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Abstract—In this paper, we study the generalized migrativity
of nullnorms over any two fixed overlap functions or grouping
functions. At first, we propose the concept of (α,O1, O2)-
migrative nullnorms over any two fixed overlap functions O1

and O2. And then, we show equivalent characterizations of the
(α,O1, O2)-migrativity equation when the nullnorm F becomes
a t-norm T or a t-conorm S. Moreover, we give the solutions
of the (α,O1, O2)-migrativity equations for nullnorms when
k ∈]0, 1[. At last, we discuss the (α,G1, G2)-migrative null-
norms and obtain characterizations of the related (α,G1, G2)-
migrativity equation.

Index Terms—Migrativity; Nullnorms; Overlap functions;
Grouping functions

I. INTRODUCTION

A. A brief review of overlap and grouping functions

AS two special cases of binary aggregation functions,
overlap and grouping functions are introduced, respec-

tively, by Bustince et al. [10], [11] in 2009 and 2012.
Those two concepts, originate from some problems in image
processing [9], classification [2], [24], and also in decision
making [58]. In the past few years, overlap and grouping
functions have had a rapid development both in theory and
applications.

In theory, there exist many discussions involving various
aspects of overlap and grouping functions, for example, the
work related to some important properties [3], [14], [52],
[53], [64], [66], [69], [71], [71], [74], the investigations of
the corresponding implication [15], [16], [18], [19], [63], the
study of the additive, multiplicative generators and interval
functions [4], [20], [17], [54]. The research related to the
concept extension [47], [31].

In applications, overlap and grouping functions play an
important role in many aspects of real problems, for instance,
in image processing [8], [33], classification [25], [26], [36],
[37], [38], [39], [40], [41], [51], decision making [24] and
fuzzy community detection problems [32].

B. A short introduction of migrativity

The α-migrativity of an aggregation function was intro-
duced by Durante and Sarkoci [21] in order to express the
fact that the effect of reducing one of its argument by a factor
α is the same regardless of which argument is reduced. For
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any α ∈ [0, 1] and a mapping H : [0, 1]2 → [0, 1] is said to
be α-migrative if, for any x, y ∈ [0, 1], it holds that

H(αx, y) = H(x, αy) (1)

The interest of this property comes from its applications
[6]. From then on, there are many researches which have
pointed out that the study of α-migrativity for aggregation
function or some special binary functions has an important
meaning and value both in theory and applications. From an
application point of view, Bustince et al. [7] said “migrativity
is particularly interesting whenever one has to aggregate
partial information coming from sources with meaningful
difference (information about recent events or places close
to one anther should in general not be treated similarly as in-
formation about events at distant moments in time or remote
locations)” and they listed related applications in decision
making [48], [49], [57] and image processing [8]. In theory,
Mas et al. [43] said “One of the main topics in the study
of aggregation function from the theoretical point of views
is directed towards the characterization of those that verify
certain properties that may be useful in each context. The
study of these properties for certain aggregation functions
usually involves the resolution of functional equations. One
of these properties is α-migrativity.” In addition, they pointed
out that α-migrativity is interesting from the theoretical point
of view because of its relationship in the construction of new
t-norms through convex combinations of two given ones.
In recent years, α-migrativity has been investigated for t-
norms in [28], [29], [30], [50], for t-subnorms in [65], for
semicopulas, quasi-copulas and copulas in [5], [22], [23],
[27], [46], for uninorms in [62], for nullnorms in [76] and
for aggregation functions in general in [7], [6], [35], [56].
In addition, the generalization of the migrative for t-norms
has been studied in [29], [30]. In [44], Mas et al. gave a
similar definition for t-conorms. Moreover, this study has
been extended to uninorms with the same neutral in [45]. In
[43], Mas et al. investigated the α-migrativity of uninorms
and nullnorms over t-norms and t-conorms. As an addendum
to [43], Zong et al. [75] studied the α-migrativity of t-
norms and t-conorms over uninorms and nullnorms. Su et
al. [60] studied migrativity property for uninorms and semi
t-operators, In addition, Su et al. [59], [61], [62] considered
the migrativity equation for two uninorms with different
neutral elements. In 2018, Qiao and Hu [55] studied the α-
migrativity of uninorms and nullnorms over overlap functions
and grouping functions. As an addendum to [55], Zhu and Hu
[68] considered the α-migrativity of overlap functions and
grouping functions over uninorms and nullnorms. Recently,
Zhou and Yan [67] investigated migrativity properties of
overlap functions over uninorms. In addition, they showed
equivalent characterizations of the migrativity equation when
the uninorms belong to one of the usual classes (e.g., Umin,
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Umax, Uid, Urep or uninorms continuous on ]0, 1[2). In 2020,
Zhu et al. [70] obtained some new results on the migrativity
properties of uninorms and nullnorms over t-norms and t-
conorms. In the same year, by means of the ordinal sum
of overlap and grouping functions, Zhu et al. [73] gave the
necessary and sufficient conditions for the solutions of the
(α,O)-migrativity equation when the uninorm U becomes
a t-norm or a conjunctive uninorm locally internal on the
boundary and the (α,G)–migrativity equation when the
uninorm U becomes a t-conorm or a disjunctive uninorm
locally internal on the boundary, respectively.

