Antichain Graphs

SHAHISTHA, K ARATHI BHAT* and SUDHAKARA G

Abstract

A vertex $u \in V_{1}$ in a bipartite graph $G\left(V_{1} \cup V_{2}, E\right)$ is redundant if all the vertices of V_{2} that are adjacent to u are also adjacent to a vertex $w(\neq u)$ in V_{1}. In other words, $N_{G}(u) \subseteq N_{G}(w)$. Such vertices increase the cost of the network (when it is a communication network) or increase the unnecessary membership of the network (when it is a social network). An ideal cost effective network is the one where there is no redundant vertex. In this article, we model the above type of networks using graphs and call them antichain graphs. We characterize such graphs and study their properties. We show that if G and H are antichain graphs then so is their cartesian product $G \times H$. We design few more methods to construct new antichain graphs from the existing ones. We also present generating procedures, which generate some regular and biregular antichain graphs. We define a critical edge with reference to the antichain property. We also characterize the critical edge.

Index Terms-Bipartite graphs, Cartesian product, Adjacency matrix, k-complement, Antichain.

I. Introduction

CONSIDER a network which is a bipartite graph with the bipartition $\left\{V_{1}, V_{2}\right\}$. Two vertices u and v in G can directly communicate with each other only if (u, v) is an edge in G. Note that no two vertices in the same partite set can directly communicate with each other. A vertex u belonging to V_{1} (say) is called redundant if all the vertices of V_{2} with which u has direct communication, also have direct communication with some vertex $w(\neq u)$ in V_{1}. In other words, $N_{G}(u) \subseteq N_{G}(w)$. Such vertices increase the cost of the network (when it is a communication network) or increase the unnecessary membership of the network (when it is a social network). An ideal cost effective network is the one where there is no redundant vertex. In this article, we model the above type of networks using graphs and call them antichain graphs.
The following are necessary definitions and notations ([1], [2]) used in the later part of the article. We write $u \sim v$ if the vertices u and v are adjacent, $u \nsim v$ if they are not. The neighborhood of a vertex $u \in V(G)$ is the set $N_{G}(u)$ consisting of all the vertices v which are adjacent to u in G. The closed neighborhood is $N_{G}[u]=N_{G}(u) \cup\{u\}$. A bigraph or a bipartite graph is a graph G whose vertex set $V(G)$ can be partitioned into two disjoint subsets V_{1} and V_{2} such that every edge of G joins a vertex of V_{1} with a vertex of V_{2}. We denote a bipartite graph with the bipartition $V(G)=V_{1} \cup V_{2}$ by $G\left(V_{1} \cup V_{2}, E\right)$. If G contains every edge

[^0]Shahistha is an Assistant Professor of Mathematics Department, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104 (email: shahistha.hanif@manipal.edu).

K Arathi Bhat is an Assistant Professor of Mathematics Department, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104 (email: arathi.bhat@manipal.edu).

Sudhakara G is a Professor and the Head of Mathematics Department, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104 (email: sudhakara.g@manipal.edu).
*Corresponding author : K Arathi Bhat.
joining V_{1} and V_{2}, then it is a complete bipartite graph. Graphs are completely determined either by their adjacencies or by their incidences which can be easily represented in matrix form. Indeed, with a given labeled graph, there are several matrices associated. It is often possible to make use of these matrices to identify certain graph properties. Also, it is in this form are the graphs commonly stored in computers. The adjacency matrix is one such matrix. Let G be a labeled graph with n vertices. The adjacency matrix $A=\left[a_{i j}\right]$ is the $n \times n$ matrix in which $a_{i j}=1$ if $v_{i} \sim v_{j}$ and $a_{i j}=0$ otherwise. For a bipartite graph, the adjacency matrix can be written as $\left[\begin{array}{cc}0 & B \\ B^{T} & 0\end{array}\right]$, where B is called the biadjacency matrix. There are several operations defined on graphs. The cartesian product of two graphs G and H, written $G \times H$ is a graph whose vertex set is $V(G) \times V(H)$ where the two vertices $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ are adjacent if and only if either $u_{1}=u_{2}$ and $v_{1} \sim v_{2}$ or $v_{1}=v_{2}$ and $u_{1} \sim u_{2}$. Given a graph G on n vertices ($n \geq 2$) with vertex set $V(G)$ and the partition of $P=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ of V of order k, the k complement G_{k}^{P} of G is defined as follows: For all V_{r} and V_{s} in $\mathrm{P}, r \neq s$, remove the edges between V_{r} and V_{s} and add the missing edges between them. Specifically when $k=2$, it is the 2 -complement G_{2}^{P}.

A. Chain graphs

A class of sets $S=\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$ is called a chain with respect to the operation of set inclusion if for every $S_{i}, S_{j} \in S$, either $S_{i} \subseteq S_{j}$ or $S_{j} \subseteq S_{i}$. Similarly, a class of sets $S=\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$ is called an antichain with respect to the operation of set inclusion if for every $S_{i}, S_{j} \in S$, neither $S_{i} \subseteq S_{j}$ nor $S_{j} \subseteq S_{i}$. A graph is called a chain graph if it is bipartite and the neighborhoods of the vertices in each partite set form a chain with respect to set inclusion. In other words, for every two vertices u and v in the same partite set and their neighborhoods $N_{G}(u)$ and $N_{G}(v)$, either $N_{G}(u) \subseteq N_{G}(v)$ or $N_{G}(v) \subseteq N_{G}(u)$.
Chain graphs are the maximizers for the largest eigenvalue of the graphs among bipartite graphs (connected) of fixed size and order [3]. It is interesting to note that chain graphs have no eigenvalues in the interval $\left(0, \frac{1}{2}\right)$ and all their nonzero eigenvalues are simple [4]. Other than these interesting features, few other facts concerned with chain graphs, readers are referred to [5], [6], [7], [8], [9], [10], [11] and [12].
Let $G\left(V_{1} \cup V_{2}, E\right)$ be a bipartite graph. Note that, if for every two vertices in the same partite set, the property that the neighborhood of one of them contains the neighborhood of the other is true, then the same property is true for every two vertices in the other partite set also. There may exist pairs of vertices say, u and v in the same partite set such that $N_{G}(u) \nsubseteq N_{G}(v)$ and $N_{G}(v) \nsubseteq N_{G}(u)$ even when $N_{G}(u) \cap N_{G}(v) \neq \phi$. We consider the class of bipartite graphs in which, neither $N_{G}(u)$ is completely contained in $N_{G}(v)$ nor $N_{G}(v)$ is completely contained in $N_{G}(u)$ for
every $u, v \in V(G)$. In this article, we study such a graph, in which neighborhoods of vertices form an antichain with respect to the operation of set inclusion. Quite naturally, this graph is called an antichain graph and is formally defined as below.

