥ 0 since δ2 +
δ(d1, du) ≤ 3n and v2 = δ1 + δ(d1, du)− 1 ≥ 0 since δ1 +
δ(d1, du) ≥ 1. If du is located on the db+1 → dc path, then
there is a (2, 3n−1−δ(d1, du))-path from du to d1. Utilizing
this path, we obtain v1 = 12n + 1 − 3(δ2 + δ(d1, du)) ≥ 1
since δ2+δ(d1, du) ≤ 4n and v2 = δ1+δ(d1, du)−n−1 ≥ 0
since δ1 + δ(d1, du) ≥ 2n with n ≥ 1. If du is located on
the dc+1 → da path, then there is a (1, 3n − δ(d1, du))-
path from du to d1. Utilizing this path, we obtain v1 =
15n+2−3(δ2+δ(d1, du)) ≥ 2 since δ2+δ(d1, du) ≤ 4n+1
for n ≥ 1 and v2 = δ1 + δ(d1, du) − 2n − 1 ≥ 0 since
δ1+δ(d1, du) ≥ 2n+1. If du is located on the da+1 → d3n+1

path, then there is a (0, 3n+1− δ(d1, du))-path from du to
d1. Utilizing this path, we obtain v1 = 18n + 3 − 3(δ2 +
δ(d1, du)) ≥ 3 since δ2 + δ(d1, du) ≤ 5n+ 1 for n ≥ 1 and
v2 = δ1+δ(d1, du)−3n−1 ≥ 0 since δ1+δ(d1, du) ≥ 3n+1.

Therefore, for every u = 1, 2, ..., 3n + 1, the system
of equations (5) has a nonnegative integer completion.
Proposition III.1 guarantees that for every u = 1, 2, ..., 3n+1,

there is du
(r,k)→ d1 walk with r = 9n + 3δ1 − 3δ2

and k = 9n2 + 3n(δ1 − δ2) − 9n − 2δ1 + 3δ2.
Consequently, inexp(d1, D(2)) ≤ 9n2 + 3n(δ1 − δ2) + δ1.
So, inexp(d1, D

(2)) = 9n2 + 3n(δ1 − δ2) + δ1. By
Lemma III.1, we can conclude that inexp(dx, D

(2)) ≤
9n2 + 3n(δ1 − δ2) + δ1 + δ(d1, dx) for every
x = 1, 2, ..., 3n+ 1.

Case 2. (for δ3 − δ1 ≤ n, n+ 1 < δ2 − δ1 ≤ 2n)
First, it will be shown that inexp(dx, D(2)) ≥ 6n2 − 4n +
δ1 + δ (d1, dx). We examine the paths Pdc,dx

and Pda+1,dx

and define g1 = b(L2)r(Pdc,dx
)− r(L2)b(Pdc,dx

) and g2 =
r(L1)b(Pda+1,dx

)−b(L1)r(Pda+1,dx
). Four subcases must be

examined.
The node dx is located on the path d1 → db. Utilizing

path Pdc,dx , that is, the (2, δ1 + δ(d1, dx))-path, we obtain
g1 = 6n−4−3δ1−3δ(d1, dx). Utilizing path Pda+1,dx , that
is, the (0, δ1+δ(d1, dx))-path, we obtain g2 = δ1+δ(d1, dx).
By Lemma III.2, we have that[

rx
kx

]
≥M

[
g1
g2

]
=[

6n− 4
6n2 − 10n+ δ1 + 4 + δ(d1, dx)

]
.
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Hence,

inexp(dx, D
(2)) ≥ 6n2 − 4n+ δ1 + δ (d1, dx) (6)

for every node dx located on the path d1 → db.
The node dx is located on the path db+1 → dc. Utilizing

path Pdc,dx , that is, the (3, δ1−1+δ(d1, dx))-path, we obtain
g1 = 9n−3−3δ1−3δ(d1, dx). Utilizing path Pda+1,dx

, that
is, the (1, δ1− 1+ δ(d1, dx))-path, we obtain g2 = δ1−n+
δ(d1, dx). By Lemma III.2, we have[

rx
kx

]
≥M

[
g1
g2

]
=[

6n− 3
6n2 − 10n+ δ1 + 3 + δ(d1, dx)

]
.

Hence,

inexp(dx, D
(2)) ≥ 6n2 − 4n+ δ1 + δ(d1, dx) (7)

for every node dx located on the db+1 → dc path.
The node dx is located on dc+1 → da path. Utilizing path

Pdc,dx
, that is, the (1, δ1 − 3n + δ(d1, dx))-path, we obtain

g1 = 12n − 2 − 3δ1 − 3δ(d1, dx). Utilizing path Pda+1,dx
,

that is, the (2, δ1− 2+ δ(d1, dx))-path, we obtain g2 = δ1−
2n+ δ(d1, dx). By Lemma III.2, we have that[

rx
kx

]
≥M

[
g1
g2

]
=[

6n− 2
6n2 − 10n+ δ1 + 2 + δ(d1, dx)

]
.

Hence,

inexp(dx, D
(2)) ≥ 6n2 − 4n+ δ1 + δ(d1, dx) (8)

for every node dx located on the dc+1 → da path.
The node dx is located on the path da+1 → d3n+1.

Utilizing Pdc,dx , that is, the (2, δ1 − 3n − 1 + δ(d1, dx))-
path, we obtain g1 = 15n− 1− 3δ1 − 3δ(d1, dx). Utilizing
path Pda+1,dx

, that is, (0, δ1 − 3n− 1 + δ(d1, dx))-path, we
obtain g2 = δ1 − 3n − 1 + δ(d1, dx). By Lemma III.2, we
have that [

rx
kx

]
≥M

[
g1
g2

]
=[

6n− 4
6n2 − 13n+ δ1 + 3 + δ(d1, dx)

]
.

Let m1 = 6n − 4 and m2 = 6n2 − 13n + δ1 + 3 +
δ(d1, dx). We examine the (m1,m2)-walk from da+1 to dx.
Note that the path is Pda+1,dx

, that is, the (0, δ1 − 3n −
1 + δ(d1, dx))-path. Furthermore, the completion of system

Mv +

[
p(Pda+1,dx

)
q(Pda+1,dx

)

]
=

[
m1

m2

]
is v1 = 6n − 4 and

v2 = 0. The path Pda+1,dx is located entirely in cycle L2,
and there is no (m1,m2)-walk from da+1 to dx. Hence,
inexp(dx, D

(2)) > m1 + m2. Note that the shortest walk
from da+1 → dx that contains a minimum of m1 red arcs
and at least m2 black arcs is the (m1+p(L2),m2+ q(L2))-
walk. Since p(L2) + q(L2) = 3n+ 1, we have

inexp(dx, D
(2)) ≥ m1 +m2 + p(L2) + q(L2)

= 6n2 − 4n+ δ1 + δ(d1, dx) (9)

for every node dx located on the path da+1 → d3n+1.

From (6), (7), (8) and (9), it can be concluded that
inexp(dx, D

(2)) ≥ 6n2 − 4n + δ1 + δ(d1, dx) for every
x = 1, 2, ..., 3n+ 1.

Next, we will prove that inexp(dx, D(2)) ≤ 6n2−4n+δ1+
δ(d1, dx) for every x = 1, 2, ..., 3n+ 1. First, we will show
that inexp(d1, D(2)) = 6n2 − 4n+ δ1 and then use Lemma
III.1 to guarantee that inexp(dx, D(2)) ≤ 6n2 − 4n + δ1 +
δ(d1, dx) for every x = 1, 2, ..., 3n+ 1.

From (6), we obtained inexp(d1, D
(2)) ≥ 6n2 − 4n+ δ1.