C. The motivation of our research

On the one hand, we have stated in Subsection 1.1 that
overlap and grouping functions, as two new classes of special
binary aggregation functions, have had a fast development
both in applications and theory. In particular, there are many
researches proposing some related properties for overlap and
grouping functions, such as homogeneity, Archimedean and
so on from the theoretical point of view and those two
binary aggregation functions can be regarded, respectively.
On the other hand, it has been stated in Subsection 1.2
that the α-migrativity among some peculiar classes of binary
aggregation functions, as a meaningful and hot research area
in the topic of the α-migrativity of two operations, have been
continuously studied in many recent literature.

However, there are no corresponding researches for the
generalized α-migrativity of nullnorms over overlap and
grouping functions, although Qiao and Hu [52] have dis-
cussed the generalized α-migrativity for overlap functions.
Therefore, as a supplement of this topic from the theoretical
point of view, in this paper, we consider the generalized α-
migrativity of nullnorms over overlap and grouping function-
s. More precisely, for all x, y ∈ [0, 1] and a given α in [0, 1],
we propose the following two migrativity equations

F (O1(α, x), y) = F (x,O2(α, y)) (2)

and

F (G1(α, x), y) = F (x,G2(α, y)) (3)

where O1, O2 are two overlap functions, G1, G2 are two
grouping functions and F is a given nullnorm.

The rest of this paper is organized as follows. In Section
II, we review some notions and results about t-norms and
t-conorms, overlap functions and grouping functions and
nullnorms, which shall be used throughout this paper. In
Section III, we discuss the generalized α-migrativity property
of a nullnorm F over any two fixed overlap functions O1 and
O2. In Section IV, we study the generalized α-migrativity
property of a nullnorm F over any two fixed grouping
functions G1 and G2. Section IV is conclusion and further
work.

II. PRELIMINARIES

In this section, we recall some basic notions and definitions
which shall be needed in the sequel. Firstly, we give the
definitions of t-norms and t-conorms as follows.

Definition 2.1: [34] A bivariate function T : [0, 1]2 −→
[0, 1] is said to be a t-norm if, for all x, y, z ∈ [0, 1], it
satisfies the following conditions:

(T1) Commutativity: T (x, y) = T (y, x);
(T2) Associativity: T (T (x, y), z) = T (x, T (y, z));
(T3) Monotonicity: T (x, y) ≤ T (x, z) whenever y ≤ z;
(T4) Boundary condition: T (x, 1) = x.

Moreover, a t-norm T is said to be
(T5) continuous if it is continuous in both arguments at

the same time.
Definition 2.2: [34] A bivariate function S : [0, 1]2 −→

[0, 1] is said to be a t-conorm if, for all x, y, z ∈ [0, 1], it
satisfies the following conditions:

(S1) Commutativity: S(x, y) = S(y, x);
(S2) Associativity: S(S(x, y), z) = S(x, S(y, z));
(S3) Monotonicity: S(x, y) ≤ S(x, z) whenever y ≤ z;
(S4) Boundary condition: S(x, 0) = x.

Moreover, a t-conorm S is said to be
(S5) continuous if it is continuous in both arguments at

the same time.
In the following, we introduce the concepts of overlap and

grouping functions [10], [11].
Definition 2.3: [10] A bivariate function O : [0, 1]2 −→

[0, 1] is said to be an overlap function if it satisfies the
following conditions:

(O1) O is commutative;
(O2) O(x, y) = 0 iff xy = 0;
(O3) O(x, y) = 1 iff xy = 1;
(O4) O is incerasing;
(O5) O is continuous.
In the following, we list some common overlap functions,

most of which are from [3], [14], [15].
Example 2.4: (1) Any continuous t-norm with non-trivial

zero divisors is an overlap function.
(2) The function OM : [0, 1]2 −→ [0, 1] given by

OM (x, y) = min(x, y)

is an overlap function.
(3) For any p > 0, the function Op : [0, 1]2 −→ [0, 1]

given by

Op(x, y) = xpyp

is an overlap function. Moreover, for any p 6= 1, Op(x, y) is
neither associative nor has 1 as neutral element. Thus, it is
not a t-norm.

(4) The function OMid : [0, 1]
2 −→ [0, 1] given by

OMid(x, y) = xy
x+ y

2

is an overlap function.
(5) The function ODB : [0, 1]2 −→ [0, 1] given by

ODB(x, y) =

{
2xy
x+y , if x+ y 6= 0,

0, if x+ y = 0

is an overlap function.
Definition 2.5: [11] A bivariate function G : [0, 1]2 −→

[0, 1] is said to be a grouping function if it satisfies the
following conditions:

(G1) G is commutative;
(G2) G(x, y) = 0 iff x = y = 0;
(G3) G(x, y) = 1 iff x = 1 or y = 1;
(G4) G is incerasing;
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(G5) G is continuous.
In the following, we list some common grouping functions,

most of which are from [3], [15].
Example 2.6: (1) Any continuous t-conorm with non-

trivial one divisors is a grouping function.
(2) The function GM : [0, 1]2 −→ [0, 1] given by

GM (x, y) = max(x, y)

is a grouping function.
(3) For any p > 0, the function Gp : [0, 1]2 −→ [0, 1]

given by

Gp(x, y) = 1− (1− x)p(1− y)p

is a grouping function.
(4) For any p > 0, the function GMp : [0, 1]2 −→ [0, 1]

given by

GMp(x, y) = max(xp, yp)

is a grouping function.
In the following, we recall the definition of a nullnorm

which is also called a t-operator in some literature, e.g. [42].
Definition 2.7: [12] [42] A bivariate function F :

[0, 1]2 −→ [0, 1] is said to be a nullnorm if, for any
x, y, z ∈ [0, 1], it satisfies the following conditions:

(F1) F (x, y) = F (y, x);
(F2) F (F (x, y), z) = F (x, F (y, z));
(F3) F is non-decreasing in each place;
(F4) There has an absorbing element k ∈ [0, 1], i.e.,

F (k, x) = k and the following statements hold.
(1) F (0, x) = x for all x ≤ k.
(2) F (1, x) = x for all x ≥ k.