B. Antichain graphs

Definition 1.1: A bipartite graph $G\left(V_{1} \cup V_{2}, E\right)$ is called an antichain graph if neighborhoods of vertices of G form an antichain with respect to the operation of set inclusion. In the following example, a bipartite graph G with bipartition $\left\{V_{1}, V_{2}\right\}$ and neighborhoods of vertices of G are given. It is easy to observe that G is an antichain graph.
Example 1.1: Consider the graph $G\left(V_{1} \cup V_{2}, E\right)$ shown in Fig. 1 where $V_{1}=\left\{v_{1}, v_{3}, v_{5}, v_{7}\right\}$ and $V_{2}=\left\{v_{2}, v_{4}, v_{6}, v_{8}, v_{9}\right\}$ and the neighborhood of vertices given by $N_{G}\left(v_{1}\right)=\left\{v_{2}, v_{8}\right\}, N_{G}\left(v_{2}\right)=$ $\left\{v_{1}, v_{3}\right\}, N_{G}\left(v_{3}\right)=\left\{v_{2}, v_{4}, v_{9}\right\}, N_{G}\left(v_{4}\right)=$ $\left\{v_{3}, v_{5}\right\}, N_{G}\left(v_{5}\right)=\left\{v_{4}, v_{6}\right\}, N_{G}\left(v_{6}\right)=\left\{v_{5}, v_{7}\right\}, N_{G}\left(v_{7}\right)=$ $\left\{v_{6}, v_{8}, v_{9}\right\}, N_{G}\left(v_{8}\right)=\left\{v_{1}, v_{7}\right\}, N_{G}\left(v_{9}\right)=\left\{v_{3}, v_{7}\right\}$.

Fig. 1. An antichain graph on 9 vertices
It is interesting to note that the complete graph K_{2} is the connected antichain graph with a minimum number of vertices and a minimum number of edges. The even cycle $C_{2 n}$ is an antichain graph for every n except $n=2$. When $n=2$, the cycle C_{4} has two pairs of vertices having the same neighborhood and hence not an antichain graph.

II. Properties of Antichain graphs

In this section, we derive some properties of antichain graphs. First, we make the following notes.

Remark 2.1: Since the neighborhood of an isolated vertex is the empty set and empty set is contained in every set, an antichain graph does not have isolated vertices.
Remark 2.2: A disconnected graph G is an antichain graph if and only if every component of G is an antichain graph.
Remark 2.3: Let $G\left(V_{1} \cup V_{2}, E\right)$ be an antichain graph and $u \in V_{1}$. Unless $\left|V_{2}\right|=1, u$ is not adjacent to all the vertices of V_{2}. If $\left|V_{2}\right|=1$, then $\left|V_{1}\right|=1$ and the graph is K_{2}.

Theorem 2.1: Let $G\left(V_{1} \cup V_{2}, E\right)$ be a connected antichain graph where $G \neq K_{2}$. Then G neither contains a pendant vertex nor contains a vertex which is adjacent with all the vertices in the other partite set.

Proof: Suppose $G\left(\neq K_{2}\right)$ contains a pendant vertex u which is in V_{1} (say). Let $w \in V_{2}$ be adjacent to u. Since $G \neq K_{2}$ and is connected, there is a vertex v in V_{1} such that
$v \sim w$ which implies that $N_{G}(u) \subseteq N_{G}(v)$, a contradiction. The proof of the other part of the theorem is obvious.

Corollary 2.2: The graph K_{2} is the only tree which is an antichain graph.

Corollary 2.3: If $G \neq K_{2}$ is a connected antichain graph, then G has at least one even cycle.
Theorem 2.4: Out of all the graphs with less than or equal to seven vertices, the complete graph K_{2}, the cycle graph C_{6} and their possible vertex disjoint unions are the only antichain graphs. Moreover, C_{6} is the only antichain graph in which one of the partite sets contains exactly three vertices.

Proof: Let $G\left(V_{1} \cup V_{2}, E\right)$ be an antichain graph. If $\left|V_{1}\right|=1$, then, since G has no isolated vertices, $\left|V_{2}\right|=1$ and the only possible graph is K_{2}. If $\left|V_{1}\right|=2$ and G is connected, then every vertex of V_{2} is of degree one or two. In either case, G is not an antichain graph irrespective of number of vertices in V_{2} by Theorem 2.1. But if G is disconnected, the only possibility is $\left|V_{1}\right|=\left|V_{2}\right|=2$ and G is the union of two K_{2} s. Thus there is no connected antichain graph on $n<6$ vertices. If $\left|V_{1}\right|=3$ and G is connected, then all the vertices of V_{2} are of degree two. Inorder that G is an antichain graph, the neighborhood of each vertex of V_{2} is obtained by selecting two distinct vertices of V_{1} out of three, which can be done in $\binom{3}{2}$ ways. Hence $\left|V_{2}\right| \leq\binom{ 3}{2}=3$. Thus the only possibility is $\left|V_{1}\right|=\left|V_{2}\right|=3$ and G is the cycle C_{6}. But if G is disconnected, the only possibility is $\left|V_{1}\right|=\left|V_{2}\right|=3$ and G is union of three K_{2} s. Hence the graph C_{6} is the only connected antichain graph on $n \leq 6$ vertices.

Theorem 2.5: For a bipartite graph G with bipartition $\left\{V_{1}, V_{2}\right\}, G_{2}^{P}$ is an antichain graph with respect to the same bipartition $\left\{V_{1}, V_{2}\right\}$ if and only if G itself is an antichain graph.

Proof: Let $G\left(V_{1} \cup V_{2}, E\right)$ be an antichain graph. Note that, for any vertex u in $V_{i}, N_{G_{2}^{P}}(u)=V_{j} \backslash N_{G}(u)$ where $1 \leq i, j \leq 2$ and $i \neq j$. And also note that, for any two vertices u and v in $V_{i}, N_{G_{2}^{P}}(u) \subseteq N_{G_{2}^{P}}(v)$ if and only if $N_{G}(v) \subseteq N_{G}(u)$. Hence the result follows. The converse part follows from the fact $\left(G_{2}^{P}\right)_{2}^{P} \cong G$.
We obtain bounds for number of edges separately for antichain graphs with even and odd number of vertices in the following theorems.
Theorem 2.6: Let $G\left(V_{1} \cup V_{2}, E\right)$ be a connected antichain graph on $2 n(n \neq 2)$ vertices having m edges. Then $2 n \leq$ $m \leq n(n-1)$.