Furthermore, it is enough to show that inexp(d1, D
(2)) ≤

6n2 − 4n + δ1 for every du, u = 1, 2, ..., 3n + 1 when the
system

Mz+

[
p(Pdu,d1

)
q(Pdu,d1

)

]
=

[
6n− 4

6n2 − 10n+ δ1 + 4

]
(10)

has a nonnegative integer completion for some path Pdu,d1

from du to d1. The completion of system (10) is v1 = 6n−
4 − 3δ1 − (3n − 2)p(Pdu,d1

) + 3q(Pdu,d1
) and v2 = δ1 −

(1− n)p(Pdu,d1
)− q(Pdu,d1

).
If du is located on the d1 → db path, then there is a

(3, 3n − 2 − δ(d1, du))-path from du to d1. Utilizing this
path, we obtain v1 = 6n − 4 − 3(δ1 + δ(d1, du) ≥ 2 since
δ1 + δ(d1, du) ≤ 2n − 2 and v2 = δ1 + δ(d1, du) − 1 ≥ 0
since δ1 + δ(d1, du) ≥ 1. If du is located on the db+1 → dc
path, then there is a (2, 3n − 1 − δ(d1, du))-path from du
to d1. Utilizing this path, we obtain v1 = 9n − 3 − 3(δ1 +
δ(d1, du)) ≥ 0 since δ1 + δ(d1, du) ≤ 3n − 1 and v2 =
δ1 + δ(d1, du)− n− 1 ≥ 0 since δ1 + δ(d1, du) ≥ n+ 1. If
du is located on the dc+1 → da path, then there is a (1, 3n−
δ(d1, du))-path from du to d1. Utilizing this path, we obtain
v1 = 12n−2−3(δ1+ δ(d1, du)) ≥ 1 since δ1+ δ(d1, du) ≤
3n for n ≥ 1 and v2 = δ1 + δ(d1, du) − 2n − 1 ≥ 0 since
δ1 + δ(d1, du) ≥ 3n for n ≥ 1. If du is located on the
da+1 → d3n+1 path, then there is a (0, 3n+ 1− δ(d1, du))-
path from du to d1. Utilizing this path, we obtainv1 = 15n−
1 − 3(δ1 + δ(d1, du)) ≥ 5 since δ1 + δ(d1, du) ≤ 4n − 1
for n ≥ 1 and v2 = δ1 + δ(d1, du) − 3n − 1 ≥ 0 since
δ1 + δ(d1, du) ≥ 3n+ 1.

Therefore, for every u = 1, 2, ..., 3n + 1, the
system of equations (10) has a nonnegative integer
completion. Proposition III.1 guarantees that for every

u = 1, 2, ..., 3n + 1, there is a du
(r,k)→ d1 walk

with r = 6n − 4 and k = 6n2 − 10n + δ1 + 4.
Consequently, inexp(d1, D

(2)) ≤ 6n2 − 4n + δ1. So,
inexp(d1, D

(2)) = 6n2 − 4n+ δ1. By Lemma III.1, we can
conclude that inexp(dx, D(2)) ≤ 6n2 − 4n+ δ1 + δ(d1, dx)
for every x = 1, 2, ..., 3n+ 1.

Case 3. (for δ3 − δ1 ≤ n, δ2 − δ1 = 2n+ 1)
First, it will be shown that inexp(dx, D(2)) ≥ (3n+ 1) δ2 −
6n + δ (d1, dx). We examine the paths Pdc,dx and Pdb+1,dx

and define g1 = q(L2)p(Pdc,dx
) − p(L2)q(Pdc,dx

) and
g2 = p(L1)q(Pdb+1,dx

) − q(L1)p(Pdb+1,dx
). It is necessary

to examine three subcases.
The node dx is located on the path d1 → db. Utilizing

pathPdc,dx
, that is, (2, δ(d1, dx))-path, we obtain g1 = 6n−

4 − 3δ(d1, dx). Utilizing path Pdb+1,dx
, that is, the (2, δ2 −

2+ δ(d1, dx))-path, we obtain g2 = δ2− 2n+ δ(d1, dx). By
Lemma III.2, we have[

rx
kx

]
≥M

[
g1
g2

]
=
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[
3δ2 − 4

−6n+ 4 + 3nδ2 − 2δ2 + δ(d1, dx)

]
.

Hence,

inexp(dx, D
(2)) ≥ (3n+ 1)δ2 − 6n+ δ(d1, dx) (11)

for every node dx located on the path d1 → db.
The node dx is located on the path db+1 → dc. Utilizing

path Pdc,dx
, that is, the (3,−1 + δ(d1, dx))-path, we obtain

g1 = 9n − 3 − 3δ(d1, dx). Utilizing path Pdb+1,dx , that is,
(0, δ2− 3n− 1+ δ(d1, dx))-path, we obtain g2 = δ2− 3n−
1 + δ(d1, dx). By Lemma III.2, we have that[

rx
kx

]
≥M

[
g1
g2

]
=[

3δ2 − 6
−9n+ 3nδ2 − 2δ2 + 5 + δ(d1, dx)

]
.

Let m1 = 3δ2−6 and m2 = −9n+3nδ2−2δ2+5+δ(d1, dx).
We examine the (m1,m2)-walk from db+1 to dx. Note
that the path is Pdb+1,dx

, that is, the (0, δ2 − 3n − 1 +
δ(d1, dx))-path. Furthermore, the completion of the system

Mv +

[
p(Pvy+1,dx

)
q(Pvy+1,dx

)

]
=

[
m1

m2

]
is v1 = 3δ2 − 6 and

v2 = 0. The path Pdb+1,dx is located entirely in cycle L2,
and there is no (m1,m2)-walk from db+1 to dx. Hence,
inexp(dx, D

(2)) > m1 + m2. Note that the shortest walk
from db+1 → dx that contains a minimum of m1 red arcs
and at least m2 black arcs is the (m1+p(L2),m2+ q(L2))-
walk. Since p(L2) + q(L2) = 3n+ 1, we have

inexp(dx, D
(2)) ≥ m1 +m2 + p(L2) + q(L2)

= (3n+ 1)δ2 − 6n+ δ(d1, dx) (12)

for every node dx located on the path db+1 → dc.
The node dx is located on the path dc+1 → da=3n+1.

Utilizing path Pdc,dx , that is, the (1,−3n+ δ(d1, dx))-path,
we obtain g1 = 12n − 2 − 3δ(d1, dx). Utilizing Pdb+1,dx ,
that is, the (1, δ2−3n−2+ δ(d1, dx))-path, we obtain g2 =
δ2 − 4n− 1 + δ(d1, dx). By Lemma III.2, we have that[

rx
kx

]
≥M

[
g1
g2

]
=[

3δ2 − 5
−9n+ 3nδ2 − 2δ2 + 4 + δ(d1, dx)

]
.

Let m1 = 3δ2 − 5 and m2 = −9n + 3nδ2 − 2δ2 + 4 +
δ(d1, dx). We examine the (m1,m2)-walk from db+1 to dx.
Note that the path is Pdb+1,dx

, that is, the (1, δ2 − 3n −
2 + δ(d1, dx))-path. Furthermore, the completion of system

Mv +

[
p(Pvy+1,dx)
q(Pvy+1,dx)

]
=

[
m1

m2

]
is v1 = 3δ2 − 6 and

v2 = 0. The path Pdb+1,dx
is located entirely in cycle L2,

and there is no (m1,m2)-walk from db+1 to dx. Hence,
inexp(dx, D

(2)) > m1 + m2. Note that the shortest walk
from db+1 → dx that contains a minimum of m1 red arcs
and at least m2 black arcs is the (m1+p(L2),m2+ q(L2))-
walk. Since p(L2) + q(L2) = 3n+ 1, we have

inexp(dx, D
(2)) ≥ m1 +m2 + p(L2) + q(L2)

= (3n+ 1)δ2 − 6n+ δ(d1, dx) (13)

for every node dx located on the path dc+1 → da=3n+1.

From (11), (12) and (13), it can be concluded that
inexp(dx, D

(2)) ≥ (3n + 1)δ2 − 6n + δ(d1, dx) for every
x = 1, 2, ..., 3n+ 1.

Next, we will prove that inexp(dx, D(2)) ≤ (3n+ 1)δ2 −
6n + δ(d1, dx) for every x = 1, 2, ..., 3n + 1. First, we
will show that inexp(d1, D

(2)) = (3n + 1)δ2 − 6n and
then use Lemma III.1 to guarantee that inexp(dx, D(2)) ≤
(3n+ 1)δ2 − 6n+ δ(d1, dx) for every x = 1, 2, ..., 3n+ 1.

From (11), we obtain inexp(d1, D
(2)) ≥ (3n+1)δ2− 6n.