It follows from Definition 2.7 that if k = 0, then a
nullnorm F becomes a t-norm T and if k = 1, then a
nullnorm F becomes a t-conorm S.

In general, k is always given by F (1, 0).
In what follows, we present the structure of nullnorms,

which shall be used in Sections III and IV.
Lemma 2.8: [42] Let F : [0, 1]2 −→ [0, 1] be a nullnorm

with k = F (1, 0) /∈ {0, 1}. Then

F (x, y) =


kS(xk ,

y
k ), if x, y ∈ [0, k],

k + (1− k)T (x−k1−k ,
y−k
1−k ), if x, y ∈ [k, 1],

k, otherwise.

where S is a t-conorm and T is a t-norm. And in such case,
F is denoted by F = 〈S, k, T 〉.

III. GENERALIZED MIGRATIVITY PROPERTY OF
NULLNORMS OVER OVERLAP FUNCTIONS

In this section, at first, we propose the notion of the
generalized α-migrativity property of a nullnorm F over any
two fixed overlap functions O1 and O2. In particular, we
consider the situations when the nullnorm F becomes a t-
norm T or a t-conorm S. In addition, we discuss the solutions
of the (α,O1, O2)-migrativity equations for nullnorms when
k ∈]0, 1[.

Definition 3.1: Consider α ∈ [0, 1]. Let O1 and O2 be
two fixed overlap functions. A nullnorm F : [0, 1]2 −→

[0, 1] is said to be α-migrative with respect to O1 and O2

((α,O1, O2)-migrative, for short) if

F (O1(α, x), y) = F (x,O2(α, y)) (4)

for any x, y ∈ [0, 1].
Remark 3.2: (1) In Definition 3.1, if O1 = O2, then

Eq. (4) is a special case of the α-migrativity equation
A(B(α, x), y) = A(x,B(α, y)) for aggregation functions
A and B investigated by Bustince et al. [7], and the func-
tional equation A(B(α, x), y) = C(x,B(α, y)) discussed by
Cutello and Montero in [13] to character the recursiveness
of connective rules.

(2) From the viewpoint of functional equation, Eq. (4)
is a particular case of the general associativity equation
A(B(α, x), y) = C(x,D(α, y)) studied by Aczél et al. in
[1].

Now, we discuss the properties of Eq. (4). At first, it
follows from Definition 3.1 that we have the following trivial
conclusion.

Proposition 3.3: For two given overlap functions O1

and O2, a nullnorm F is (α,O1, O2)-migrative iff F is
(α,O2, O1)-migrative.
Proof. It is straightforward. 2

Notice that when k = 0 the nullnorm F becomes a t-
norm and when k = 1 the nullnorm F becomes a t-conorm.
For the beginning, we consider the case for k = 0. And, in
such case F becomes a t-norm T and Eq. (4) becomes the
following form

T (O1(α, x), y) = T (x,O2(α, y)) (5)

for all x, y ∈ [0, 1].
At first, for α = 1, we obtain the following conclusion.
Proposition 3.4: Let O1 and O2 be two fixed overlap

functions and T be a t-norm. Then the following statements
are equivalent:

(1) T is (1, O1, O2)-migrative;
(2) O1(1, x) = x and O2(1, x) = x for any x ∈ [0, 1].

Proof. (1)⇒ (2). Since T is (1, O1, O2)-migrative, one has
that

O1(1, x) = T (O1(1, x), 1)
= T (x,O2(1, 1))
= T (x, 1)
= x.

In a similar way, we obtain O2(1, x) = x.
(2)⇒ (1). It is straightforward. 2

For α = 0, we also obtain the following conclusion.
Proposition 3.5: Let O1 and O2 be two fixed overlap

functions and T be a t-norm. Then T is (0, O1, O2)-
migrative.

Next, we consider k = 1. And, in such case F becomes a
t-conorm S and Eq. (4) becomes the following form

S(O1(α, x), y) = S(x,O2(α, y)) (6)

for all x, y ∈ [0, 1].
For α = 1, we obtain the following conclusion.
Proposition 3.6: Let O1 and O2 be two fixed overlap

functions and S be a t-conorm. Then the following statements
are equivalent:
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(1) S is (1, O1, O2)-migrative;
(2) O1(1, x) = x and O2(1, x) = x for any x ∈ [0, 1].

Proof. (1)⇒ (2). Since S is (1, O1, O2)-migrative, one has
that

O1(1, x) = S(O1(1, x), 0)
= S(x,O2(1, 0))
= S(x, 0)
= x.

In a similar way, we obtain O2(1, x) = x.
(2)⇒ (1). It is straightforward. 2

For α ∈ [0, 1[, S is not (α,O1, O2)-migrative.
Proposition 3.7: Consider α ∈ [0, 1[. Let O1 and O2 be

two fixed overlap functions and S be a t-conorm. Then S is
not (α,O1, O2)-migrative.
Proof. Suppose that S is (α,O1, O2)-migrative. Take x = 0
and y = 1 in Eq. (6). Then, one has that

1 = S(0, 1)
= S(O1(α, 0), 1)
= S(0, O2(α, 1))
= O2(α, 1).