Proof: Let G be a connected antichain graph on $2 n(n \neq$ $2)$ vertices. Since G is not a tree, it has at least one even cycle and has at least $2 n$ edges. We know that $C_{2 n}(n \neq 2)$ is an antichain graph. Thus $m \geq 2 n$.
Maximum number of edges in a bipartite graph with $\left|V_{1}\right|=$ m and $\left|V_{2}\right|=n$ happens when every vertex of V_{1} is adjacent to every vertex of V_{2}, in such a case, the maximum is equal to $m n$. This product takes the maximum value when $m=$ n. Since an antichain graph does not have a vertex with full degree, the maximum number of edges corresponds to the antichain graph obtained by removing a one factor from $K_{n, n}$, in which every vertex is of degree $n-1$. Thus $m \leq$ $n(n-1)$.

Theorem 2.7: Let $G\left(V_{1} \cup V_{2}, E\right)$ be a connected antichain graph on $(2 n+1), n>3$ vertices having m edges. Then $m \geq 2 n+2$.

Proof: Since G is connected antichain graph, $m \geq$ $2 n+2$. We observe that the following graph on $2 n+1$ vertices and $2 n+2$ edges is an antichain graph with respect to the bipartition $V_{1}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $V_{2}=$ $\left\{v_{n+1}, v_{n+2}, \ldots, v_{2 n}, v_{2 n+1}\right\}$. The neighborhoods of the vertices are given by $N_{G}\left(v_{n+i}\right)=\left\{v_{i}, v_{i+1}\right\}$ for $i=$ $1,2, \ldots, n-1, N_{G}\left(v_{2 n}\right)=\left\{v_{1}, v_{n}\right\}$ and $N_{G}\left(v_{2 n+1}\right)=$ $\left\{v_{1}, v_{3}\right\}$. This has $2 n-1$ vertices of degree two and two vertices of degree three (Fig. 2). Thus $m \geq 2 n+2$.

Fig. 2. An antichain graph on $2 n+1$ vertices with minimum number of edges

Lemma 2.8: Let G be a disconnected antichain graph on $(2 n+1), n>4$ vertices. The graph G has minimum number of edges if and only if G is a graph whose $n-4$ components are $K_{2} s$ and one component is G_{1}, where G_{1} is a connected antichain graph on nine vertices and ten edges given by Fig. 3.

Fig. 3. The Graph G_{1}
Proof: Let G be an antichain graph on $2 n+1$ vertices whose $n-4$ components are $K_{2} s$ and one component is G_{1}. Observe that either when the edge from K_{2} is removed (which results in two isolated vertices) or when an edge from G_{1} is removed (which results in at least one pendant vertex), the resulting graph is not an antichain graph. Hence it is true that G has minimum number of edges.
The graph G has minimum number of edges when every component except one component is K_{2}. Let C be the component which is not K_{2}. Since C is an antichain graph, number of vertices in C is at least nine (Theorem 2.4. The minimum number of edges in the graph results when the component C has minimum number of edges. This is possible when G has nine vertices and ten edges (Theorem 2.7) and the graph is G_{1} as shown above (Fig. 3). Thus there are $\frac{(2 n-8)}{2}=n-4$ components which are $K_{2} s$ and one component is G_{1} which is shown in Fig. 3.

Remark 2.4: Let $G\left(V_{1} \cup V_{2}, E\right)$ be a connected antichain graph. Then the number of edges in G is maximum if and only if G_{2}^{P} with respect to the same bipartition $\left\{V_{1}, V_{2}\right\}$ has minimum number of edges.
Theorem 2.9: Let G be a connected antichain graph on $(2 n+1), n>3$ vertices having m edges. Then $m \leq n^{2}-6$.

Proof: Let $G\left(V_{1} \cup V_{2}, E\right)$ be an antichain graph on $2 n+1$ vertices. The graph G has maximum number of edges if and only if G_{2}^{P} with respect to the same bipartition $\left\{V_{1}, V_{2}\right\}$ has minimum number of edges. From Lemma 2.8, G has maximum number of edges when G_{2}^{P} is a graph whose $n-4$ components are $K_{2} s$ and one component is G_{1}, where G_{1} is shown in Fig. 3 . We note that the number of edges in G_{2}^{P} is $n+6$. Since the maximum number of edges in any bipartite graph on $2 n+1$ vertices is $n(n+1)$, the maximum number of edges possible is given by $n(n+1)-(n+6)=n^{2}-6$.

III. Characterization of Antichain graphs using its Adjacency matrix

The adjacency matrix of a bipartite graph is well studied. It is interesting to observe the additional structure in the adjacency matrix of a bipartite graph, when it is an antichain graph. In the following theorem, we state some equivalent conditions in a graph to be an antichain graph, in terms of its adjacency matrix.

Theorem 3.1: Let $G\left(V_{1} \cup V_{2}, E\right)$ be a bipartite graph on n vertices with the adjacency matrix A. The following are equivalent.
(i) G is an antichain graph.
(ii) For every two vertices v_{i} and v_{j}, the number of paths of length two between v_{i} and v_{j} in G is less than $\min \left\{\operatorname{deg}\left(v_{i}\right), \operatorname{deg}\left(v_{j}\right)\right\}$.
(iii) For every i and $j, i \neq j, 1 \leq i, j \leq n$, the $(i, j)^{t h}$ entry of A^{2} is less than $\min \left\{(i, i)^{\text {th }}\right.$ entry, $(j, j)^{\text {th }}$ entry $\}$ of A^{2}.
Proof: $(i) \Longrightarrow(i i)$:
Since G is an antichain graph, for every two vertices v_{i} and v_{j} in G, there exists a vertex w in $N_{G}\left(v_{i}\right) \backslash N_{G}\left(v_{j}\right)$ and a vertex x in $N_{G}\left(v_{j}\right) \backslash N_{G}\left(v_{i}\right), 1 \leq i, j \leq n, i \neq j$. Also, note that the number of paths of length two between v_{i} and v_{j} is equal to the number of vertices in $N_{G}\left(v_{j}\right) \cap N_{G}\left(v_{i}\right)$. Hence, the number of paths of length two between v_{i} and v_{j} is less than $\operatorname{deg}\left(v_{i}\right)$ and $\operatorname{deg}\left(v_{j}\right)$.
(ii) \Longrightarrow (iii) :

This follows by noting that the diagonal entries of A^{2} is the respective degree of the vertex and $(i, j)^{t h}$ entry, for $i \neq j$, of A^{2} is the number of distinct paths of length two in G, between v_{i} and v_{j}.
$($ iii $) \Longrightarrow(i)$:
By the assumption of (3), it follows that, there is a vertex in $N_{G}\left(v_{i}\right)$ which is not in $N_{G}\left(v_{i}\right) \cap N_{G}\left(v_{j}\right)$ and there is a vertex in $N_{G}\left(v_{j}\right)$, not in $N_{G}\left(v_{i}\right) \cap N_{G}\left(v_{j}\right)$. Hence, $N_{G}\left(v_{i}\right) \nsubseteq$ $N_{G}\left(v_{j}\right)$ and $N_{G}\left(v_{j}\right) \nsubseteq N_{G}\left(v_{i}\right), 1 \leq i, j \leq n, i \neq j$. It follows that graph G is an antichain graph.
We use the above theorem to prove that the derived graphs obtained from the existing antichain graph is also an antichain graph.