Furthermore, it is enough to show that inexp(d1, D
(2)) ≤

(3n+ 1)δ2 − 6n for every du, u = 1, 2, ..., 3n+ 1 when the
system

Mv +

[
p(Pdu,d1

)
q(Pdu,d1

)

]
=

[
3δ2 − 4

3nδ2 − 2δ2 − 6n+ 4

]
(14)

has a nonnegative integer completion for some path Pdu,d1

from du to d1. The completion of system (14) is v1 = 6n−
4− (3n−2)p(Pdu,d1

)+3q(Pdu,d1
) and v2 = δ2−2n− (1−

n)q(Pdu,d1
)− p(Pdu,d1

).
If du is located on the path d1 → db, then there is a

(3, 3n−2−δ(d1, du))-path from du to d1. Utilizing this path,
we obtain v1 = 6n− 4− 3(δ(d1, du)) ≥ 2 since δ(d1, du) ≤
n − 1 for n ≥ 1 and v2 = δ2 + δ(d1, du) − 2n − 1 ≥
0 since δ2 + δ(d1, du) ≥ 2n + 1. If du is located on the
path db+1 → dc, then there is a (2, 3n − 1 − δ(d1, du))-
path from du to d1. Utilizing this path, we obtain v1 =
9n − 3 − 3δ(d1, du) ≥ 0 since δ(d1, du) ≤ 3n − 1 and
v2 = δ2+δ(d1, du)−3n−1 ≥ 0 since δ2+δ(d1, du) ≥ 3n+1.
If du is located on the path dc+1 → da=3n+1, then there is a
(1, 3n−δ(d1, du))-path from du to d1. Utilizing this path, we
obtain v1 = 12n− 2− 3δ(d1, du) ≥ 1 since δ(d1, du) ≤ 3n
for n ≥ 1 and v2 = δ2 + δ(d1, du) − 4n − 1 ≥ 1 since
δ2 + δ(d1, du) ≥ 5n+ 1 with n ≥ 1.

Therefore, for every u = 1, 2, ..., 3n + 1, the
system of equations (14) has a nonnegative integer
completion. Proposition III.1 guarantees that for every

u = 1, 2, ..., 3n + 1, there is a du
(r,k)→ d1 walk

with r = 3δ2 − 4 and k = 3nδ2 − 2δ2 − 6n + 4.
Consequently, inexp(d1, D

(2)) ≤ (3n + 1)δ2 − 6n. So,
inexp(d1, D

(2)) = (3n+1)δ2−6n. By Lemma III.1, we can
conclude that inexp(dx, D(2)) ≤ (3n+1)δ2−6n+δ(d1, dx)
for every x = 1, 2, ..., 3n+ 1.

Case 4. (for n < δ3 − δ1 < 2n)
First, we will show that inexp(dx, D(2)) ≥ 6n2 − 4n +
δ3 + δ (d1, dx). We examine the paths Pdb,dx

and Pdc+1,dx

and define g1 = q(L2)p(Pdb,dx
) − p(L2)q(Pdb,dx

) and
g2 = p(L1)q(Pdc+1,dx

) − q(L1)p(Pdc+1,dx
). Four subcases

must be considered.
The node dx is located on path d1 → db. Utilizing path

Pdb,dx
, that is, the (3, δ3−1+δ(d1, dx))-path, we obtain g1 =

9n−3−3δ3−3δ(d1, dx). Utilizing path Pdc+1,dx
, that is, the

(1, δ3−1+δ(d1, dx))-path, we obtain g2 = δ3−n+δ(d1, dx).
By Lemma III.2, we have that[

rx
kx

]
≥M

[
g1
g2

]
=[

6n− 3
6n2 − 10n+ δ3 + 3 + δ(d1, dx)

]
.

Hence,

inexp(dx, D
(2)) ≥ 6n2 − 4n+ δ3 + δ(d1, dx) (15)
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for every node dx located on the path d1 → db.
The node dx is located on path db+1 → dc. Utilizing path

Pdb,dx
, that is, the (1, δ3 − 3n + δ(d1, dx))-path, we obtain

g1 = 12n − 2 − 3δ3 − 3δ(d1, dx). Utilizing path Pdc+1,dx
,

that is, the (2, δ3− 2+ δ(d1, dx))-path, we obtain g2 = δ3−
2n+ δ(d1, dx). By Lemma III.2, we have that[

rx
kx

]
≥M

[
g1
g2

]
=[

6n− 2
6n2 − 10n+ δ3 + 2 + δ(d1, dx)

]
.

Hence,

inexp(dx, D
(2)) ≥ 6n2 − 4n+ δ3 + δ(d1, dx) (16)

for every node dx located on the path db+1 → dc.
The node dx is located on path dc+1 → da. Utilizing path

Pdb,dx
, that is, (2, δ3 − 3n− 1 + δ(d1, dx))-path, we obtain

g1 = 15n − 1 − 3δ3 − 3δ(d1, dx). Utilizing path Pdc+1,dx
,

that is, the (0, δ3−3n−1+ δ(d1, dx))-path, we obtain g2 =
δ3 − 3n− 1 + δ(d1, dx). By Lemma III.2, we have that[

rx
kx

]
≥M

[
g1
g2

]
=[

6n− 4
6n2 − 13n+ δ3 + 3 + δ(d1, dx)

]
.

Let m1 = 6n − 4 and m2 = 6n2 − 13n + δ3 + 3 +
δ(d1, dx). We examine the (m1,m2)-walk from dc+1 to dx.
Note that the path is Pdc+1,dx

, that is, the (0, δ3 − 3n −
1 + δ(d1, dx))-path. Furthermore, the completion of system

Mv +

[
p(Pdc+1,dx)
q(Pdc+1,dx)

]
=

[
m1

m2

]
is v1 = 6n − 4 and

v2 = 0. The path Pdc+1,dx
is located entirely in cycle L2,

and there is no (m1,m2)-walk from dc+1 to dx. Hence,
inexp(dx, D

(2)) > m1 + m2. Note that the shortest walk
from dc+1 → dx that contains a minimum of m1 red arcs
and at least m2 black arcs is the (m1+p(L2),m2+ q(L2))-
walk. Since p(L2) + q(L2) = 3n+ 1, we have

inexp(dx, D
(2)) ≥ m1 +m2 + p(L2) + q(L2)

= 6n2 − 4n+ δ3 + δ(d1, dx) (17)

for every node dx located on the path dc+1 → da.
The node dx is located on path da+1 → d3n+1. Utilizing

path Pdb,dx
, that is, the (3, δ3−3n−2+ δ(d1, dx))-path, we

obtain g1 = 18n− 3δ3− 3δ(d1, dx). Utilizing path Pdc+1,dx ,
that is, the (1, δ3−3n−2+ δ(d1, dx))-path, we obtain g2 =
δ3 − 4n− 1 + δ(d1, dx). By Lemma III.2, we have that[

rx
kx

]
≥M

[
g1
g2

]
=[

6n− 3
6n2 − 13n+ δ3 + 2 + δ(d1, dx)

]
.

Let m1 = 6n − 3 and m2 = 6n2 − 13n + δ3 + 2 +
δ(d1, dx). We examine the (m1,m2)-walk from dc+1 to dx.
Note that the path is Pdc+1,dx

, that is, the (1, δ3 − 3n −
2 + δ(d1, dx))-path. Furthermore, the completion of system

Mv +

[
p(Pdc+1,dx)
q(Pdc+1,dx)

]
=

[
m1

m2

]
is v1 = 6n − 4 and

v2 = 0. The path Pdc+1,dx
is located entirely in cycle L2,

and there is no (m1,m2)-walk from dc+1 to dx. Hence,

inexp(dx, D
(2)) > m1 + m2. Note that the shortest walk

from dc+1 → dx that contains a minimum of m1 red arcs
and at least m2 black arcs is the (m1+p(L2),m2+ q(L2))-
walk. Since p(L2) + q(L2) = 3n+ 1, we have

inexp(dx, D
(2)) ≥ m1 +m2 + p(L2) + q(L2)

= 6n2 − 4n+ δ3 + δ(d1, dx) (18)

for every node dx located on the path da+1 → d3n+1.
From (15), (16), (17) and (18), it can be concluded that

inexp(dx, D
(2)) ≥ 6n2 − 4n+ δ3 + δ(d1, dx) for every x =

1, 2, ..., 3n+ 1.
Next, we will prove that inexp(dx, D(2)) ≤ 6n2−4n+δ3+

δ(d1, dx) for every x = 1, 2, ..., 3n+ 1. First, we will show
that inexp(d1, D(2)) = 6n2 − 4n+ δ3 and then use Lemma
III.1 to guarantee that inexp(dx, D(2)) ≤ 6n2 − 4n + δ3 +
δ(d1, dx) for every x = 1, 2, ..., 3n+ 1.