Thus, O2(α, 1) = 1. On the other hand, it follows from item
(O3) of Definition 2.3 that α = 1, which is contradiction.
Therefore, S is not (α,O1, O2)-migrative. 2

As a consequence of Propositions 3.4, 3.5, 3.6 and 3.7, in
the following, we only consider α ∈]0, 1[.

Proposition 3.8: Consider α ∈]0, 1[. Let O1 and O2 be
two fixed overlap functions and T be a t-norm. If T is
(α,O1, O2)-migrative, then O2(α, x) = T (O1(α, 1), x) for
all x ∈ [0, 1].
Proof. For any x ∈ [0, 1], we have

O2(α, x) = T (1, O2(α, x))
= T (O1(α, 1), x).

2

In what follows, we study the generalized migrativity
property for continuous t-norms over any two fixed overlap
functions O1 and O2. For the convenience expression, we
denote β = O1(α, 1). Moreover, It follows follows from
Proposition 3.8 that for any (α,O1, O2)-migrative t-norm
T , it holds that O2(α, x) = T (β, x) ≤ min(β, x) for any
x ∈ [0, 1].

Theorem 3.9: Consider α ∈]0, 1[. Let O1 and O2 be two
fixed overlap functions and T be a continuous t-norm. Then
the following statements hold.

(1) Let O2(α, β) = β. If T is (α,O1, O2)-migrative, then
T is an ordinal sum of two continuous Archimedean t-norms
T1 and T2, i.e., T = (〈0, β, T1〉, 〈β, 1, T2〉) and O2(α, x) has
the following form

O2(α, x) =

{
x, if x ∈ [0, β],

β, if x ∈ [β, 1].

(2) Let O2(α, β) < β. If T is (α,O1, O2)-migrative, then
T is an ordinal sum of the form T = (..., 〈η, θ, T0〉, ...),
where T0 is a continuous Archimedean t-norm and O2(α, x)
has the following form

O2(α, x) =


x, if x ∈ [0, η[,

η + (θ − η)T0(β−ηθ−η ,
x−η
θ−η ) if x ∈ [η, θ],

β, if x ∈]θ, 1].

Proof. (1) It follows from Proposition 3.8 that T (β, β) =
O(α, β) = β, which implies that β is an idempotent
element of T . Further, since T is continuous, there exist
two continuous Archimedean t-norms T1 and T2 such that
T = (〈0, β, T1〉, 〈β, 1, T2〉).

In the following, we verify O2(α, x) has the following
form

O2(α, x) =

{
x, if x ∈ [0, β],

β, if x ∈ [β, 1].

For any x ∈ [0, β], it follows from Proposition 3.8 that

O2(α, x) = T (β, x)
= βT1(1,

x
β )

= x.

Moreover, for any x ∈ [β, 1], we have

O2(α, x) = T (β, x)

= β + (1− β)T1(0, x−β1−β )

= β.

(2) It follows from the proof of (1) that T (β, β) < β.
In addition, since T is continuous, there exists a continuous
Archimedean t-norm T0 such that T = (..., 〈η, θ, T0〉, ...) and
β ∈]η, θ[. Now, we prove O2(α, x) has the following form

O2(α, x) =


x, if x ∈ [0, η[,

η + (θ − η)T0(β−ηθ−η ,
x−η
θ−η ) if x ∈ [η, θ],

β, if x ∈]θ, 1].

Case (A) Let x ∈ [0, η[. On one hand, O2(α, x) =
T (β, x) ≤ x. Further, since T is continuous and T (η, η) = η,
we have

O2(α, x) = T (β, x)
≥ T (η, x)
= min(η, x)
= x.

Therefore, O2(α, x) = x.
Case (B) Let x ∈ [η, θ[. Then we have

O2(α, x) = T (β, x)

= η + (θ − η)T0(β−ηθ−η ,
x−η
θ−η )

Case (C) Let x ∈]θ, 1[. On one hand, O2(α, x) =
T (β, x) ≤ β. On the one hand,

O2(α, x) = T (β, x)
≥ T (β, θ)
= η + (θ − η)T0(β−ηθ−η , 1)

= β.

Therefore, O2(α, x) = β. 2

Now, in the sequel, we consider the generalized migrativity
property of nullnorms for k ∈]0, 1[. For α = 0, we have the
following conclusion.

Proposition 3.10: Let O1 and O2 be two fixed overlap
functions and F be a nullnorm with absorbing element k ∈
]0, 1[. Then F is not (α,O1, O2)-migrative.
Proof. It is straightforward. 2
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It follows from Proposition 3.10 that we only need to con-
sider α ∈]0, 1]. First, we discuss the (α,O1, O2)-migrativity
property of nullnorms for α = 1.

Proposition 3.11: Let O1 and O2 be two fixed overlap
functions and F be a nullnorm with absorbing element k ∈
]0, 1[. Then the following statements are equivalent:

(1) F is (1, O1, O2)-migrative.
(2) O2(1, x) = x and O1(1, x) = x for any x ∈ [0, 1].