Theorem 3.2: Let G and H be two antichain graphs where $G, H \neq K_{2}$. Then the resulting graph obtained by identifying the vertices u_{1} of G and u_{1}^{\prime} of H is an antichain graph.

Proof: Let $G\left(U \cup V, E_{1}\right)$ and $H\left(U^{\prime} \cup V^{\prime}, E_{2}\right)$ be two antichain graphs. Let Γ be the resulting graph obtained by identifying the vertices u_{1} of G and u_{1}^{\prime} of H. Without loss of generality, let $u_{1} \in U, u_{1}^{\prime} \in U^{\prime}$ and x be the new vertex. Then the graph Γ is bipartite graph and has
bipartition given by $W_{1}=\left(U \backslash\left\{u_{1}\right\}\right) \bigcup\left(U^{\prime} \backslash\left\{u_{1}^{\prime}\right\}\right) \bigcup\{x\}$ and $W_{2}=V \cup V^{\prime}$. Let B_{1} and B_{2} be the biadjacency matrices of G and H respectively. Then adjacency matrix A of the graph Γ is given by,

$$
A=\begin{aligned}
& \\
& x \\
& U \\
& U^{\prime} \\
& V \\
& V^{\prime}
\end{aligned}\left(\begin{array}{ccccc}
x & U & U^{\prime} & V & V^{\prime} \\
0 & 0 & 0 & X_{1} & X_{2} \\
0 & 0 & 0 & C_{1} & 0 \\
0 & 0 & 0 & 0 & C_{2} \\
X_{1}^{T} & C_{1}^{T} & 0 & 0 & 0 \\
X_{2}^{T} & 0 & C_{2}^{T} & 0 & 0
\end{array}\right)
$$

where C_{1}, C_{2} are the matrices obtained by deleting the first row of B_{1} and B_{2} respectively. Also, X_{1}, X_{2} are the row vectors which are the first rows of B_{1} and B_{2} respectively and X_{i}^{T} represents the transpose of X_{i}. Consider the matrix A^{2}, the diagonal entry corresponding to the vertex x is the sum of degrees of vertices u_{1} and u_{1}^{\prime}. All the other entries of A^{2} remains the same as that of $[A(G)]^{2}$ and $[A(H)]^{2}$ $(A(G), A(H)$ being the adjacency matrices of G and H respectively) except the entries corresponding to the vertices in the neighborhood of u_{1} and u_{1}^{\prime}. That is, for all the vertices $v_{k} \in V$ such that $v_{k} \sim u_{1}$ and $v_{l}^{\prime} \in V^{\prime}$ such that $v_{l}^{\prime} \sim u_{1}^{\prime}$, the corresponding entries in A^{2} are one. Also, the diagonal entries of A^{2} are at least two except when either of G or H is K_{2}, as G and H are antichain graphs, and all the vertices are of degree at least two. Thus $\forall v_{k}, v_{l}^{\prime} \in V(\Gamma)$, the entries in A^{2} is less than the diagonal entries corresponding to the vertices v_{k} and v_{l}^{\prime}. Hence Γ is an antichain graph when neither of G, H is K_{2}.
An illustration for the above theorem is given in Fig. 4.

Fig. 4. An antichain graph obtained by identifying the vertices

Theorem 3.3: Let G and H be two antichain graphs. Let $e_{1}=\left(u_{1}, v_{1}\right) \in E(G)$ and $e_{2}=\left(u_{1}^{\prime}, v_{1}^{\prime}\right) \in E(H)$. The graph obtained by identifying the edges e_{1} and e_{2} is also an antichain graph.

Proof: Let $G\left(U \cup V, E_{1}\right)$ and $H\left(U^{\prime} \cup V^{\prime}, E_{2}\right)$ be two antichain graphs. Let Γ be the resulting graph obtained by identifying the edges e_{1} of G and e_{2} of H. Without loss of generality, let $u_{1} \in U, v_{1} \in V$ and $u_{1}^{\prime} \in U^{\prime}$, $v_{1}^{\prime} \in V^{\prime}$. Let x, y be the new vertices obtained by $\mathrm{i}-$ dentifying u_{1}, u_{1}^{\prime} and v_{1}, v_{1}^{\prime} respectively. The graph Γ has bipartition given by $W_{1}=\left(U \backslash\left\{u_{1}\right\}\right) \bigcup\left(U^{\prime} \backslash\left\{u_{1}^{\prime}\right\}\right) \bigcup\{x\}$ and $W_{2}=\left(V \backslash\left\{v_{1}\right\}\right) \bigcup\left(V^{\prime} \backslash\left\{v_{1}^{\prime}\right\}\right) \bigcup\{y\}$. Let B_{1}, B_{2} be the biadjacency matrices of G and H respectively. Then
adjacency matrix A of the graph Γ is given by,

$$
A=\begin{aligned}
& x \\
& U \\
& U^{\prime} \\
& y \\
& V \\
& V^{\prime}
\end{aligned}\left(\begin{array}{cccccc}
x & U & U^{\prime} & y & V & V^{\prime} \\
0 & 0 & 0 & 1 & X_{1} & X_{2} \\
0 & 0 & 0 & Y_{1} & C_{1} & 0 \\
0 & 0 & 0 & Y_{2} & 0 & C_{2} \\
1 & Y_{1}^{T} & Y_{2}^{T} & 0 & 0 & 0 \\
X_{1}^{T} & C_{1}^{T} & 0 & 0 & 0 & 0 \\
X_{2}^{T} & 0 & C_{2}^{T} & 0 & 0 & 0
\end{array}\right)
$$