From (15), we obtain inexp(d1, D
(2)) ≥ 6n2 − 4n + δ3.

Furthermore, it is enough to show that inexp(d1, D
(2)) ≤

6n2 − 4n + δ3 for every du, u = 1, 2, ..., 3n + 1 when the
system

Mv +

[
p(Pdu,d1)
q(Pdu,d1

)

]
=

[
6n− 3

6n2 − 10n+ δ3 + 3

]
(19)

has a nonnegative integer completion for some path Pdu,d1

from du to d1. The completion of system (19) is v1 = 9n−
3−3δ3− (3n−2)p(Pdu,d1

)+3q(Pdu,d1
) and v2 = δ3−n−

(1− n)p(Pdu,d1
)− q(Pdu,d1

).
If du is located on the path d1 → db, then there is a

(3, 3n − 2 − δ(d1, du))-path from du to d1. Utilizing this
path, we obtain v1 = 9n − 3 − 3(δ3 + δ(d1, du)) ≥ 0 since
δ3+δ(d1, du) ≤ 3n−1 and v2 = δ3+δ(d1, du)−n−1 ≥ 0
since δ3 + δ(d1, du) ≥ 2n for n ≥ 1. If du is located on the
path db+1 → dc, then there is a (2, 3n− 1− δ(d1, du))-path
from du to d1. Utilizing this path, we obtain v1 = 12n−2−
3(δ3+δ(d1, du)) ≥ 1 since δ3+δ(d1, du) ≤ 3n for n ≥ 1 and
v2 = δ3+δ(d1, du)−2n−1 ≥ 0 since δ3+δ(d1, du) ≥ 3n for
n ≥ 1. If du is located on the path dc+1 → da, then there
is a (1, 3n − δ(d1, du))-path from du to d1. Utilizing this
path, we obtain v1 = 15n− 1− 3(δ3 + δ(d1, du)) ≥ 2 since
δ3+δ(d1, du) ≤ 5n−1 and v2 = δ3+δ(d1, du)−3n−1 ≥ 0
since δ3 + δ(d1, du) ≥ 3n + 1. If du is located on the path
da+1 → d3n+1, then there is a (0, 3n + 1− δ(d1, du))-path
from du to d1. Utilizing this path, we obtain v1 = 18n −
3(δ3+δ(d1, du)) ≥ 3 since δ3+δ(d1, du) ≤ 5n for n ≥ 1 and
v2 = δ3+δ(d1, du)−4n−1 ≥ 1 since δ3+δ(d1, du) ≥ 4n+2.

Therefore, for every u = 1, 2, ..., 3n + 1, the
system of equations (19) has a nonnegative integer
completion. Proposition III.1 guarantees that for every

u = 1, 2, ..., 3n + 1, there is a du
(r,k)→ d1 walk

with r = 6n − 3 and k = 6n2 − 10n + δ3 + 3.
Consequently, inexp(d1, D

(2)) ≤ 6n2 − 4n + δ3. So,
inexp(d1, D

(2)) = 6n2 − 4n+ δ3. By Lemma III.1, we can
conclude that inexp(dx, D(2)) ≤ 6n2 − 4n+ δ3 + δ(d1, dx)
for every x = 1, 2, ..., 3n+ 1.

Case 5. (for δ3 − δ1 = 2n)
First, we will show that inexp(dx, D(2)) ≥ (3n + 1)δ3 −
3n + δ(d1, dx). We examine the paths Pda,dx and Pdc+1,dx

and define g1 = q(L2)p(Pda,dx)− p(L2)q(Pda,dx) and g2 =
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p(L1)q(Pdc+1,dx) − q(L1)p(Pdc+1,dx). Three subcases must
be examined.

The node dx is located on path d1 → db. Utiliz-
ing path Pda,dx , that is, the (1, δ(d1, dx))-path, we obtain
g1 = 3n − 2 − 3δ(d1, dx). Utilizing path Pdc+1,dx , that is,
(1, δ3−1+δ(d1, dx))-path, we obtain g2 = δ3−n+δ(d1, dx).
By Lemma III.2, we have that[

rx
kx

]
≥M

[
g1
g2

]
=[

3δ3 − 2
−3n+ 3nδ3 − 2δ3 + 2 + δ(d1, dx)

]
.

Hence,

inexp(dx, D
(2)) ≥ (3n+ 1)δ3 − 3n+ δ(d1, dx) (20)

for every node dx located on the path d1 → db.
The node dx is located on path db+1 → dc. Utilizing path

Pda,dx , that is, the (2,−1+ δ(d1, dx))-path, we obtain g1 =
6n− 1− 3δ(d1, dx). Utilizing Pdc+1,dx

, that is, the (2, δ3 −
2+ δ(d1, dx))-path, we obtain g2 = δ3− 2n+ δ(d1, dx). By
Lemma III.2, we have that[

rx
kx

]
≥M

[
g1
g2

]
=[

3δ3 − 1
−3n+ 3nδ3 − 2δ3 + 1 + δ(d1, dx)

]
.

Hence,

inexp(dx, D
(2)) ≥ (3n+ 1)δ3 − 3n+ δ(d1, dx) (21)

for every node dx located on the path db+1 → dc.
The node dx is located on path dc+1 → da=3n+1 path.

Utilizing Pda,dx , that is, the (3,−2 + δ(d1, dx))-path, we
obtain g1 = 9n − 3δ(d1, dx). Utilizing path Pdc+1,dx

, that
is, the (0, δ3 − 3n − 1 + δ(d1, dx))-path, we obtain g2 =
δ3 − 3n− 1 + δ(d1, dx). By Lemma III.2, we have that[

rx
kx

]
≥M

[
g1
g2

]
=[

3δ3 − 3
−6n+ 3nδ3 − 2δ3 + 2 + δ(d1, dx)

]
.

Let m1 = 3δ3 − 3 and m2 = −6n + 3nδ3 − 2δ3 + 2 +
δ(d1, dx). We examine the (m1,m2)-walk from dc+1 to dx.
Note that the path is Pdc+1,dx

, that is, the (0, δ3 − 3n −
1 + δ(d1, dx))-path. Furthermore, the completion of system

Mv +

[
p(Pdc+1,dx)
q(Pdc+1,dx

)

]
=

[
m1

m2

]
is v1 = 3δ3 − 3 and

v2 = 0. The path Pdc+1,dx
is located entirely in cycle L2,

and there is no (m1,m2)-walk from dc+1 to dx. Hence,
inexp(dx, D

(2)) > m1 + m2. Note that the shortest walk
from dc+1 → dx that contains a minimum of m1 red arcs
and at least m2 black arcs is the (m1+p(L2),m2+ q(L2))-
walk. Since p(L2) + q(L2) = 3n+ 1, we have

inexp(dx, D
(2)) ≥ m1 +m2 + p(L2) + q(L2)

= (3n+ 1)δ3 − 3n+ δ(d1, dx) (22)

for every node dx located on the path dc+1 → da=3n+1.
From (20), (21) and (22), we can conclude that

inexp(dx, D
(2)) ≥ (3n + 1)δ3 − 3n + δ(d1, dx) for every

x = 1, 2, ..., 3n+ 1.

Next, we will prove that inexp(dx, D(2)) ≤ (3n+ 1)δ3 −
3n + δ(d1, dx) for every x = 1, 2, ..., 3n + 1. First, we
will show that inexp(d1, D

(2)) = (3n + 1)δ3 − 3n and
then use Lemma III.1 to guarantee that inexp(dx, D(2)) ≤
(3n+ 1)δ3 − 3n+ δ(d1, dx) for every x = 1, 2, ..., 3n+ 1.

From (20), we obtain inexp(d1, D
(2)) ≥ (3n+1)δ3− 3n.