Proof. (1)⇒ (2) First of all, we show that O2(1, k) = k for
any k ∈]0, 1[. Assume that O2(1, k) 6= k. Then we have the
following two cases:

Case (I) O2(1, k) > k.
Take x = 1 and y = k in Eq. (4). Then we have

O2(1, k) = F (1, O2(1, k))
= F (O1(1, 1), k)
= F (1, k)
= k,

which is a contradiction.
Case (II) O2(1, k) < k.
Take x = 0 and y = k in Eq. (4). Then we have

k = F (0, k)
= F (O1(1, 0), k)
= F (0, O2(1, k))
= O2(1, k),

which is a contradiction.
Next, we show that for any m < k, O2(1,m) = m.
Let m < k. Then O2(1,m) ≤ O2(1, k) = k. Moreover,

O2(1,m) = F (0, O2(1,m))
= F (O1(1, 0),m)
= F (0,m)
= m.

Last, we show that for any m > k, O2(1,m) = m.
Let m > k. Then O2(1,m) ≥ O2(1, k) = k. Moreover,

m = F (1,m)
= F (O1(1, 1),m)
= F (1, O2(1,m))
= O2(1,m).

Thus, for any x ∈ [0, 1], O2(1, x) = x. In a similar way, we
conclude that O1(1, x) = x for any x ∈ [0, 1].
(2)⇒ (1) It is straightforward. 2

It follows from Propositions 3.10 and 3.11. In the follow-
ing, we only consider the (α,O1, O2)-migrativity property
of nullnorms for α ∈]0, 1[.

Theorem 3.12: Consider α ∈]0, 1[. Let O1 and O2 be two
fixed overlap functions, F be a nullnorm with absorbing
element k ∈]0, 1[ and β = k. If F is (α,O1, O2)-migrative,
then O2(α, x) has the following form

O2(α, x) =

{
x, if x ∈ [0, k],

k, if x ∈]k, 1].

Proof. Firstly, we prove that O2(α, k) = k for any k ∈]0, 1[.
Assume that O2(α, k) 6= k. Then we have the following two
cases:

Case (I) O2(α, k) > k.
Take x = α and y = k in Eq. (4). Then we have

O2(α, k) = F (1, O2(α, k))
= F (O1(α, 1), k)
≤ F (O1(1, 1), k)
= F (1, k))
= k,

which is a contradiction.
Case (II) O2(α, k) < k.
Take x = α and y = k in Eq. (4). Then we have

k = F (0, k))
= F (O1(α, 0), k)
= F (0, O2(α, k))
= O2(α, k),

which is a contradiction.
Next, we show that for any n < k, O2(α, n) = n.
Let n < k. Then O2(α, n) ≤ O2(α, k) = k. Moreover,

O2(α, n) = F (0, O2(α, n))
= F (O1(α, 0), n)
= F (0, n)
= n.

Thus, for any x ≤ k, O2(α, x) = x.
Moreover, for any x > k, we have O2(α, x) ≥ O2(α, k) =

k. Hence,

O2(α, x) = F (1, O2(α, x))
= F (O1(α, 1), x)
= F (k, x)
= k.

Therefore, we conclude that

O2(α, x) =

{
x, if x ∈ [0, k],

k, if x ∈]k, 1].
2

Theorem 3.13: Consider α ∈]0, 1[. Let O1 and O2 be two
fixed overlap functions and F = 〈S, k, T 〉 be a nullnorm with
absorbing element k = F (0, 1) ∈]0, 1[. Then the following
statements hold.

(1) Let β < k. Then F is not (α,O1, O2)-migrative.
(2) Let β > k and T is continuous. Then the following

two items hold.
(a) Let O1(α, β) = β. If F is (α,O1, O2)-migrative,

then T is an ordinal sum of two continuous Archimedean
t-norms T1 and T2, i.e., T = (〈0, β−k1−k , T1〉, 〈

β−k
1−k , 1, T2〉)

and O2(α, x) has the following form

O2(α, x) =

{
x, if x ∈ [0, β],

β, if x ∈]β, 1].

(b) Let O1(α, β) < k. If F is (α,O1, O2)-migrative, then
T is an ordinal sum of the form T = (..., 〈θ1, θ2, T γ〉, ...),
where β−k

1−k ∈]θ1, θ2[ and T γ is a continuous Archimedean
t-norm and if x ∈ [0, k + (1 − k)θ1[, O2(α, x) = x, x ∈
[k + (1 − k)θ1, k + (1 − k)θ2], O2(α, x) = k + (1 −
k)(θ1 + (θ2 − θ1)T γ(β−k−(1−k)θ1

(1−k)(θ2−θ1) ,
x−k−(1−k)θ1
(1−k)(θ2−θ1) )), x ∈]k +

(1− k)θ2, 1], O2(α, x) = β.
Proof.

(1) Let F be (α,O1, O2)-migrative.
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Take x = 0 and y = 1 in Eq. (4). Then we have

O1(1, α) = F (O1(1, α), 0)
= F (1, O2(α, 0))
= F (1, 0)
= k,

which is a contradiction with O1(1, α) < k. Thus, F is not
(α,O1, O2)-migrative.

(2) Let x, y ∈ [0, 1]. Then it follows from the proof of
Proposition 3.11 that for all x ≤ k, we have O2(α, x) = x.

Moreover, for any x > k, we have O2(α, x) ≥ O2(α, k) =
k. Hence,

O2(α, x) = F (1, O2(α, x))
= F (O1(α, 1), x)
= F (β, x)

Since β > k, it is easy to know that O2(α, β) = F (β, β) ≤
β.

Next, for all x > k, we show the conclusions of items (2a)
and (2b).