where C_{1}, C_{2} are the matrices obtained from B_{1}, B_{2} respectively by deleting the first rows. The row vectors X_{1}, X_{2} are the first rows of B_{1} and B_{2} respectively in which the first entries are deleted. The column vectors Y_{1}, Y_{2} are the first columns of B_{1} and B_{2} respectively in which the first entries are deleted. Consider the matrix A^{2}, the diagonal entry corresponding to the vertex x is the sum of degrees of vertices u_{1} and u_{1}. And entry corresponding to the vertex y is the sum of degrees of vertices v_{1} and v_{1}^{\prime}. All the other entries of A^{2} remains same as that of $[A(G)]^{2}$ and $[A(H)]^{2}$, $(A(G), A(H)$ being the adjacency matrices of G and H respectively) except the entries corresponding to the vertices in the neighborhood of u_{1} and u_{1}^{\prime} as well as v_{1} and v_{1}^{\prime}. That is, for all the vertices $u_{k} \in U$ such that $u_{k} \sim v_{1}$ and $u_{l}^{\prime} \in U^{\prime}$ such that $u_{l}^{\prime} \sim v_{1}^{\prime}$, the corresponding entries in A^{2} are one. Also, the diagonal entries of A^{2} are at least two except when either of G, H is K_{2}, as G and H are antichain graphs and all the vertices are of degree at least two. Thus, for all $u_{k}, u_{l}^{\prime} \in V(\Gamma)$, the entries in A^{2} is less than the diagonal entries corresponding to the vertices u_{k} and u_{l}^{\prime}. Similarly, for all the vertices $v_{i} \in V$ such that $v_{i} \sim u_{1}$ and $v_{j}^{\prime} \in V^{\prime}$ such that $v_{j}^{\prime} \sim u_{1}^{\prime}$, the corresponding entries in A^{2} are less than the diagonal entries corresponding to the vertices v_{i} and v_{j}^{\prime}. Hence Γ is an antichain graph when neither of G, H is K_{2}.
An illustration for the above theorem is given below in Fig. 5

G

н

「

Fig. 5. An antichain graph obtained by identifying the edges

IV. NEW antichain graphs obtained from the EXISTING ONES

In the previous section, we have seen some new antichain graphs constructed using the ones which are known. In proving them to be antichain graphs, we made use of characterization of adjacency matrices of an antichain graph (Theorem 3.1). In this section, we get few more classes of antichain graphs and the techniques used to prove them to be antichain graphs are different. We make use of the definition and properties of antichain graphs. As the first result in this method, we prove that the cartesian product of two antichain graphs is again an antichain graph.
Theorem 4.1: Let G and H be two antichain graphs. Then their cartesian product $G \times H$, is also an antichain graph, except when $G=H=K_{2}$.

Proof: Let $V(G)=\left\{u_{1}, u_{2}, \ldots, u_{p_{1}}\right\}$ and $V(H)=$ $\left\{v_{1}, v_{2}, \ldots, v_{p_{2}}\right\}$. Note that, since G and H are bipartite, so is $G \times H$. To prove that $G \times H$ is an antichain graph, we prove that, for every two vertices $X=\left(u_{i}, v_{j}\right)$ and $Y=\left(u_{k}, v_{l}\right)$, $1 \leq i, k \leq p_{1}$ and $1 \leq j, l \leq p_{2}$, there exists vertices X^{\prime} and Y^{\prime} of $G \times H$ such that $X^{\prime} \in N_{G \times H}(X) \backslash N_{G \times H}(Y)$ and $Y^{\prime} \in N_{G \times H}(Y) \backslash N_{G \times H}(X)$.
When X and Y are in two different partite sets of $G \times$ H, their neighborhoods are disjoint and hence the theorem follows.
Suppose that X and Y are in the same partite set. Then the following cases are to be considered.

1) $u_{i} \sim u_{k}, v_{j} \neq v_{l}$ and $v_{j} \nsim v_{l}$.
2) $u_{i} \sim u_{k}, v_{j} \neq v_{l}$ and $v_{j} \sim v_{l}$.
3) $u_{i} \nsim u_{k}, v_{j} \neq v_{l}$ and $v_{j} \nsim v_{l}$.

Case 1: In this case, the vertex $Y^{\prime}=\left(u_{i}, v_{l}\right)$ is such that $Y^{\prime} \in N_{G \times H}(Y) \backslash N_{G \times H}(X)$ and $X^{\prime}=\left(u_{k}, v_{j}\right)$ is such that $X^{\prime} \in N_{G \times H}(X) \backslash N_{G \times H}(Y)$. Hence $G \times H$ is an antichain graph.
Case 2: Suppose that u_{i} and u_{k} are vertices of degree one in G and vertices v_{j} and v_{l} are of degree one in H. This is possible only when $G=H=K_{2}$, in which case, $G \times$ $H=K_{2} \times K_{2}=C_{4}$, which is not an antichain graph. Now suppose that a vertex, say u_{i}, is of degree greater than one. Let the vertices u_{r} and u_{k} be adjacent to u_{i}. Then $\left(u_{i}, v_{l}\right),\left(u_{r}, v_{j}\right)$ and $\left(u_{k}, v_{j}\right)$ are all adjacent to $\left(u_{i}, v_{j}\right)$ in $G \times H$. Then the vertex $X^{\prime}=\left(u_{r}, v_{j}\right)$ is such that $X^{\prime} \in$ $N_{G \times H}(X) \backslash N_{G \times H}(Y)$. Since G is an antichain graph, u_{k} is not of degree one in G. Hence there is a vertex $u_{t}\left(\neq u_{i}\right)$ such that $u_{t} \sim u_{k}$. This implies that the vertex $Y^{\prime}=\left(u_{t}, v_{l}\right)$ is such that $Y^{\prime} \in N_{G \times H}(Y) \backslash N_{G \times H}(X)$. Hence $G \times H$ is an antichain graph.
Case 3: We consider both the possibilities that $u_{i}=u_{k}$ and $u_{i} \neq u_{k}$. Suppose $u_{i}=u_{k}$. Then $X=\left(u_{i}, v_{j}\right)$ and $Y=$ $\left(u_{i}, v_{l}\right)$. Since G is an antichain graph, there exists a vertex u_{r} in G such that $u_{i} \sim u_{r}$. Now the vertices $X^{\prime}=\left(u_{r}, v_{j}\right)$ and $Y^{\prime}=\left(u_{r}, v_{l}\right)$ are such that $X^{\prime} \in N_{G \times H}(X) \backslash N_{G \times H}(Y)$ and $Y^{\prime} \in N_{G \times H}(Y) \backslash N_{G \times H}(X)$ and $G \times H$ is an antichain graph. Finally, suppose $u_{i} \neq u_{k}$. Since H is an antichain graph, there is a vertex v_{s} in H with $v_{l} \sim v_{s}$. Then $X^{\prime}=$ $\left(u_{i}, v_{r}\right)$ and $Y^{\prime}=\left(u_{k}, v_{s}\right)$ are such that $X^{\prime} \in N_{G \times H}(X) \backslash$ $N_{G \times H}(Y)$ and $Y^{\prime} \in N_{G \times H}(Y) \backslash N_{G \times H}(X)$. Thus $G \times H$ is an antichain graph.

Corollary 4.2: The n-cube $Q_{n}(n \neq 2)$ is an antichain graph for every $n>2$.