Furthermore, it is enough to show that inexp(d1, D
(2)) ≤

(3n+ 1)δ3 − 3n for every du, u = 1, 2, ..., 3n+ 1 when the
system

Mv +

[
p(Pdu,d1)
q(Pdu,d1)

]
=

[
3δ3 − 2

−3n+ 3nδ3 − 2δ3 + 2

]
(23)

has a nonnegative integer completion for some path Pdu,d1

from du to d1. The completion of system (23) is v1 = 3n−
2− (3n− 2)p(Pdu,d1

) + 3q(Pdu,d1
) and v2 = δ3− n− (1−

n)p(Pdu,d1
)− q(Pdu,d1

).
If du is located on the path d1 → db, then there is a

(3, 3n−2−δ(d1, du))-path from du to d1. Utilizing this path,
we obtain v1 = 3n−2−3δ(d1, du) ≥ 1 since δ(d1, du) ≤ n−
1 and v2 = δ3+δ(d1, du)−n−1 ≥ 0 since δ3+δ(d1, du) ≥
2n with n ≥ 1. If du is located on the path db+1 → dc,
then there is a (2, 3n − 1 − δ(d1, du))-path from du to d1.
Utilizing this path, we obtain v1 = 6n− 1− 3δ(d1, du) ≥ 2
since δ(d1, du) ≤ n for n ≥ 1 and v2 = δ3 + δ(d1, du) −
2n − 1 ≥ 0 since δ3 + δ(d1, du) ≥ 3n for n ≥ 1. If du
is located on the path dc+1 → da=3n+1, then there is a
(1, 3n−δ(d1, du))-path from du to d1. Utilizing this path, we
obtain v1 = 9n − 3δ(d1, du) ≥ 0 since δ(d1, du) ≤ 3n and
v2 = δ3+δ(d1, du)−3n−1 ≥ 0 since δ3+δ(d1, du) ≥ 3n+1.

Therefore, for every u = 1, 2, ..., 3n + 1, the system of
equations (23) has a nonnegative integer completion. Propo-
sition III.1 guarantees that for every u = 1, 2, ..., 3n+1, there

is a du
(r,k)→ d1 walk with r = 3δ3−2 and k = −3n+3nδ3−

2δ3+2. Consequently, inexp(d1, D(2)) ≤ (3n+1)δ3−3n. So,
inexp(d1, D

(2)) = (3n+1)δ3−3n. By Lemma III.1, we can
conclude that inexp(dx, D(2)) ≤ (3n+1)δ3−3n+δ(d1, dx)
for every x = 1, 2, ..., 3n+ 1.

Next, we will examine the incoming local exponent for
the digraph with three red arcs. The three red arcs in D(2)

are the first arc da → da+1 where 1 ≤ a ≤ n − 1. The
second and third arcs are db → db+1 and arcs dc → dc+1,
respectively, where n ≤ b < c ≤ 3n + 1. δ11 represents the
distance from node da+1 to node d1 in L1. δ12 represents
the distance from node da+1 to node d1 in L2. δ2 represents
the distance from node db+1 to node d1. δ3 represents the
distance from node dc+1 to node d1.

Theorem IV.2. Let a primitive bicolour digraph D(2) have
two cycles of length n and 3n + 1. If D(2) has three red
arcs with two consecutive red arcs at L2, then for every
x = 1, 2, ..., 3n+ 1,
inexp(dx, D

(2)) =

9n2 + 3n (δ3 − δ12) + δ3 + δ (d1, dx) ,
for δ12 − δ2 ≤ n

6n2 − 4n+ δ3 + δ (d1, dx) ,
for n < δ12 − δ2 ≤ 2n

6n2 − 4n+ 3n(δ11 − δ3) + δ11 + δ (d1, dx) ,
for δ12 − δ2 > 2n
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Proof: Suppose that for every x = 1, 2, ..., 3n + 1,
inexp(dx, D(2)) is obtained using the (rx, kx)-walk. The
proof is divided into three cases as follows.
Case 1. (for δ12 − δ2 ≤ n)
First, it will be shown that inexp(dx, D(2)) ≥
9n2 + 3n (δ3 − δ12) + δ3 + δ (d1, dx). We
examine the paths Pda,dx

and Pdc+1,dx
and define

g1 = q(L2)p(Pda,dx
) − p(L2)q(Pda,dx

) and
g2 = p(L1)q(Pdc+1,dx

) − q(L1)p(Pdc+1,dx
). Four subcases

must be examined.
The node dx is located on the path d1 → da. Utilizing path

Pda,dx
, that is, the (3, δ12 − 2 + δ(d1, dx))-path, we obtain

g1 = 9n−6−3δ3−3δ(d1, dx). Utilizing path Pdc+1,dx
, that

is, the (0, δ3+δ(d1, dx))-path, we obtain g2 = δ3+δ(d1, dx).
By Lemma III.2, we have that[

rx
kx

]
≥M

[
g1
g2

]
=[

9n− 3δ12 + 3δ3
9n2 + 3n(δ3 − δ12)− 9n− 2δ3 + 3δ12 + δ(d1, dx)

]
.

Hence,

inexp(dx, D
(2)) ≥ 9n2+3n(δ3−δ12)+δ3+δ(d1, dx) (24)

for every node dx located on the path d1 → da.
The node dx is located on the path da+1 → db. Utilizing

path Pda,dx
, that is, the (1, δ12 − 3n − 1 + δ(d1, dx))-path,

we obtain g1 = 12n− 3δ12 + 1− 3δ(d1, dx). Utilizing path
Pdc+1,dx , that is, the (1, δ3 − 1 + δ(d1, dx))-path, we obtain
g2 = δ3 − n+ δ(d1, dx). By Lemma III.2, we have that[

rx
kx

]
≥M

[
g1
g2

]
=[

9n+ 3δ3 − 3δ12 + 1
9n2 + 3n(δ3 − δ12)− 9n− 2δ3 + 3δ12 − 1 + δ(d1, dx)

]
.

Hence,

inexp(dx, D
(2)) ≥ 9n2+3n(δ3−δ12)+δ3+δ(d1, dx) (25)

for every node dx located on the path da+1 → db.
The node dx is located on the path db+1 → dc. Utilizing

Pda,dx
, that is, the (2, δ12 − 3n − 2 + δ(d1, dx))-path, we

obtain g1 = 15n − 3δ12 + 2 − 3δ(d1, dx). Utilizing path
Pdc+1,dx , that is, the (2, δ3 − 2 + δ(d1, dx))-path, we obtain
g2 = δ3 − 2n+ δ(d1, dx). By Lemma III.2, we have that[

rx
kx

]
≥M

[
g1
g2

]
=[

9n+ 3δ3 − 3δ12 + 2
9n2 + 3n(δ3 − δ12)− 9n− 2δ3 + 3δ12 − 2 + δ(d1, dx)

]
.

Hence,

inexp(dx, D
(2)) ≥ 9n2+3n(δ3−δ12)+δ3+δ(d1, dx) (26)

for every node dx located on the path db+1 → dc.
The node dx is located on the path dc+1 → d3n+1.

Utilizing path Pda,dx
, that is, the (3, δ12−3n−3+δ(d1, dx))-

path, we obtain g1 = 18n− 3δ12 +3− 3δ(d1, dx). Utilizing
path Pdc+1,dx , that is, the (0, δ3 − 3n− 1 + δ(d1, dx))-path,
we obtain g2 = δ3 − 3n − 1 + δ(d1, dx). By Lemma III.2,
we have that [

rx
kx

]
≥M

[
g1
g2

]
=

[
9n+ 3δ3 − 3δ12

9n2 + 3n(δ3 − δ12)− 12n− 2δ3 + 3δ12 − 1 + δ(d1, dx)

]
.