(a) Let O1(α, β) = β. Then we have

β = F (β, β)

= k + (1− k)T (β−k1−k ,
β−k
1−k ),

which implies that β−k
1−k is an idempotent element of T .

Further, since T is continuous, one has that there exist
two continuous Archimedean t-norms T1 and T2 such that
T = (〈0, β−k1−k , T1〉, 〈

β−k
1−k , 1, T2〉).

In the following, we verify O2(α, x) has the above form
Case (A). If x ∈]k, β], then we have

O2(α, x) = F (β, x)

= k + (1− k)T (β−k1−k ,
β−k
1−k )

= k + (1− k)(β−k1−k T1(1,
β−k
1−k ))

= x.

Case (B). If x ∈]β, 1], then we have

O2(α, x) = F (β, x)

= k + (1− k)T (β−k1−k ,
β−k
1−k )

= k + (1− k)(β−k1−k + (1− β−k
1−k )T2(0,

x−β
1−β )

= β.

(b) Let O1(α, β) < β. Then it follows from the proof of
item (a) that

T (
β − k
1− k

,
β − k
1− k

) <
β − k
1− k

.

Since T is continuous, there exists a continuous Archimedean
t-norm T γ such that T is an ordinal sum of the form T =
(..., 〈θ1, θ2, T γ〉, ...), where β−k

1−k ∈]θ1, θ2[.
In the following, we verify O2(α, x) has the above form
Case (A). Let x ∈]k, k + (1− k)θ1]. On one hand,

O2(α, x) = F (β, x)
≤ F (1, x)
= x.

On the other hand, since T (θ1, θ1) = θ1 and T is
continuous, we have

O2(α, x) = F (β, x)

= k + (1− k)T (β−k1−k ,
x−k
1−k )

≥ k + (1− k)T (θ1, x−k1−k )

= k + (1− k)min(θ1,
x−k
1−k )

= x.

Therefore, O2(α, x) = x.
In the following, we verify O2(α, x) has the above form
Case (A). Let x ∈]k, k + (1− k)θ1]. On one hand,

O2(α, x) = F (β, x)
≤ F (1, x)
= x.

On the other hand, since T (θ1, θ1) = θ1 and T is
continuous, we have

O2(α, x) = F (β, x)

= k + (1− k)T (β−k1−k ,
x−k
1−k )

≥ k + (1− k)T (θ1, x−k1−k )

= k + (1− k)min(θ1,
x−k
1−k )

= x.

Therefore, O2(α, x) = x.
Case (B). If x ∈]k + (1 − k)θ1, k + (1 − k)θ2], then we

have

O2(α, x)
= F (β, x)

= k + (1− k)T (β−k1−k ,
x−k
1−k )

= k + (1− k)(θ1 + (θ2 − θ1)T γ(
β−k
1−k−θ1
θ2−θ1 ,

x−k
1−k−θ1
θ2−θ1 )

= k + (1− k)(θ1 + (θ2 − θ1)T γ(β−k−(1−k)θ1
(1−k)(θ2−θ1) ,

x−k−(1−k)θ1
(1−k)(θ2−θ1) ))

Case (C). Let x ∈]k + (1− k)θ2, 1]. On one hand,

O2(α, x) = F (β, x)
≤ F (β, 1)
= β.

On the other hand, since T (θ2, θ2) = θ2 and T is continuous,
we have

O2(α, x) = F (β, x)

= k + (1− k)T (β−k1−k ,
x−k
1−k )

≥ k + (1− k)T (x−k1−k , θ2)

= k + (1− k)min(β−k1−k , θ2)

= β.

Therefore, O2(α, x) = β. 2

IV. GENERALIZED MIGRATIVITY PROPERTY OF
NULLNORMS OVER GROUPING FUNCTIONS

In this section, firstly, we introduce the definition of
the generalized α-migrativity of a nullnorm F over two
fixed grouping functions G1 and G2. And we study the α-
migrativity property of nullnorms over two fixed grouping
functions in a similar way.

Definition 4.1: Consider α ∈ [0, 1]. Let G1 and G2 be two
fixed grouping functions. A nullnorm F : [0, 1]2 −→ [0, 1] is
said to be α-migrative respect to G1 and G2 ((α,G1, G2)-
migrative, for short) if

F (G1(α, x), y) = F (x,G2(α, y)) (7)
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for any x, y ∈ [0, 1].
It follows from Definition 4.1 that we have the following

trivial conclusion.
Proposition 4.2: For two given grouping grouping G1

and G2, a nullnorm F is (α,G1, G2)-migrative iff F is
(α,G2, G1)-migrative.
Proof. It is straightforward. 2

Notice that when k = 0 the nullnorm F becomes a t-
norm and when k = 1 the nullnorm F becomes a t-conorm.
For the beginning, we consider the case for k = 1. And, in
such case F becomes a t-conorm S and Eq. (7) becomes the
following form

S(G1(α, x), y) = S(x,G2(α, y)) (8)

for all x, y ∈ [0, 1].
At first, for α = 0, we obtain the following conclusion.
Proposition 4.3: Let G1 and G2 be two fixed grouping

functions and S be a t-conorm. Then the following statements
are equivalent:

(1) S is (0, O1, O2)-migrative;
(2) G1(0, x) = x and G2(0, x) = x for any x ∈ [0, 1].