Proof: This follows by the observation that, when $n=$ 2, $Q_{2}=K_{2} \times K_{2}$ which is not an antichain graph and when $n>2, Q_{n}=Q_{n-1} \times Q_{2}$ is an antichain graph by Theorem 4.1

Theorem 4.3: Consider the even cycle $C_{2 n}$. Let $V\left(C_{2 n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{2 n}\right\}$ with $v_{i} \sim v_{i+1}$ for $1 \leq i \leq 2 n-1$ and $v_{2 n} \sim v_{1}$. Let G be the graph obtained by joining two vertices, say v_{i} and $v_{j}\left(v_{i} \neq v_{j}\right)$ of $C_{2 n}$, by a path P_{k} given by $P_{k}:\left(v_{i}=w_{1}, w_{2}, \ldots, w_{k-1}, w_{k}=v_{j}\right)$ in such a way that both of the two new cycles induced say $C_{n_{1}}$ and $C_{n_{2}}$ are even and are different from C_{4}. Then G is an antichain graph.

Proof: Let G be as shown in Fig. 6
If either $C_{n_{1}}$ or $C_{n_{2}}$ is an odd cycle, then G is not bipartite and hence is not an antichain graph. We note that, if the distance between v_{i} and $v_{j}, d\left(v_{i}, v_{j}\right)=2$ and the path P_{k}

Fig. 6. Graph obtained by joining v_{i} and v_{j} in $C_{2 n}$
is of length two, one of cycles induced is C_{4} with vertices $\left(v_{i}=w_{1}, w_{2}, w_{3}=v_{j}\right.$ and $\left.w_{4}=v_{i-1}=v_{j+1}\right)$ as in Fig. 7. Then $N_{G}\left(w_{2}\right)=N_{G}\left(w_{4}\right)$ and hence the graph is not an antichain graph.

Fig. 7. Graph G having induced C_{4}

Similarly, when $d\left(v_{i}, v_{j}\right)=3$ and the path P_{k} is just an edge joining v_{i} and v_{j}, the vertices $v_{i}, v_{i+1}, v_{i+2}=v_{j-1}, v_{j}$ induce a C_{4} with $N_{G}\left(v_{i+1}\right) \subseteq N_{G}\left(v_{j}\right)$ (see Fig. 8).

Fig. 8. Graph G having induced C_{4}

When $d\left(v_{i}, v_{j}\right)=1$ and the the path P_{k} is of length three, one of cycles induced is C_{4} with vertices $\left(v_{i}=\right.$ $\left.w_{1}, w_{2}, w_{3}, w_{4}=v_{j}\right)$ as in Fig. 9 Then $N_{G}\left(v_{i}\right)=N_{G}\left(w_{2}\right)$ and hence the graph is not an antichain graph.

Fig. 9. Graph G having induced C_{4}

Now suppose that n_{1} and n_{2} are even integers and $d\left(v_{i}, v_{j}\right) \neq 2$. Let u and v be two vertices in G which are not in $N_{G}\left[v_{i}\right] \cup N_{G}\left[v_{j}\right]$. Then, in all the three of the following cases that either both of them are on the cycle $C_{2 n}$, both of them are on the path P_{k} or one on $C_{2 n}$ and the other on P_{k}, neither $N_{G}(u) \subseteq N_{G}(v)$, nor $N_{G}(v) \subseteq N_{G}(u)$. So, to prove that G is an antichain graph, we need to consider only the vertices in $N_{G}\left[v_{i}\right] \cup N_{G}\left[v_{j}\right]$. Consider two vertices u and v in $N_{G}\left[v_{i}\right] \cup N_{G}\left[v_{j}\right]$. The following cases are to be considered.

1) They are adjacent to each other.
2) They are non adjacent to each other and both are in the neighborhood of exactly one of v_{i} or v_{j}.
3) One in the neighborhood of v_{i} and the other one is in the neighborhood of v_{j}.
When they are adjacent to each other as in case (1), they are in two different partite sets of the bipartition of G and hence the neighborhoods are disjoint.
In cases (2) and (3) one can easily show that there exists a
vertex $x \in N_{G}(v) \backslash N_{G}(u)$. Thus G is an antichain graph.
Theorem 4.4: Let $G \neq K_{2}$ and $H \neq K_{2}$ be any two antichain graphs and let u and v be any two vertices with one in $V(G)$ and one in $V(H)$. Then the graph Γ obtained by joining u and v by a path $P_{k}:\left(u=w_{1}, w_{2}, \ldots, w_{k-1}, w_{k}=\right.$ v), is also an antichain graph.

Proof: Let $u \in V(G)$ and $v \in V(H)$. To verify the antichain property of neighborhoods of vertices of Γ, we need to consider only those vertices in $N_{\Gamma}[u] \cup N_{\Gamma}[v]$. For other vertices, neighborhoods remain the same as their neighborhoods either in G or in H and since G and H are antichain graphs neighborhoods form an antichain. For any two vertices in $N_{\Gamma}[u] \cup N_{\Gamma}[v]$, following steps similar to the steps in the proof of Theorem 4.3, one can show that, the neighborhoods follow the antichain property.

V. Generating regular and biregular antichain GRAPHS

All antichain graphs are subgraphs of complete bipartite graphs $K_{n, m}$. Many of them are regular (like cycles) and some of them are biregular in the sense that every vertex has degree either k or l. In this section, we generate regular and biregular antichain graphs. We first prove the following two lemmas.

Lemma 5.1: For every r with $2 \leq r \leq n-1$, there exists at least one connected r-regular antichain graph on $2 n$ vertices.

Proof: Let $V_{1}=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $V_{2}=$ $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. The graph $G\left(V_{1} \cup V_{2}, E\right)$ such that $\left|V_{1}\right|=$ $\left|V_{2}\right|$ and the neighborhoods of vertices given by $N_{G}\left(u_{i}\right)=$ $\left\{v_{i}, v_{i+1}, \ldots, v_{r+i-1}\right\}(1 \leq i \leq n)$ taking $v_{n+i}=v_{i}$ is r regular. Since $N_{G}\left(u_{i}\right) \neq N_{G}\left(u_{j}\right)$ and $N_{G}\left(v_{i}\right) \neq N_{G}\left(v_{j}\right)$ for all $i \neq j$ and $r<n, G$ is antichain graph with regularity r. Also if $r=1$, then G is not connected. Thus for all $2 \leq r \leq n-1$, there exists a connected r-regular antichain graph.
Lemma 5.2: For every $r \geq 3$, there exists at least one biregular antichain graph with $k+\binom{k}{r}$ vertices. It has the bipartition $\left\{V_{1}, V_{2}\right\}$ where $\left|V_{1}\right|=k,\left|V_{2}\right|=\binom{k}{r}$ and every vertex of V_{1} is of degree $\binom{k-1}{r-1}$ and every vertex of V_{2} is of degree $r, 2 \leq r \leq k-1$.