Let m1 = 9n+3δ3 − 3δ12 and m2 = 9n2 +3n(δ3 − δ12)−
12n−2δ3+3δ12−1+δ(d1, dx). We examine the (m1,m2)-
walk from dc+1 to dx. Note that the path is Pdc+1,dx

, that
is, the (0, δ3 − 3n − 1 + δ(d1, dx))-path. Furthermore, the

completion of the system Mv+

[
p(Pdc+1,dx)
q(Pdc+1,dx)

]
=

[
m1

m2

]
is v1 = 9n+3δ3−3δ12 and v2 = 0. The path Pdc+1,dx

located
entirely in cycle L2, and there is no (m1,m2)-walk from
dc+1 to dx. Hence, inexp(dx, D(2)) > m1 +m2. Note that
the shortest walk from dc+1 → dx that contains a minimum
of m1 red arcs and at least m2 black arcs is the (m1 +
p(L2),m2 + q(L2))-walk. Since p(L2) + q(L2) = 3n + 1,
we have

inexp(dx, D
(2)) ≥ m1 +m2 + p(L2) + q(L2)

= 9n2 + 3n(δ3 − δ12) + δ3 + δ(d1, dx) (27)

for every node dx located on the path dc+1 → d3n+1.
From (24), (25), (26) and (27), it can be concluded that

inexp(dx, D
(2)) ≥ 9n2 + 3n(δ3 − δ12) + δ3 + δ(d1, dx) for

every x = 1, 2, ..., 3n+ 1.
Next, we will prove that inexp(dx, D(2)) ≤ 9n2+3n(δ3−

δ12)+ δ1+ δ(d3, dx) for every x = 1, 2, ..., 3n+1. First, we
will show that inexp(d1, D(2)) = 9n2+3n(δ3−δ12)+δ3 and
then use Lemma III.1 to guarantee that inexp(dx, D(2)) ≤
9n2+3n(δ3−δ12)+δ3+δ(d1, dx) for every x = 1, 2, ..., 3n+
1.

From (24), we obtain inexp(d1, D
(2)) ≥ 9n2 +

3n(δ3 − δ12) + δ3. Furthermore, it is enough to show that
inexp(d1, D

(2)) ≤ 9n2 + 3n(δ3 − δ12) + δ3 for every du,
u = 1, 2, ..., 3n+ 1 when the system

Mv +

[
p(Pdu,d1)
q(Pdu,d1

)

]
=[

9n+ 3δ3 − 3δ12
9n2 + 3n(δ3 − δ12)− 9n− 2δ3 + 3δ12

]
(28)

has a nonnegative integer completion for some path Pdu,d1

from du to d1. The completion of system (28) is v1 = 9n−
3δ12 − (3n− 2)p(Pdu,d1

) + 3q(Pdu,d1
) and v2 = δ3 − (1−

n)p(Pdu,d1)− q(Pdu,d1).
If du is located on the d1 → da path, then there is a

(3, 3n − 2 − δ(d1, du))-path from du to d1. Utilizing this
path, we obtain v1 = 9n − 3(δ12 + δ(d1, du)) ≥ 0 since
δ12 + δ(d1, du) ≤ 3n and v2 = δ3 + δ(d1, du)− 1 ≥ 2 since
δ3 + δ(d1, du) ≥ n + 1 with n ≥ 2. If du is located on the
dc+1 → d3n+1 path, then there is a (0, 3n+ 1− δ(d1, du))-
path from du to d1. Utilizing this path, we obtain v1 = 18n+
3 − 3(δ12 + δ(d1, du)) ≥ 3 since δ12 + δ(d1, du) ≤ 6n and
v2 = δ3+δ(d1, du)−3n−1 ≥ 0 since δ3+δ(d1, du) ≥ 3n+1
with n ≥ 2.

Therefore, for every u = 1, 2, ..., 3n + 1, the system
of equations (28) has a nonnegative integer completion.
Proposition III.1 guarantees that for every u = 1, 2, ..., 3n+1,

there is du
(r,k)→ d1 walk with r = 9n + 3δ3 − 3δ12

and k = 9n2 + 3n(δ3 − δ12) − 9n − 2δ3 + 3δ12.
Consequently, inexp(d1, D(2)) ≤ 9n2 + 3n(δ3 − δ12) + δ3.
So, inexp(d1, D

(2)) = 9n2 + 3n(δ3 − δ12) + δ3. By
Lemma III.1, we can conclude that inexp(dx, D

(2)) ≤
9n2 + 3n(δ3 − δ12) + δ3 + δ(d1, dx) for every
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x = 1, 2, ..., 3n+ 1.

Case 2. (for n < δ12 − δ2 ≤ 2n)
First, it will be shown that inexp(dx, D(2)) ≥ 6n2 − 4n +
δ3 + δ (d1, dx). We examine the paths Pdb,dx

and Pdc+1,dx

and define g1 = b(L2)r(Pdb,dx
)− r(L2)b(Pdb,dx

) and g2 =
r(L1)b(Pdc+1,dx

)−b(L1)r(Pdc+1,dx
). Four subcases must be

examined.
The node dx is located on the path d1 → da. Utilizing

path Pdb,dx
, that is, the (2, δ3 + δ(d1, dx))-path, we obtain

g1 = 6n−4−3δ3−3δ(d1, dx). Utilizing path Pdc+1,dx
, that

is, the (0, δ3+δ(d1, dx))-path, we obtain g2 = δ3+δ(d1, dx).
By Lemma III.2, we have that[

rx
kx

]
≥M

[
g1
g2

]
=[

6n− 4
6n2 − 10n+ δ3 + 4 + δ(d1, dx)

]
.

Hence,

inexp(dx, D
(2)) ≥ 6n2 − 4n+ δ3 + δ (d1, dx) (29)

for every node dx located on the path d1 → da.
The node dx is located on the path da+1 → db. Utilizing

path Pdb,dx
, that is, the (3, δ3−1+δ(d1, dx))-path, we obtain

g1 = 9n−3−3δ3−3δ(d1, dx). Utilizing path Pdc+1,dx
, that

is, the (1, δ3− 1+ δ(d1, dx))-path, we obtain g2 = δ3−n+
δ(d1, dx). By Lemma III.2, we have[

rx
kx

]
≥M

[
g1
g2

]
=[

6n− 3
6n2 − 10n+ δ3 + 3 + δ(d1, dx)

]
.

Hence,

inexp(dx, D
(2)) ≥ 6n2 − 4n+ δ3 + δ(d1, dx) (30)

for every node dx located on the da+1 → db path.
The node dx is located on db+1 → dc path. Utilizing path

Pdb,dx
, that is, the (1, δ3 − 3n + δ(d1, dx))-path, we obtain

g1 = 12n − 2 − 3δ3 − 3δ(d1, dx). Utilizing path Pdc+1,dx
,

that is, the (2, δ3− 2+ δ(d1, dx))-path, we obtain g2 = δ3−
2n+ δ(d1, dx). By Lemma III.2, we have that[

rx
kx

]
≥M

[
g1
g2

]
=[

6n− 2
6n2 − 10n+ δ3 + 2 + δ(d1, dx)

]
.

Hence,

inexp(dx, D
(2)) ≥ 6n2 − 4n+ δ3 + δ(d1, dx) (31)

for every node dx located on the db+1 → dc path.
The node dx is located on the path dc+1 → d3n+1.

Utilizing Pdb,dx
, that is, the (2, δ3 − 3n − 1 + δ(d1, dx))-

path, we obtain g1 = 15n− 1− 3δ3 − 3δ(d1, dx). Utilizing
path Pdc+1,dx , that is, (0, δ3 − 3n− 1 + δ(d1, dx))-path, we
obtain g2 = δ3 − 3n − 1 + δ(d1, dx). By Lemma III.2, we
have that [

rx
kx

]
≥M

[
g1
g2

]
=

[
6n− 4

6n2 − 13n+ δ3 + 3 + δ(d1, dx)

]
.

Let m1 = 6n − 4 and m2 = 6n2 − 13n + δ3 + 3 +
δ(d1, dx). We examine the (m1,m2)-walk from dc+1 to dx.
Note that the path is Pdc+1,dx

, that is, the (0, δ3 − 3n −
1 + δ(d1, dx))-path. Furthermore, the completion of system

Mv +

[
p(Pdc+1,dx)
q(Pdc+1,dx

)

]
=

[
m1

m2

]
is v1 = 6n − 4 and

v2 = 0. The path Pdc+1,dx
is located entirely in cycle L2,

and there is no (m1,m2)-walk from dc+1 to dx. Hence,
inexp(dx, D

(2)) > m1 + m2. Note that the shortest walk
from dc+1 → dx that contains a minimum of m1 red arcs
and at least m2 black arcs is the (m1+p(L2),m2+ q(L2))-
walk. Since p(L2) + q(L2) = 3n+ 1, we have

inexp(dx, D
(2)) ≥ m1 +m2 + p(L2) + q(L2)

= 6n2 − 4n+ δ3 + δ(d1, dx) (32)

for every node dx located on the path dc+1 → d3n+1.
From (29), (30), (31) and (32), it can be concluded that

inexp(dx, D
(2)) ≥ 6n2 − 4n+ δ3 + δ(d1, dx) for every x =

1, 2, ..., 3n+ 1.
Next, we will prove that inexp(dx, D(2)) ≤ 6n2−4n+δ3+

δ(d1, dx) for every x = 1, 2, ..., 3n+ 1. First, we will show
that inexp(d1, D(2)) = 6n2 − 4n+ δ3 and then use Lemma
III.1 to guarantee that inexp(dx, D(2)) ≤ 6n2 − 4n + δ3 +
δ(d1, dx) for every x = 1, 2, ..., 3n+ 1.