Proof. (1)⇒ (2). Since S is (0, G1, G2)-migrative, one has
that

G1(0, x) = S(G1(0, x), 0)
= S(x,G2(0, 0))
= S(x, 0)
= x.

(2)⇒ (1). It is straightforward. 2

For α = 1, we also obtain the following conclusion.
Proposition 4.4: Let G1 and G2 be two fixed grouping

functions and S be a t-conorm. Then S is (1, O1, O2)-
migrative.

Next, we consider k = 0. And, in such case F becomes a
t-norm T and Eq. (7) becomes the following form

T (G1(α, x), y) = T (x,G2(α, y)) (9)

for all x, y ∈ [0, 1].
For α = 0, we obtain the following conclusion.
Proposition 4.5: Let G1 and G2 be two fixed grouping

functions and T be a t-norm. Then the following statements
are equivalent:

(1) T is (0, G1, G2)-migrative;
(2) G1(0, x) = x and G2(, x) = x for any x ∈ [0, 1].
For α ∈]0, 1], T is not (α,G1, G2)-migrative;
Proposition 4.6: Consider α ∈ [0, 1[. Let G1 and G2 be

two fixed grouping functions and T be a t-norm. Then T is
not (α,G1, G2)-migrative.
Proof. Suppose that T is (α, T1, T2)-migrative. Take x = 1
and y = 0 in Eq. (9). Then, one has that

0 = T (1, 0)
= T (G1(α, 1), 0)
= T (1, G2(α, 0))
= G2(α, 0).

Thus, G2(α, 0) = 0. On the other hand, it follows from item
(G3) of Definition 2.5 that α = 0, which is contradiction.
Thus, T is not (α,G1, G2)-migrative. 2

As a consequence of Propositions 4.3, 4.4, 4.5 and 4.6, in
the following, we only consider α ∈]0, 1[.

Proposition 4.7: Consider α ∈]0, 1[. Let G1 and G2 be
two fixed grouping functions and S be a t-conorm. If S is
(α,G1, G2)-migrative, then G2(α, x) = S(G1(α, 0), x) for
all x ∈ [0, 1].
Proof. For any x ∈ [0, 1], we have

G2(α, x) = S(0, O2(α, x))
= S(G1(α, 0), x).

2

In what follows, we study the generalized migrativity
property for continuous t-norms over any two fixed group-
ing functions. For the convenience expression, we denote
γ = G1(0, α). Moreover, it follows from Proposition 4.7
that, for any (α,G1, G2)-migrative t-conorm S, it holds that
G2(α, x) = S(γ, x) ≥ max(γ, x) for any x ∈ [0, 1].

Theorem 4.8: Consider α ∈]0, 1[. Let G1 and G2 be two
fixed grouping functions and S be a continuous t-conorm.
Then the following statements hold.

(1) Let G2(α, γ) = γ. If S is (α,G1, G2)-migrative,
then S is an ordinal sum of two continuous Archimedean
t-conorms S1 and S2, i.e., S = (〈0, γ, S1〉, 〈γ, 1, S2〉) and
G2(α, x) has the following form

O2(α, x) =

{
γ, if x ∈ [0, γ],

x, if x ∈]γ, 1].

(2) Let G2(α, γ) > γ. If S is (α,G1, G2)-migrative, then
S is an ordinal sum of the form S = (..., 〈η, θ, S0〉, ...),
where S0 is a continuous Archimedean t-conorm and
G2(α, x) has the following form

G2(α, x) =


γ, if x ∈ [0, η0[,

η0 + (θ0 − η0)S0(
γ−η0
θ0−η0 ,

x−η0
θ0−η0 ) if x ∈ [η0, θ0],

x, if x ∈]θ0, 1].

Proof.
(1) It follows from Proposition 4.7 that S(γ, γ) =

O(α, γ) = γ, which implies that γ is an idempotent ele-
ment of S. Further, since S is continuous, there exist two
continuous Archimedean t-conorms S1 and S2 such that
S = (〈0, γ, S1〉, 〈γ, 1, S2〉).

In the following, we verify G2(α, x) has the following
form

G2(α, x) =

{
γ, if x ∈ [0, γ],

x, if x ∈]γ, 1].

For any x ∈ [0, γ], it follows from Proposition 4.7 that

G2(α, x) = S(γ, x)
= γS1(1,

x
γ )

= γ.

Moreover, for any x ∈ [γ, 1], we have

G2(α, x) = S(γ, x)
= γ + (1− γ)S1(0,

x−γ
1−γ )

= x.

(2) It follows from the proof of (1) that S(γ, γ) > γ.
In addition, since S is continuous, there exists a continuous
Archimedean t-conorm S0 such that S = (..., 〈η0, θ0, S0〉, ...)
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and γ ∈]η0, θ0[. Now, we prove G2(α, x) has the following
form

G2(α, x) =


γ, if x ∈ [0, η0[,

η0 + (θ0 − η0)S0(
γ−η0
θ0−η0 ,

x−η0
θ0−η0 ) if x ∈ [η0, θ0],

x, if x ∈]θ0, 1].

Case (A) Let x ∈ [0, η0[. On the one hand, G2(α, x) =
T (γ, x) ≥ γ. Further, since S is continuous and S(η0, η0) =
η0, we have

G2(α, x) = G(γ, x)
≤ S(γ, η0)
= max(γ, η0)
= γ.