Proof: Let $V_{1}=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ and $V_{2}=$ $\left\{v_{1}, v_{2}, \ldots, v_{\binom{k}{r}}\right\}$. There $\binom{k}{r}$ distinct subsets each of size r of the set V_{1}. Each v_{i} in V_{2} is made adjacent to vertices of one subset with r elements. We note that it is an antichain graph.
Theorem 5.3: Let H be an $(n-2)$-regular subgraph of $K_{n, n}$. Then H is an antichain graph if and only if the 2 complement of H, H_{2}^{P} with respect to the bipartition of $K_{n, n}$ has no cycle of length four.

Proof: The 2-complement H_{2}^{P} of H with respect to the bipartition of $K_{n, n}$ is a 2-regular subgraph of $K_{n, n}$. Each component of H_{2}^{P} is a cycle and we know that C_{4} is the only even cycle which is not an antichain graph. We also know that the union of antichain graphs is again an antichain graph. Hence, if H_{2}^{P} has no C_{4}, then it is an antichain graph. Now, since 2-complement of any antichain graph is an antichain graph and 2-complement of H_{2}^{P} is H, the graph H is an antichain graph.
Conversely, if an $(n-2)$-regular subgraph H of $K_{n, n}$ is an
antichain graph, then H_{2}^{P} is also an antichain graph. Hence, every component of H_{2}^{P} is an antichain graph. Since each component of H_{2}^{P} is a cycle and C_{4} is not an antichain graph, no component of H_{2}^{P} is C_{4}.
From the above theorem, one can conclude that, if H is an ($n-2$)-regular subgraph of $K_{n, n}$, then by observing the number of vertices in each component of H_{2}^{P} with respect to the bipartition of $K_{n, n}$, one can get a partition of the integer $2 n$ into even parts each of which is greater than or equal to six and conversely. This gives the procedure to generate all $(n-2)$-regular antichain graphs on $2 n$ vertices. The procedure is explained as follows.
Consider all the possible partitions of the integer $2 n$ into even parts with each part greater than or equal to six. Let $\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ be one such partition with $\sum_{i=1}^{k} n_{i}=2 n$, each $n_{i} \geq 6$ and each n_{i} is even. Corresponding to each n_{i}, consider cycle graph $C_{n_{i}}, 1 \leq i \leq k$. That gives a collection of cycle graphs $C_{n_{1}}, C_{n_{2}}, \ldots, C_{n_{k}}$ each of which is an antichain graph. The 2-complement of $H=C_{n_{1}} \cup$ $C_{n_{2}} \cup \cdots \cup C_{n_{k}}$ is an $(n-2)$-regular antichain graph.
Similarly, we have the following result.
Theorem 5.4: Let H be biregular subgraph with regularities $n-1$ and $n-2$ of $K_{n, n}$. Then H is an antichain graph if and only if its 2 -complement H_{2}^{P} with respect to the partition P of $K_{n, n}$ has each of its component as either K_{2} or C_{n}, n is even and $n \geq 6$.

Proof: The 2-complement H_{2}^{P} of H with respect to the bipartition of $K_{n, n}$ is a biregular subgraph of $K_{n, n}$ with regularities one and two. Each component of H_{2}^{P} is either a cycle or a K_{2}. We know that the union of antichain graphs is again an antichain graph. Hence, if H_{2}^{P} has even cycles $C_{n}(n \neq 4)$ and K_{2}, then it is an antichain graph. Now, since 2-complement of any antichain graph is an antichain graph and 2-complement of H_{2}^{P} is H, the graph H is an antichain graph.
Conversely, if a biregular subgraph with regularities $n-1$ and $n-2$ of $K_{n, n}$ is an antichain graph, then H_{2}^{P} is also an antichain graph. Hence, every component of H_{2}^{P} is an antichain graph. Since each component of H_{2}^{P} is either a cycle C_{n} or a K_{2} and C_{4} is not an antichain graph, the theorem follows.
Similarly, if H is biregular subgraphs with regularities $n-1$ and $n-2$ of $K_{n, n}$, then by observing the number of vertices in each component of H_{2}^{P} with respect to the bipartition of $K_{n, n}$, one can get a partition of the integer $2 n$ into even parts greater than or equal to six, at least one of the part being two and conversely. This gives the procedure to generate all biregular antichain graphs with regularities $n-1$ and $n-2$ on $2 n$ vertices. The procedure is explained as follows.
Consider all the possible partitions of the integer $2 n$ into even parts such that no part is four and at least one of the part is two. Let $\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ be one such partition with $\sum_{i=1}^{k} n_{i}=2 n$, each n_{i} is an even number greater than or equal to six and at least one of the n_{i} is two. Let r be the multiplicity of two as a part in the partition and $n_{i}=2$ for $i \leq r$ for some $1<r<n_{k}$. Corresponding to each $n_{i}=2$, consider the graph K_{2} and corresponding to each $n_{i} \neq 2$, consider cycle graph $C_{n_{i}}$. That gives a
collection of r complete graphs each of which is K_{2} and $k-r$ cycle graphs given by $C_{n_{r+1}}, C_{n_{r+2}}, \ldots, C_{n_{k}}$. The union of these collection is an antichain graph as every component is an antichain graph. The 2 -complement of $H=r K_{2} \cup C_{n_{r+1}} \cup C_{n_{r+2}} \cup \cdots \cup C_{n_{k}}$ is a biregular antichain graph with regularities $n-1$ and $n-2$.

VI. Critical edges

Criticality is an important concept associated with most of the graph parameters. In this section, we study the critical edges with reference to the concept of antichain graphs.

Definition 6.1: Let $G\left(V_{1} \cup V_{2}, E\right)$ be an antichain graph. An edge $e \in E$ is said to be critical if the graph $H=G \backslash e$ is not an antichain graph.
For example, for a cycle graph $C_{2 n}, n \geq 3$, every edge is critical. Since $C_{2 n} \backslash e$ is $P_{2 n}$, which is not an antichain graph. Consider two copies of the antichain graph $C_{2 n}$. Join any vertex of one copy with any vertex of the other copy by an edge, say e. Then every edge on the cycle $C_{2 n}$ is critical, but the edge e is not critical. We characterize an edge in antichain graph which is not critical.