From (29), we obtained inexp(d1, D
(2)) ≥ 6n2−4n+ δ3.

Furthermore, it is enough to show that inexp(d1, D
(2)) ≤

6n2 − 4n + δ3 for every du, u = 1, 2, ..., 3n + 1 when the
system

Mz+

[
p(Pdu,d1

)
q(Pdu,d1)

]
=

[
6n− 4

6n2 − 10n+ δ3 + 4

]
(33)

has a nonnegative integer completion for some path Pdu,d1

from du to d1. The completion of system (10) is v1 = 6n−
4 − 3δ3 − (3n − 2)p(Pdu,d1

) + 3q(Pdu,d1
) and v2 = δ3 −

(1− n)p(Pdu,d1
)− q(Pdu,d1

).
If du is located on the d1 → da path, then there is a

(3, 3n − 2 − δ(d1, du))-path from du to d1. Utilizing this
path, we obtain v1 = 6n − 4 − 3(δ3 + δ(d1, du) ≥ 2 since
δ3+δ(d1, du) ≤ 2n−2 and v2 = δ3+δ(d1, du)−1 ≥ 0 since
δ3 + δ(d1, du) ≥ 1. If du is located on the dc+1 → d3n+1

path, then there is a (0, 3n+1− δ(d1, du))-path from du to
d1. Utilizing this path, we obtain v1 = 15n − 1 − 3(δ3 +
δ(d1, du)) ≥ 5 since δ3 + δ(d1, du) ≤ 5n − 2 and v2 =
δ3 + δ(d1, du)− 3n− 1 ≥ 0 since δ3 + δ(d1, du) ≥ 3n+ 1.

Therefore, for every u = 1, 2, ..., 3n + 1, the
system of equations (33) has a nonnegative integer
completion. Proposition III.1 guarantees that for every

u = 1, 2, ..., 3n + 1, there is a du
(r,k)→ d1 walk

with r = 6n − 4 and k = 6n2 − 10n + δ3 + 4.
Consequently, inexp(d1, D

(2)) ≤ 6n2 − 4n + δ3. So,
inexp(d1, D

(2)) = 6n2 − 4n+ δ3. By Lemma III.1, we can
conclude that inexp(dx, D(2)) ≤ 6n2 − 4n+ δ3 + δ(d1, dx)
for every x = 1, 2, ..., 3n+ 1.

Case 3. (for δ12 − δ2 > 2n)
First, it will be shown that inexp(dx, D(2)) ≥
6n2 − 4n + 3n(δ11 − δ3) + δ11 + δ (d1, dx).
We examine the paths Pdb,dx

and Pda+1,dx
and
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define g1 = b(L2)r(Pdb,dx) − r(L2)b(Pdb,dx) and
g2 = r(L1)b(Pda+1,dx) − b(L1)r(Pda+1,dx). Four subcases
must be examined.

The node dx is located on the path d1 → da. Utilizing path
Pdb,dx , that is, the (2, δ3 + δ(d1, dx))-path, we obtain g1 =
6n − 4 − 3δ3 − 3δ(d1, dx). Utilizing path Pda+1,dx , that is,
the (0, δ11+δ(d1, dx))-path, we obtain g2 = δ11+δ(d1, dx).
By Lemma III.2, we have that[

rx
kx

]
≥M

[
g1
g2

]
=[

6n− 4 + 3δ11 − 3δ3
6n2 + 3n(δ11 − δ3)− 10n+ 4 + 3δ3 − 2δ11 + δ(d1, dx)

]
.

Hence,

inexp(dx, D
(2)) ≥ 6n2−4n+3n(δ11−δ3)+δ11+δ (d1, dx)

(34)
for every node dx located on the path d1 → da.

The node dx is located on the path da+1 → db. Utilizing
path Pdb,dx

, that is, the (3, δ3−1+δ(d1, dx))-path, we obtain
g1 = 9n − 3 − 3δ3 − 3δ(d1, dx). Utilizing path Pda+1,dx

,
that is, the (0, δ11 − n + δ(d1, dx))-path, we obtain g2 =
δ11 − n+ δ(d1, dx). By Lemma III.2, we have[

rx
kx

]
≥M

[
g1
g2

]
=[

6n− 3 + 3δ11 − 3δ3
6n2 + 3n(δ11 − δ3)− 10n+ 3 + 3δ3 − 2δ11 + δ(d1, dx)

]
.

Hence,

inexp(dx, D
(2)) ≥ 6n2−4n+3n(δ11−δ3)+δ11+δ(d1, dx)

(35)
for every node dx located on the da+1 → db path.

The node dx is located on db+1 → dc path. Utilizing path
Pdb,dx

, that is, the (1, δ3 − 3n + δ(d1, dx))-path, we obtain
g1 = 12n − 2 − 3δ3 − 3δ(d1, dx). Utilizing path Pda+1,dx

,
that is, the (0, δ11 − 2n − 2 + δ(d1, dx))-path, we obtain
g2 = δ11 − 2n − 2 + δ(d1, dx). By Lemma III.2, we have
that [

rx
kx

]
≥M

[
g1
g2

]
=[

6n− 8 + 3δ11 − 3δ3
6n2 + 3n(δ11 − δ3)− 16n+ 6 + 3δ3 − 2δ11 + δ(d1, dx)

]
.

Let m1 = 6n− 8 + 3δ11 − 3δ3 and m2 =
6n2 + 3n(δ11 − δ3)− 16n+ 6 + 3δ3 − 2δ11 + δ(d1, dx).
We examine the (m1,m2)-walk from da+1 to
dx. Note that the path is Pda+1,dx

, that is, the
(0, δ11 − 2n − 2 + δ(d1, dx))-path. Furthermore, the

completion of system Mv+

[
p(Pda+1,dx)
q(Pda+1,dx)

]
=

[
m1

m2

]
is

v1 = 6n− 8 + 3δ11 − 3δ3 and v2 = 0. The path Pda+1,dx
is

located entirely in cycle L2, and there is no (m1,m2)-walk
from da+1 to dx. Hence, inexp(dx, D

(2)) > m1 + m2.
Note that the shortest walk from da+1 → dx that
contains a minimum of m1 red arcs and at least m2

black arcs is the (m1 + p(L2),m2 + q(L2))-walk. Since
p(L2) + q(L2) = 3n+ 1, we have

inexp(dx, D
(2)) ≥ m1 +m2 + p(L2) + q(L2)

= 6n2 − 4n+ 3n(δ11 − δ3) + δ11 + δ(d1, dx) (36)

for every node dx located on the path db+1 → dc.
The node dx is located on the path dc+1 → d3n+1.

Utilizing Pdb,dx , that is, the (2, δ3−3n−1+δ(d1, dx))-path,
we obtain g1 = 15n − 1 − 3δ3 − 3δ(d1, dx). Utilizing path
Pda+1,dx

, that is, (0, δ11 − 3n + δ(d1, dx))-path, we obtain
g2 = δ11 − 3n+ δ(d1, dx). By Lemma III.2, we have that[

rx
kx

]
≥M

[
g1
g2

]
=

[
6n− 1 + 3δ11 − 3δ3

6n2 + 3n(δ11 − δ3)− 10n+ 1 + 3δ3 − 2δ11 + δ(d1, dx)

]
.

Hence,

inexp(dx, D
(2)) ≥ 6n2−4n+3n(δ11−δ3)+δ11+δ(d1, dx)

(37)
for every node dx located on the dc+1 → d3n+1 path.