Therefore, O2(α, x) = γ.
Case (B) Let x ∈ [η0, θ0]. Then we have

G2(α, x) = S(γ, x)
= η0 + (θ0 − η0)S0(

γ−η0
θ0−η0 ,

x−η0
θ0−η0 )

Case (C) Let x ∈]θ0, 1]. On one hand, G2(α, x) =
G(γ, x) ≥ x. On the one hand, since S is continuous and
S(θ0, θ0) = θ0, we have

G2(α, x) = G(γ, x)
≤ S(β0, x)
= max(β0, x)
= x.

Therefore, O2(α, x) = x.
2

Now, in the sequel, we consider the generalized migrativity
property of nullnorms for k ∈]0, 1[.

For α = 1, we have the following conclusion.
Proposition 4.9: Let G1 and G2 be two fixed grouping

functions and F be a nullnorm with absorbing element k ∈
]0, 1[. Then F is not (1, G1, G2)-migrative.
Proof. It is straightforward. 2 It follows from Proposition
4.9 that we only need to consider α ∈ [0, 1[. First, we
introduce the (α,O1, O2)-migrative for α = 0.

Proposition 4.10: Let G1 and G2 be two fixed grouping
functions and F be a nullnorm with absorbing element k ∈
]0, 1[. Then the following statements are equivalent:

(1) F is (0, G1, G2)-migrative.
(2) G1(0, x) = x and G2(0, x) = x for any x ∈ [0, 1].

Proof. The proof is similar to the one of Proposition 3.11.
2

Theorem 4.11: Consider α ∈]0, 1[. Let G1 and G2 be two
fixed grouping functions, F be a nullnorm with absorbing
element k ∈]0, 1[ and γ = k. If F is (α,G1, G2)-migrative,
then G2(α, x) has the following form

G2(α, x) =

{
k, if x ∈ [0, k[,

x, if x ∈ [k, 1].
(10)

Proof. The proof is similar to the one of Theorem 3.12. 2

Theorem 4.12: Consider α ∈]0, 1[. Let G1 and G2 be two
fixed grouping functions and F = 〈S, k, T 〉 be a nullnorm
with absorbing element k = F (0, 1) ∈]0, 1[. Then the
following statements hold.

(1) Let γ > k. Then F is not (α,G1, G2)-migrative.
(2) Let γ < k and S is continuous. Then the following

two items hold.
(a) Let G1(α, γ) = γ. If F is (α,G1, G2)-migrative,

then S is an ordinal sum of two continuous Archimedean
t-conorms S1 and S2, i.e., S = (〈0, γk , S1〉, 〈γk , 1, S2〉) and
G2(α, x) has the following form

G2(α, x) =

{
γ, if x ∈ [0, γ[,

x, if x ∈ [γ, 1].

(b) Let O1(α, γ) > γ. If F is (α,G1, G2)-
migrative, then S is an ordinal sum of the form
S = (..., 〈θ3, θ4, Sξ〉, ...), where γ

k ∈]θ3, θ4[ and Sξ

is a continuous Archimedean t-conorm and if x ∈
[0, kθ3[, G2(α, x) = γ, x ∈ [kθ3, kθ4], G2(α, x) = k(θ3 +
(θ4− θ3)Sξ( γ−kθ3

k(θ4−θ3) ,
x−kθ3
k(θ4−θ3) )), x ∈]kθ4, 1], G2(α, x) = x.

Proof. The proof is similar to the one of Theorem 3.13. 2

V. CONCLUSIONS

In this paper, we introduce the notion of (α,O1, O2)-
migrativity of nullnorms, where O1 and O2 are any two fixed
overlap functions. We also show some equivalent charac-
terizations of the (α,O1, O2)-migrativity equation when the
nullnorm F becomes a t-norm or a t-conorm. In addition,
we give the notion of (α,G1, G2)-migrativity of nullnorms
over any two fixed grouping functions G1 and G2 and pro-
pose (α,G1, G2)-migrativitity equation using an analogous
method. The main conclusions are listed as follows.

(1) We generalize α-migrativity of any nullnorm F from
the usual formula F (αx, y) = F (x, αy) to the so-called
(α,O1, O2)-migrativity F (O1(α, x), y) = F (x,O2(α, y)),
where O1 and O2 are two fixed overlap functions.

(2) We discuss the (α,O1, O2)-migrativity of a nullnorm
F by taking F as a t-norm T or a t-conorm S and gave an
equivalent characterization of it.

(3) We propose the solutions of the (α,O1, O2)-
migrativity and (α,G1, G2)-migrativity equations for null-
norms. In addition, it has been showed that, for α = 0,
no nullnorm satisfies the (α,O1, O2)-migrativity equation
and for α = 1, no nullnorm satisfies the (α,G1, G2)-
migrativity equation. Also, we obtain some characterizations
of the (α,O1, O2)-migrativity equation for any nullnorm by
considering α ∈]0, 1]. And the case for grouping functions
are analogous.

As further works, we intend to study the generalized
α-migrativity property of overlap functions and grouping
functions by the following formulas O1(O2(α, x), y) =
O1(x, T (α, y)), G1(G2(α, x), y) = G1(x, S(α, y)) for α ∈
[0, 1] and x, y ∈ [0, 1], where O1, O2 are two overlap
functions, G1, G2 are two grouping functions, T is a t-norm
and S is a t-conorm.
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[31] D. Gómez, J.T. Rodrı́guez, J. Montero, H. Bustince, E. Barrenechea,
“n-dimensional overlap functions”, Fuzzy Sets Syst. vol. 287, pp. 57-75,
2016.
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