Theorem 6.1: Let $G\left(V_{1} \cup V_{2}, E\right)$ be an antichain graph. An edge $e=(u, v)$ with $u \in V_{1}$ and $v \in V_{2}$ is not a critical edge if and only if the following are true.
(i) For every $w \in V_{1}, N_{G}(u) \backslash N_{G}(w) \neq\{v\}$
(ii) For every $x \in V_{2}, N_{G}(v) \backslash N_{G}(x) \neq\{u\}$

Proof: Let G be an antichain graph having an edge $e=(u, v)$ which is not a critical edge. That is, $G \backslash e$ is antichain graph. We note that $N_{G \backslash e}(u)=N_{G}(u) \backslash\{v\}$, $N_{G \backslash e}(v)=N_{G}(v) \backslash\{u\}$ and $N_{G \backslash e}(w)=N_{G}(w), \forall w \in$ $V(G)$. We follow the method of contradiction to prove this part. Suppose if any of the above two statements are not true, say for some $w \in V_{1}, N_{G}(u) \backslash N_{G}(w)=\{v\}$. Then $N_{G \backslash e}(u) \backslash N_{G \backslash e}(w)=\phi$ which implies $N_{G \backslash e}(u) \subseteq$ $N_{G \backslash e}(w)$, a contradiction to the fact that $G \backslash e$ is an antichain graph. Thus (1) is true. Similarly we can prove (2) is true. Converse: Let the statements (1) and (2) are true. From (1), $N_{G}(u)$ contains at least one vertex $y \in V_{2}$ such that $y \notin N_{G}(w)$. That is, $N_{G}(u) \backslash\{v\}$ contains at least one vertex $y \in V_{2}$ such that $y \notin N_{G}(w)$. This implies $N_{G \backslash e}(u)$ contains at least one vertex $y \in V_{2}$ such that $y \notin N_{G \backslash e}(w)$. Thus, for all $w \in V_{1}$, it is true that $N_{G \backslash e}(u) \nsubseteq N_{G \backslash e}(w)$. Similarly from (2), we can prove that for $N_{G \backslash e}(v) \nsubseteq N_{G \backslash e}(x)$ for all $x \in V_{2}$. And the cases $N_{G \backslash e}(w) \nsubseteq N_{G \backslash e}(u)$, for all $w \in V_{1}$ and $N_{G \backslash e}(x) \nsubseteq N_{G \backslash e}(v)$, for all $x \in V_{2}$ are obvious since $N_{G}(w) \nsubseteq N_{G}(u)$, for all $w \in V_{1}$ and $N_{G}(x) \nsubseteq$ $N_{G}(v)$, for all $x \in V_{2}$. Thus $G \backslash e$ is an antichain graph which means e is not a critical edge.
The following theorem follows from Theorems 3.1 and 6.1 .
Theorem 6.2: Let $G\left(V_{1} \cup V_{2}, E\right)$ be an antichain graph with bipartition $V_{1}=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}, V_{2}=$ $\left\{v_{m+1}, v_{m+2}, \ldots, v_{m+n}\right\}$ and $e=\left(v_{i}, v_{j}\right)$ be an edge of G with $1 \leq i \leq m$ and $m+1 \leq j \leq m+n$. Let $A=A(G)$ be the adjacency matrix of G. Then, e is a critical edge if and only if one of the following is true.
(i) There exists a $k, 1 \leq k \leq m$ such that $a_{i i}^{(2)}-a_{i k}^{(2)}=1$.
(ii) There exists an $l, m+1 \leq l \leq m+n$ such that

$$
a_{j j}^{(2)}-a_{j l}^{(2)}=1
$$

where $a_{r s}^{(2)}$ represents the $(r, s)^{t h}$ entry of A^{2}.

VII. CONCLUDING REMARKS

Networks, in the form of bipartite graphs, are abundant in existence. Irredundancy of any type is the most studied property of a network because it makes the network cost effective. We define a particular type of redundancy and define a graph (network) which is irredundant. We study the properties, give procedure for the construction of such networks and characterize the edges which are critical with respect to this irredundancy. Construction of new antichain graphs from the existing ones gives new ways to expand the existing irredundant network in to a bigger network, preserving the irredundancy. We propose the following open problem.
Problem: Let $G\left(V_{1} \cup V_{2}, E\right)$ be an antichain graph with $\left|V_{1}\right|=\left|V_{2}\right|$. There are at least two perfect matchings in G.

References

[1] Douglas Brent West, "Introduction to Graph Theory", Prentice Hall, 2001.
[2] R. B. Bapat, "Graphs and matrices", Hindustan Book Agency, 2010.
[3] Andelic M, C. M. da Fonseca, S. K. Simić, D. V. Tosic, "On bounds for the index of double nested graphs", Linear Algebra and its Applications, 2011.
[4] E. Ghorbani, "Some spectral properties of chain graphs", arXiv:1703.03581v1[math.CO], 2017.
[5] Andelic M, E. Ghorbani and S. K. Simić, "Vertex types in threshold and chain graphs", arXiv:1803.00245v1[math.CO], 2018.
[6] Andelic M, Z. Du, C.M. da Fonseca and S. K. Simić , "Tridiagonal matrices and spectral properties of some graph classes", Czech Math J, 2020.
[7] Francis K. Bell, Drago Cvetkovic, Peter Rowlinson, Slobodan K. Simic, "Graphs for which the least eigenvalue is minimal", Linear Algebra and its Applications, vol. 429, 2008.
[8] Andelic M, Carlos M. da Fonseca c, Slobodan K. Simić d, Dejan V. Tosice, "Connected graphs of fixed order and size with maximal Qindex: Some spectral bounds", Discrete Applied Mathermatics, 2011.
[9] M. Anelica, E. Andradea, D. M. Cardosoa, C.M.da Fonsecab, S. K. Simić, D. V. Tosice, "Some new considerations about double nested graphs", Linear Algebra and Applications, vol. 483, pp323-341, 2015.
[10] Fernando Tura, "Counting Spanning trees in Double nested graphs", arXiv:1605.04760v1 [math.CO], 2016.
[11] Abdullah Alazemi, Andelic M, Tamara Koledin, Zoran Stanic, "Eigenvalue-free intervals of distance matrices of threshold and chain graphs", Linear and Multilinear Algebra, 2019.
[12] Shahistha, K Arathi Bhat, Sudhakara G, "Wiener index of chain graphs", IAENG International Journal of Applied Mathematics, vol. 50, no.4, pp783-790, 2020.

SHAHISTHA received her B. Sc. Degree from Mangalore University, Mangalore, in 2012 and M. Sc. degree from Manipal Academy of Higher Education, Manipal, in 2014. At present she is working as an Assistant Professor in Department of Mathematics at Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal. She is also persuing Ph.D. under the guidance of Dr. Sudhakara G at Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal. Her research interests include Graph theory and Network theory.

K ARATHI BHAT received her B. Sc. Degree from Mangalore University, Mangalore, India, in 2000. and M. Sc. degree from Manipal Academy of Higher Education, Manipal, in 2011. She then received her Ph.D. from Manipal Academy of Higher Education, Manipal, in 2018. At present she is working as an Assistant Professor in Department of Mathematics at Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal. Her research interests include Algebraic graph theory, Network theory and Combinatorics.

SUDHAKARA G received his B. Sc. and M. Sc degrees in Mathematics from Mangalore University, Mangalore, India, in 1984 and 1986, respectively. He also completed his M. Phil in Mathematics. At present he is a Professor and Head in the Department of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal. His research interests include Algebraic graph theory and Combinatorics.

[^0]: Manuscript received October 20, 2020; revised March 28, 2021.