From (34), (35), (36) and (37), it can be concluded that
inexp(dx, D

(2)) ≥ 6n2−4n+3n(δ11−δ3)+δ11+δ(d1, dx)
for every x = 1, 2, ..., 3n+ 1.

Next, we will prove that inexp(dx, D(2)) ≤ 6n2 − 4n +
3n(δ11 − δ3) + δ11 + δ(d1, dx) for every x = 1, 2, ..., 3n +
1. First, we will show that inexp(d1, D(2)) = 6n2 − 4n +
3n(δ11−δ3)+δ11 and then use Lemma III.1 to guarantee that
inexp(dx, D

(2)) ≤ 6n2−4n+3n(δ11−δ3)+δ11+δ(d1, dx)
for every x = 1, 2, ..., 3n+ 1.

From (34), we obtained inexp(d1, D
(2)) ≥ 6n2 − 4n +

3n(δ11 − δ3) + δ11. Furthermore, it is enough to show that
inexp(d1, D

(2)) ≤ 6n2 − 4n+ 3n(δ11 − δ3) + δ11 for every
du, u = 1, 2, ..., 3n+ 1 when the system

Mz+

[
p(Pdu,d1

)
q(Pdu,d1)

]
=

[
6n− 4 + 3δ11 − 3δ3

6n2 + 3n(δ11 − δ3)− 10n+ 4− 2δ11 + 3δ3

]
(38)

has a nonnegative integer completion for some path Pdu,d1

from du to d1. The completion of system (38) is v1 = 6n−
4 − 3δ3 − (3n − 2)p(Pdu,d1) + 3q(Pdu,d1) and v2 = δ11 −
(1− n)p(Pdu,d1

)− q(Pdu,d1
).

If du is located on the d1 → da path, then there is a
(1, n−1−δ(d1, du))-path from du to d1. Utilizing this path,
we obtain v1 = 6n − 5 − 3(δ3 + δ(d1, du) ≥ 7 since δ3 +
δ(d1, du) ≤ n− 2 with n ≥ 2 and v2 = δ11 + δ(d1, du) ≥ 1
since δ11 + δ(d1, du) ≥ 1. If du is located on the dc+1 →
d3n+1 path, then there is a (0, 3n+1− δ(d1, du))-path from
du to d1. Utilizing this path, we obtain v1 = 15n−1−3(δ3+
δ(d1, du)) ≥ 5 since δ3+δ(d1, du) ≤ 3n−2 with n ≥ 2 and
v2 = δ11 + δ(d1, du)− 3n− 1 ≥ 1 since δ11 + δ(d1, du) ≥
3n+ 2 with n ≥ 2.

Therefore, for every u = 1, 2, ..., 3n + 1, the system
of equations (38) has a nonnegative integer completion.
Proposition III.1 guarantees that for every u = 1, 2, ..., 3n+1,

there is a du
(r,k)→ d1 walk with r = 6n− 4− 3δ3 +3δ11 and

k = 6n2+3n(δ11−δ3)−10n+4+3δ3−2δ11. Consequently,
inexp(d1, D

(2)) ≤ 6n2 − 4n + 3n(δ11 − δ3) + δ11. So,
inexp(d1, D

(2)) = 6n2−4n+3n(δ11−δ3)+δ11. By Lemma
III.1, we can conclude that inexp(dx, D(2)) ≤ 6n2 − 4n +
3n(δ11− δ3)+ δ11+ δ(d1, dx) for every x = 1, 2, ..., 3n+1.
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Theorem IV.3. Let a primitive bicolour digraph D(2) have
two cycles of length n and 3n+1. If D(2) has three red arcs
with two arcs alternating with a difference of one at L2, then
for every x = 1, 2, ..., 3n+ 1,
inexp(dx, D

(2)) =

9n2 + 3n (δ3 − δ12) + δ3 + δ (d1, dx) ,
for δ12 − δ2 ≤ n

6n2 − n+ 3n(δ3 − δ2) + δ3 + δ (d1, dx) ,
for n < δ12 − δ2 < 2n

6n2 − n+ 3n(δ11 − δ2) + δ11 + δ (d1, dx) ,
for δ12 − δ2 ≥ 2n

Proof: Proof of Theorem IV.3 given in the form of a
proof sketch and uses the same arguments as Theorem IV.1
and Theorem IV.2.
Case 1. (for δ12 − δ2 ≤ n)

We will show that inexp(dx, D
(2)) =

9n2 + 3n(δ3 − δ12) + δ3 + δ(d1, dx) for every
x = 1, 2, ..., 3n + 1. The lower bound obtained by
constructing g1 = q(L2)p(Pda,dx

) − p(L2)q(Pda,dx
) and

g2 = p(L1)q(Pdc+1,dx
)−q(L1)p(Pdc+1,dx

). The upper bound
found by showing that for every du, u = 1, 2, ..., 3n + 1
when the system

Mv +

[
p(Pdu,d1

)
q(Pdu,d1

)

]
=

[
9n− 3δ12 + 3δ3

9n2 − 9n+ 3n(δ3 − δ12)− 2δ3 + 3δ12

]
(39)

has a nonnegative integer completion for some path Pdu,d1

from du to d1. This implies that inexp(d1, D
(2)) =

9n2 +3n(δ3 − δ12) + δ3. By Lemma III.1, we can conclude
that inexp(dx, D(2)) ≤ 9n2 + 3n(δ3 − δ12) + δ3 + δ(d1, dx)
for every x = 1, 2, ..., 3n+ 1 for every x = 1, 2, ..., 3n+ 1.

Case 2. (for n < δ12 − δ2 < 2n)
We will show that inexp(dx, D

(2)) = 6n2 −
n + 3n(δ3 − δ2) + δ3 + δ(d1, dx) for every x =
1, 2, ..., 3n + 1. The lower bound obtained by construct-
ing g1 = q(L2)p(Pdb,dx

) − p(L2)q(Pdb,dx
) and g2 =

p(L1)q(Pdc+1,dx
) − q(L1)p(Pdc+1,dx

). The upper bound
found by showing that for every du, u = 1, 2, ..., 3n + 1
when the system

Mv +

[
p(Pdu,d1

)
q(Pdu,d1

)

]
=

[
6n− 1− 3δ2 + 3δ3

6n2 − 7n+ 3n(δ3 − δ2) + 3δ2 − 2δ3 + 1

]
(40)

has a nonnegative integer completion for some path
Pdu,d1

from du to d1. This implies that inexp(d1, D(2)) =
6n2−n+3n(δ3−δ2)+δ3. By Lemma III.1, we can conclude
that inexp(dx, D(2)) ≤ 6n2−n+3n(δ3−δ2)+δ3+δ(d1, dx)
for every x = 1, 2, ..., 3n+ 1 for every x = 1, 2, ..., 3n+ 1.

Case 3. (for δ12 − δ2 ≥ 2n)
We will show that inexp(dx, D

(2)) = 6n2 − n +
3n(δ11 − δ2) + δ11 + δ(d1, dx) for every x =
1, 2, ..., 3n + 1. The lower bound obtained by construct-
ing g1 = q(L2)p(Pdb,dx

) − p(L2)q(Pdb,dx
) and g2 =

p(L1)q(Pda+1,dx) − q(L1)p(Pda+1,dx). The upper bound

found by showing that for every du, u = 1, 2, ..., 3n + 1
when the system

Mv +

[
p(Pdu,d1)
q(Pdu,d1)

]
=[

6n− 1− 3δ2 + 3δ11
6n2 − 7n+ 1 + 3n(δ11 − δ2) + 3δ2 − 2δ11

]
(41)

has a nonnegative integer completion for some path Pdu,d1

from du to d1. This implies that inexp(d1, D(2)) = 6n2 −
n+3n(δ11−δ2)+δ11. By Lemma III.1, we can conclude that
inexp(dx, D

(2)) ≤ 6n2−n+3n(δ11− δ2)+ δ11 + δ(d1, dx)
for every x = 1, 2, ..., 3n+ 1 for every x = 1, 2, ..., 3n+ 1.

V. CONCLUSION

In general, the incoming local exponent of a two-cycle
bicolour Hamiltonian digraph with a difference of 2n + 1
and four red arcs is inexp(dx, D

(2)) = inexp(d1, D
(2)) +

δ(d1, dx). Research in this class can be continued for differ-
ence kn+ 1 with k > 2.
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